精密空调设计方案参考

合集下载

精密空调设计方案参考

精密空调设计方案参考

XXX机房精密空调设计方案年月日目录第一章项目概述 (1)第二章设计依据 (2)1.1精密空调设计标准 (2)2设计依据 (2)3设计原理 (3)3.1舒适性空调与机房专用空调区别 (3)第三章精密空调设计 (7)1精确总热负荷的计算 (7)2机房热负荷估算法依据 (8)3机房热负荷估算法依据 (9)4空调室内室外机位置建议 (9)第四章艾默生机房精密空调介绍 ........................................... 错误!未定义书签。

1PEX系列描述................................................................... 错误!未定义书签。

2PEX机组的特点............................................................... 错误!未定义书签。

3PEX机组的设计............................................................... 错误!未定义书签。

4PEX P1025F技术参数...................................................... 错误!未定义书签。

第五章精密空调配置表 ........................................................... 错误!未定义书签。

第一章项目概述XXV机房层高3米,地板下高度30厘米。

根据及计算机机房设计国家标准,需要通过精密空调来实现对环境温度、湿度的调节,为计算机及网络设备的稳定运行提供优良的环境。

空调安装位置预留第二台精密空调位置。

目前机房内UPS的容量为20KVA,准备采用下送风方式。

机房平面布置图如下:第二章设计依据1.1精密空调设计标准计算中心机房属于大型重要的计算机中心。

机房精密空调项目设计方案

机房精密空调项目设计方案

机房精密空调项目设计方案一、项目背景和目的:随着电子设备的普及和互联网行业的迅速发展,机房空调成为保证设备正常运行的重要设备之一、机房精密空调项目旨在设计一套稳定可靠、高效节能的空调系统,以满足机房中设备的散热需要,并保证设备正常运行所需的温湿度条件。

二、设计原则和技术要求:1.稳定可靠:设计方案要具备稳定可靠的特性,确保机房设备在长时间运行过程中不出现故障。

2.高效节能:设计方案应选用高效节能的设备和技术,减少不必要的能源消耗,提高机房能源利用率。

3.灵活性:设计方案应具备一定的灵活性,以适应机房设备的增加或变更。

4.安全性:设计方案要考虑到机房设备的安全性,采取合适的措施保护设备免受外部的损害。

5.可维护性:设计方案应具备方便维护和检修的特性,减少维护工作的复杂性和时间成本。

三、设计方案:1.选用高效节能的空调设备:结合机房实际需求,选用高效节能的精密空调设备,如变频空调、节能型风机等。

2.合理布局和设计:根据机房大小和设备分布,合理布局空调设备,确保空调风流能够均匀覆盖整个机房,使得设备的热量可以快速散发。

3.温湿度控制:空调系统通过合理的温湿度控制,保持机房内的环境温度和湿度在一定范围内,以满足设备的正常运行需求。

4.防尘和过滤:机房精密空调系统应具备防尘和过滤功能,减少灰尘和颗粒的进入,保护设备的安全运行。

5.应急措施:设计方案应考虑到机房设备运行时可能发生的突发情况,如断电、故障等,采取相应的应急措施,确保设备的安全运行。

6.监控系统:设计方案可配备监控系统,实时监测机房内的温度、湿度等参数,及时报警并采取措施,防止设备出现故障。

7.节能措施:设计方案可采取一些节能措施,如增加隔热层、利用余热等,降低空调能耗。

四、项目实施步骤:1.项目立项和需求分析:根据实际机房需求,制定项目计划和需求分析报告。

2.方案设计和设备选型:根据需求分析报告,制定详细的设计方案,并选用适合的空调设备。

3.施工和安装:根据设计方案,进行施工和设备安装,确保空调系统能正常工作。

精密空调设计方案参考

精密空调设计方案参考

精密空调设计方案参考目录一、前言 (2)1.1 编写目的 (2)1.2 技术背景 (3)二、精密空调系统概述 (4)2.1 精密空调定义 (5)2.2 精密空调系统组成 (7)三、精密空调设计要素 (8)3.1 室内环境参数要求 (10)3.2 空调设备选型 (11)3.3 风系统设计 (12)3.4 制冷剂循环系统 (13)3.5 控制系统设计 (14)四、精密空调系统设计实例 (15)4.1 案例一 (16)4.1.1 设计目标 (18)4.1.2 系统布局 (19)4.1.3 设备选型与配置 (20)4.1.4 风系统设计与调试 (21)4.1.5 控制系统设计 (22)4.2 案例二 (24)4.2.1 设计目标 (26)4.2.2 系统布局 (26)4.2.3 设备选型与配置 (27)4.2.4 风系统设计与调试 (29)4.2.5 控制系统设计 (30)五、精密空调系统安装与调试 (32)5.1 安装前的准备工作 (34)5.2 安装过程指导 (35)5.3 系统调试与验收 (36)六、精密空调系统维护与保养 (37)6.1 日常维护要点 (38)6.2 定期保养项目 (40)6.3 故障处理与预防措施 (41)七、总结与展望 (42)7.1 设计成果总结 (44)7.2 发展与应用前景展望 (45)一、前言随着科技进步与工业发展,精密空调系统在众多领域的应用越来越广泛,如数据中心、实验室、洁净室、医疗设备场所等。

精密空调的设计不仅仅是为了保证室内环境的舒适度,更是为了能够满足特定场所对于温度、湿度、洁净度以及空气流动性的高精度控制需求。

一个高效、可靠、节能的精密空调设计方案至关重要。

本设计方案参考文档旨在提供一个全面的、系统的精密空调设计指导,涵盖了设计前的准备工作、设计原则、设备选型、布局规划、控制系统配置以及安装维护等方面的内容。

本方案不仅考虑到空调的常规设计要求,还结合了现代先进的空调技术与理念,以确保设计方案的科学性、实用性和前瞻性。

机房精密空调方案设计

机房精密空调方案设计

机房精密空调设计方案一、精密空调室内室外机位置设计室内机工作安装示意图:室内机安装建议基本要求:a、房间整体通风顺畅,送风、回风无障碍。

b、安装位置综合考虑,结合上下水、液管、汽管连接。

C、室内机安装处防静电地板下电缆等妨碍出风的物体较少,静电地板高度保证在350mm以上。

如现场无特殊要求,当室外机高于室内机时,建议垂直最大距离为20米;当室外机低于室内机时,建议垂直最大距离为9米;管道总长不超过60米,管道长度大于30米时,需加装DX管道延长组件。

活动地板加湿器进水冷凝水排水 地 板室内机组存油弯室外机组U 型回油弯型回油弯U 室外机高于室内机的安装示意图室外机组的安装方式气流气流气流气流直立式安装横放式安装二、精密空调机组设计特点1、机组的设计采用真正的模块化设计思路。

生产的单制冷回路和双制冷回路精密空调,可以提供单机的制冷量为20KW 至60KW ,并可组合在一起。

即能满足现阶段的使用,又能适应未来发展的需求,具有非常广泛的应用范围。

采用了先进的微处理器控制技术,完全满足机房对环境的精密控制要求。

并且机组控制器可完成各机组间的定时切换及故障切换,同时便于空调系统的集中管理。

机组标准型的加湿系统是可拆式电极罐式加湿器。

MAX 20m✧应用高能效比的涡旋压缩机。

涡漩压缩机的活动部件的减少使机组的噪声及震动降低很多;压缩机的压缩过程连续、平稳;压缩机的排气过程旋转角度超过540度;在吸气及压缩过程中没有热量交换;在压缩过程中制冷剂气流方向没有改变;减少了气流损失;涡漩式压缩机无需高、低压阀门;减少了阀门损失,防止产生液击;启动电流低。

✧采用了交互“V型”盘管,采用了带内螺纹的铜管及冲缝型翅片,比采用传统式盘管的机组有更高的传热效率。

采用“V型”结构盘管可使制冷系统的循环与制冷负荷相匹配,并且通过盘管表面的气流更加平稳,最大限度的降低机组噪声。

✧采用可拆卸并可自动调节、冲洗式加湿罐。

为了适应许多水质很差的地区使用,它采用了独特的控制技术并使用了“模糊逻辑”控制软件。

机房精密空调方案

机房精密空调方案

机房精密空调方案随着信息技术的快速发展,机房的重要性也逐渐凸显出来。

机房作为存放和运行大量的计算机设备和服务器的地方,对温度和湿度的要求非常高。

机房精密空调方案的设计和选择,直接关系到机房设备的正常运行和稳定性。

本文将介绍一种适用于机房的精密空调方案。

首先,机房精密空调方案需要考虑到机房的总热负荷。

机房的热负荷主要来自于计算机设备和其他设备的散热。

计算机设备散热主要通过风扇和散热片来实现,而其他设备的散热主要通过空调系统来实现。

因此,机房精密空调方案需要根据机房的总热负荷来确定空调系统的容量。

其次,机房精密空调方案需要考虑到机房的温度和湿度要求。

机房的温度通常控制在20℃至25℃之间,湿度控制在40%至60%之间。

过高或过低的温度和湿度都会对机房设备的运行和寿命产生不利影响。

因此,精密空调方案需要能够精确控制机房的温湿度,并能够根据实际情况进行智能调节。

第三,机房精密空调方案需要考虑到机房的空调系统的可靠性和稳定性。

机房通常是24小时运行的,因此空调系统的可靠性非常重要。

精密空调方案需要选择具有高可靠性和稳定性的空调设备,并配备备用空调设备以应对突发情况。

此外,精密空调方案还需要包括可远程监控和诊断系统,以便及时发现并解决空调系统的故障。

最后,机房精密空调方案还需要考虑到能源效率和环境保护。

机房的运行对能源的消耗非常大,因此,精密空调方案需要选择能够高效利用能源的空调设备,并配备智能节能控制系统以降低功耗。

同时,精密空调方案还需要考虑到废气的排放和噪声的控制,以减少对环境的污染和影响。

综上所述,机房精密空调方案需要考虑到机房的总热负荷、温度和湿度要求、空调系统的可靠性和稳定性、能源效率和环境保护等因素。

只有综合考虑这些因素,并选择适合的空调设备和系统,才能够满足机房的需求,保障机房设备的正常运行和稳定性。

精密空调设计方案

精密空调设计方案

精密空调设计方案精密空调设计方案一、项目背景随着科技的进步和人们生活水平的提高,空调成为人们日常生活中必不可少的电器设备之一。

为了满足人们对于舒适环境的需求,提高生活质量,开发一种精密空调成为当前的研究热点之一。

二、设计原则1.节能环保:设计过程中要充分考虑能源的使用效率,提高空调的节能性能,减少能源浪费,降低对环境的污染。

2.精确控温:空调系统应具备精确的温度控制功能,能够根据室内温度的变化自动调整制冷或加热能力,使室内温度保持在舒适范围内。

3.静音运行:空调系统的运行噪音应尽可能低,以减少对人体的干扰,提供一个安静的工作和生活环境。

4.方便安装和维修:设计的空调系统应易于安装和维修,方便用户的操作和维护。

三、设计内容1.主要组成部分(1)压缩机:选择高效压缩机,具有快速制冷和节能的特点。

(2)空气处理装置:采用高效过滤器,有效过滤空气中的细菌和污染物质,并可添加空气质量检测传感器,及时监测室内空气质量并调整空气净化能力。

(3)冷凝器和蒸发器:采用高效热交换技术,提高冷热交换效率。

(4)控制系统:采用先进的控制算法和传感器技术,实现精确的温度控制、风量控制和运行模式控制。

2.功能设计(1)温度控制:根据室内温度的变化自动调整制冷或加热能力,使室内温度保持在舒适范围内。

(2)湿度控制:根据室内湿度的变化自动启动或关闭加湿功能,保持室内湿度在适宜的水平。

(3)风速控制:根据用户的需求调整风速大小,提供不同的风感体验。

(4)定时功能:用户可以设置定时开关机,提高使用的便利性。

(5)故障诊断:具备故障诊断功能,一旦发生故障,能够及时报警并提供详细的故障信息,方便维修人员进行维修。

(6)远程控制:支持远程控制功能,用户可以通过手机App或者其他设备实时监控和调整空调系统的参数。

四、设计成果通过精密空调的设计,可以实现室内温度、湿度和空气质量的精确控制,提供舒适的室内环境。

同时,节能环保的设计理念也能够有效降低能源的消耗,减少对环境的污染。

精密空调方案参考

精密空调方案参考

温度、湿度、洁净度就是工作环境的关键因素,设备运行情况、使用寿命与 之有密切关系, 要为机房内精密设备提供良好环境, 要达到机房设计规范要求就 必须采用具有恒温恒湿控制能力及滤尘功能的精密空调。

本次方案设计了一套制冷量为 53.2KW 梅兰日兰精密空调一套,作为主用, 以满足机房设备需求。

(空调功率大小的计算、准确的型号将在第 11 章中给出 详细的说明)。

此外配置一台 5P 柜式空调,作为备用。

为了使工作人员能在一个较舒适的环境下工作, 在机房的辅助区域及办公区 域配置了 1 台 2P 柜式空调。

主机房内新风貌用大厦的空调进风,此外安装排风排烟管道,通风系统与消 防及门禁系统联动。

为使机房內主要设备和管理操作人员有一个良好的工作环境, 并为其具备能 够安全、 可靠地运行, 发挥其最大的工作效率, 就要提供一个符合其运行标准要 求的机房环境。

这包含对制冷、制热、加湿、去湿、滤尘有严格的标准要求,设 备运行情況、使用寿命与工作环境有密切关系,温度、湿度、洁净度就是工作环 境的关键因素。

根据中华人民共和国《计算站场地技术要求》(GB2887-89)标 准:C 级-10℃~40℃B 级5℃~35℃A 级5℃~35℃ 温度A 级冬季20℃+/-2℃45%-65%B 级15℃-30℃40%-70% C 级10℃-35℃30%-80%夏季23℃+/-2℃45%-65%温度相对湿度为达到上述机房的环境要求, 空调机的选型十分重要。

为了确保机房内的系 统设备在恒温、 恒湿工作条件下的送风量以及使人感到舒适的送风量, 必须计算 出机房内的热负荷。

机房的热负荷主要来自两个方面:机房内的计算机设备、照明灯具、辅助设施及工作人员所产生的热; 由机房外部进入的热,如:从墙壁、屋顶、隔断和地面传入机房的热; 透过玻璃窗射入的太阳辐射热;从窗户及门的缝隙渗入的风而侵入的 热;新风机补充新风带进来的热等。

为了确定该机房内主要设备所需恒温、 恒湿环境温度条件下, 机房专用空调 设备的容量, 我们根据机房系统内设备运行的特点和本市夏季气候的情况, 采用 类比计算法来确定机房恒温、恒湿专用空调的容量。

精密空调设计方案

精密空调设计方案

精密空调设计方案介绍本文档旨在提供一个精密空调设计方案的概述,包括设计目标、系统需求、关键组件和技术、系统集成和测试等内容。

通过该设计方案,可以实现高效、稳定和可靠的精密空调系统。

设计目标精密空调系统被广泛应用于计算机机房、实验室、医学设备等需要控制温度和湿度的场所。

设计目标如下:1.精确的温度控制:系统应能够在设定的温度范围内保持恒定的温度,并具备高精度的温度控制功能。

2.稳定的湿度控制:系统应能够在设定的湿度范围内保持稳定的湿度值,并能迅速调整湿度,以适应不同的环境要求。

3.高效能耗:系统应设计为高效能耗的空调方案,以降低运营成本。

4.可靠性:系统应能够长时间运行而不发生故障,并具有自动故障检测和报警功能。

系统需求为了满足设计目标,以下是对精密空调系统的系统需求进行详细说明:1.温度控制:系统应能够在设定的温度范围内维持恒定的温度。

通过传感器获取当前温度,并通过控制系统调整制冷剂的流量和温度以达到目标温度。

2.湿度控制:系统应能够在设定的湿度范围内保持稳定的湿度值。

通过湿度传感器获取当前湿度,并通过蒸发器和加湿器来调整湿度。

3.温度和湿度显示:系统应有一个直观的界面,显示当前的温度和湿度值。

4.自动调节:系统应能够根据环境要求自动调节温度和湿度值,并能够调整制冷剂流量和湿度调节器的功率。

5.能耗监测:系统应能够监测能耗并记录下来,以便进行能耗分析和优化。

6.故障检测和报警:系统应具备自动故障检测功能,并能通过报警系统通知操作人员。

关键组件和技术为了实现精密空调系统的设计目标和系统需求,以下是该系统的关键组件和技术:1.温度传感器:用于测量当前温度值,并将数据传输给控制系统。

2.湿度传感器:用于测量当前湿度值,并将数据传输给控制系统。

3.制冷剂流量控制器:通过调节制冷剂的流量和温度,以达到目标温度。

4.蒸发器:用于调节湿度,并通过蒸发的方式控制空气湿度。

5.加湿器:用于调节湿度,并通过蒸发水分补充空气湿度。

精密空调系统深化设计方案

精密空调系统深化设计方案

精密空调系统深化设计方案本次工程采用优质精密空调,湿度调节须达到相关标准B级以上机房的要求,采用地板下送风,能够按要求自动调节室内温、湿度,具有制冷、加热、加湿、除湿等功能。

空调机组应具备通信接口RS485,以便与机房环境监控系统相接入。

根据机房总体冷负荷的需要,本方案选用南京佳力图公司生产的机房专用空调。

采用一台佳力图机房专用精密空调13AD12对设备进行制冷,制冷量为12.6KW,送风方式为下送风。

1、CANATAL精密空调机组配置设计方案:上述选型机组单台制冷量的标准工况:回风干球温度24℃,相对湿度50%。

2、投标产品佳力图精密空调机组技术参数一览表型号:8AD07机型3、投标产品详细介绍(1)、高效能的制冷压缩机 南京佳力图空调机电有限公司生产“CANATAL”所有系列机房专用空调的制冷压缩机均采用当今世界最为先进的全封闭涡旋式制冷压缩机(美国COPELAN 公司出品)。

全封闭涡旋式压缩机, 所以CANATAL 机房专用空调的室内 、外机间的安装水平距离在不需要采取任何其它措施的情况下,长度可达35米、垂直高度可达15米 ,这样将方便用户的设备安装. (这一点是采用活塞式制冷压缩机的机房专用空调产品所不能做到的)。

活塞式制冷压缩机由于活塞在气缸内运作时其吸气过程是不做功的,它的输气曲线为一正弦曲线,所以其能效比不高 (据压缩机生产厂家提供的资料显示,其能效比EER 值只有3.0左右) .由于活塞在运动过程中有方向性突变,所以工作震动与噪音均比涡旋式制冷压缩机大了很多.另外,由于活塞式制冷压缩机的零部件比较多,其可靠性也大大小于涡旋式制冷压缩机。

(2)、蒸发器南京佳力图空调机电有限公司生产的“CANATAL”机房专用空调所采用的蒸发器为"A"型交叉式供液方式的蒸发器.当一台CANATAL 专用空调中一套制冷系统 (一台CANATAL 机房专用空调中有两套独立循环的制冷系统)单独工作时, 由于它共用了两套制冷循环系统的蒸发器面积,所以其制冷量可达整台空调的60%也就是说,在春、秋两季中,由于环境温度不及夏季, 所以当CANATAL 机房专用空调的本机电脑自动测定只需要提供一台空调的60%制冷量时,CANATAL 机房专用空调只需要开启一台空调中一套制冷循环系统.这样就大大地节约了电力资源,减少了空调的运行费用.而其它品牌同类产品所采用的蒸发器虽为"A"型或”V”型,但属非交叉式供液方式的蒸发器.采用这种方式蒸发器的专用空调当其一套制冷循环系统单独工作时,即使不考虑任何机械损耗,其制冷量也只有整台空调的50%. 就这一项技术.在一年中大约3/5的时间里, 佳力图将比其它品牌同类产品的机房专用空调节省电能约10%左右.(3)、冷凝器南京佳力图空调机电有限公司生产的“CANATAL”机房专用空调的室外机外壳采用全不锈钢材料制成 , 体积小、效率高. 冷凝器采用世界著名德国施乐百(ZIDHL-BM)公司的大风量低噪音风机.为确保室内机输出冷量恒定,尤其在北方地区冬季空调能够正常工作,风机转速随室外环境温度变化而作无级调速(每一个室外环境温度将有一确定的风机转速与之对应), 这样不但提高了机房专用空调的工作可靠性,同时也降低了运行成本.另外,由于在CANATAL 机房专用空调的所有热交换器中换热管均采用了高效内肋管 , 所以CANATAL冷凝器的体积比较小 ,且具有安装方便的特点 (可从0--90度范围内 ,任意角度安装)CANATAL冷凝器的噪音 < 55 dB(A).(4)、机房专用空调的本机控制电脑南京佳力图空调机电有限公司生产的“CANATAL”机房专用空调所有型号的机房专用空调的本机控制电脑采用了PID控制方式(即比例+积分+微分控制方式) ,可准确无误地使控环境的温度控制在±0.5℃的范围以内 ,相对湿度可控制在±2%的范围内(附CANATAL机房专用空调在用户机房内的24小时实测温度及湿度图表 ).另外,CANATAL机房专用空调的本机控制电脑采用大屏幕全中文显示屏,信息量大,操作方便,有效提高了人、机对话的能力。

机房精密空调方案及现场施工安排方案

机房精密空调方案及现场施工安排方案

机房精密空调方案及现场施工安排方案1. 引言本文档旨在提供关于机房精密空调方案及现场施工安排的详细信息。

该方案旨在为机房提供稳定的温度和湿度环境,以确保设备的正常工作并保护其性能和寿命。

2. 现状分析当前机房存在温度波动大、湿度不稳定等问题,这可能对设备的正常运行造成负面影响。

因此,我们需要考虑安装精密空调系统来解决这些问题。

3. 精密空调方案为了满足机房的需求,我们建议采用以下精密空调方案:- 定位:根据机房布局和设备的热量释放情况,选择合适的位置安装空调设备。

- 设备选择:选择具有良好性能和高效能力的精密空调设备,例如空调机组、送风亭和风机盘管等。

- 温度和湿度控制:空调系统应配备先进的温度和湿度控制功能,通过精确的传感器和自动控制系统来维持机房内的稳定环境。

- 运行模式:空调系统应支持多种运行模式,如制冷、制热、湿度控制、自动模式等,以应对不同季节和环境条件。

- 能效考虑:选择满足能效标准的空调设备,以降低能源消耗和操作成本。

4. 现场施工安排方案为确保顺利的安装和调试过程,我们提供以下现场施工安排方案:- 施工准备:在施工前,确保机房空间干净、安全,并准备好所需的工具和材料。

- 安装过程:按照制定的安装图纸和标准,有序进行空调设备的安装和调试,并注意安全和质量控制。

- 电气接线:根据电气图纸和规范,进行精密空调设备的电气接线,并进行必要的检测和验证。

- 调试和测试:在完成安装后,进行短暂的调试和测试,确保空调系统正常运行并满足设计要求。

- 现场交接:与客户进行现场交接,并提供所安装的空调设备的相关信息、操作手册和保养指南。

5. 结论机房精密空调方案及现场施工安排方案将帮助您解决机房温度和湿度不稳定的问题,并确保设备的正常运行。

我们相信,通过精心实施该方案,您将获得满意的结果。

如需进一步讨论或了解更详细的信息,请随时与我们联系。

谢谢!。

机房精密空调设计方案

机房精密空调设计方案

●机房的IT负载容量核算对于机房UPS容量的确定前提是IT负载的确定, 只有机房的总负载(包括现在以及未来3年的负载)能够确定, 我们就可以以此为基础来计算UPS的容量, 并考虑3年后的合理的扩容方案。

负载的核算方法:1)现有负载的计算:现场勘查所有机房的输入配电柜, 计算所有IT负载之和即可得到现在总负载容量(实际值)。

同时将这些负载理论功率容量与实际值作比较, 从而得到现实负载容量与理论值之间的差异系数。

2)未来负载的计算:将未来负载按照型号可以查到理论值, 可以根据步骤1)得到的差异系数就可以得到未来增加的负载的真实值, 同时放大一定比例就可以得到相应的UPS容量。

以上的目的提供合理的UPS容量满足现在以及未来的需求, 避免“大马拉小车”所造成的用户运行成本过高的现象, 同时也避免由于负载的增加所造成的UPS供电系统不断扩容的麻烦。

3)实际上IT负载的增加所造成的UPS系统扩容是一个系统工程, 不仅是简单的UPS容量的增加, 同时需要考虑UPS前端的配电容量是否能够满足扩容的需要。

根据单位现在的情况为:总配电室由两台800KVA干式变压器为全机关供电, 两台变压器分别已用970A(640KVA)和690A(455KVA), 也就是说两台变压器的带载率分别是80%和57%, 如果增加负载的话, 只能在负载小一些的变压器后端增加。

可以增加的容量仅为200KVA, 如果还需要增加更多的负载, 必须要增加相应的变压器容量。

● 模块化供电系统与传统供电系统方案配置方案一..模块化供电系统.型号: SYPX500K.(生产厂家: APC )UPS 系统输入/静态旁路柜(UPS I/O base Frame) UPS 手动维护旁路/输出配电系统 (MBWD)UPS 主机柜(SYPF250KD x2),可以放置20个25KW 的功率模块 第三方电池保护开关柜 (SYBBE250K 250D)方案特点及优势:◆先进性: 采用UPS领域最先进的结构与技术。

机房精密空调设计方案

机房精密空调设计方案

机房精密空调设计方案
机房是存放重要设备的地方,温度和湿度的控制对机房设备的正常运行和使用寿命有着至关重要的影响。

为了保证机房内的温度和湿度处于理想的范围内,需要设计合理、高效的精密空调系统。

首先,机房精密空调系统应具备强大的制冷能力。

根据机房的尺寸和设备数量,需要选用适当的制冷设备,以确保机房内的温度能够在正常的范围内保持稳定。

此外,精密空调系统还应采用先进的制冷技术,如变频压缩机、多级制冷等,以提高冷却效率并降低能耗。

其次,机房精密空调系统应具备精确的温湿度控制功能。

通过采用高精度的温湿度传感器和先进的控制算法,可以实时监测机房内的温湿度,并根据设定的参数进行精确控制。

同时,精密空调系统还应具备恒温恒湿的调节功能,能够根据机房的实际情况进行自动调节,确保机房内的温湿度一直处于合适的状态。

此外,机房精密空调系统应具备可靠的运行和故障排查功能。

为了保证机房内设备的正常运行,精密空调系统应配备完善的报警和故障自诊断系统,及时发现和解决问题。

同时,系统还应具备远程监控和控制功能,方便运维人员对机房的温湿度进行实时监测和调节。

最后,机房精密空调系统应具备节能环保的特性。

通过采用高效制冷设备、合理的循环系统设计以及智能化的控制策略,可
以降低系统的能耗,减少对环境的影响。

同时,系统还应考虑到废热的回收利用,提高能源利用率,减少能源的浪费。

综上所述,机房精密空调设计方案应具备强大的制冷能力、精确的温湿度控制功能、可靠的运行和故障排查功能以及节能环保的特性。

通过合理设计和配置,可以确保机房内的温湿度处于理想的范围内,保障设备的正常运行和使用寿命。

精密空调方案

精密空调方案

精密空调⽅案台达精密空调⽅案⼀、机房情况介绍(⼀)、机房情况现在了解到⽤户场地情况如下:机房⾯积约50平⽅⽶左右,根据机房环境要求建议配置台达风冷型制冷量为13.1KW的精密空调。

(⼆)、机房负荷计算1、计算机房环境条件设计标准计算机房属于重要设备运⾏场所,为了使电⼦计算机机房设计确保电⼦计算机系统稳定可靠运⾏及保障机房⼯作⼈员有良好的⼯作环境,机房内应按照国标GB2887-89《计算机场地安全要求》以及国标GB50174-93《电⼦计算机机房设计规范》来确定计算机机房环境条件。

1)温、湿度要求:根据国标GB50174-93《电⼦计算机机房设计规范》第3.1.2条,电⼦计算机机房内温、湿度应满⾜下列要求:i.开机时电⼦计算机机房内的温、湿度ii.停机时电⼦计算机机房内的温、湿度2)空⽓含尘浓度要求:根据国标GB50174-93《电⼦计算机机房设计规范》第3.1.5条规定,主机房内的空⽓含尘浓度,在表态条件下测试,每升空⽓中⼤于或等于0.5µm的尘粒数,应少于18,000粒。

3)机房噪⾳规定:根据国标GB50174-93《电⼦计算机机房设计规范》第3.2.1条规定,主机房内的噪声,在计算机系统停机条件下,在主操作员位置测量应⼩于68dB(A)。

4)⽓流组织规定:根据国标GB50174-93《电⼦计算机机房设计规范》第5.3.3条规定,采⽤活动地板下送风时,出⼝风速不应⼤于3m/s,送风⽓流不应直对⼯作⼈员。

5)系统设计规定:根据国标GB50174-93《电⼦计算机机房设计规范》第5.4.6条规定,主机房必须维持⼀定的正压。

主机房与其它房间、⾛廊间的压差不应⼩于4.9Pa,与室外静压差不应⼩于9.8Pa。

为满⾜以上所提到的计算机房环境条件规定,应选⽤精密空调。

2、机算机房热、湿负荷计算根据国标GB50174-93《电⼦计算机机房设计规范》第5.2.2条规定,电⼦计算机机房空调的热、湿负荷应包括下列内容:A.计算机和其它设备的散热;B.建筑围护结构的传热;C.太阳辐射热;D.⼈体散热、散湿;E.照明装置散热;F.新风负荷。

机房精密空调的选型设计方案

机房精密空调的选型设计方案

机房精密空调的选型设计方案模块化机房精密空调采用一体式机身结构设计,具备新风节能、大风量、高显热、高效过滤、网络控制等功能,满足机房的高负荷长时间连续运转的散热要求。

特征:节能一体式机房空调采用一体式机身结构设计,具备新风节能、大风量、高显热、高效过滤、网络控制等功能,满足机房的高负荷长时间连续运转的散热要求。

多种制冷方式:风冷机房空调、水冷机房空调、冷冻水机房空调、风冷双冷源机房空调、水冷双冷源型等多种机型制冷量风冷型单机从5.5KW~200KW,水冷型单机从5.5KW~200KW。

精密空调选型依据(精密空调选型必读材料)精密机房属重要设备运行工作场所,机房内有严格的温、湿度要求,机房内按国标GB2887-89《计算机场地安全要求》的规定配置空调设备:级别项目A级夏季冬季温度22±2℃20±2℃相对湿度45%~65%温度变化率<5°C/h并不得结露同时,主机房区的噪声声压级小于68分贝主机房内要维持正压,与室外压差大于9.8帕送风速度不小于3米/秒在表态条件下,主机房内大于0.5微米的尘埃不大于18000粒/升为使机房能达到上述要求,应采用精密空调机组才能满足要求。

机房专用空调机选型指南1估算空调机的制冷量选定设备型号时通常要考虑以下主要因素1.1机房内设备发热量1.2机房面积1.3机房条件(包括层高,密封,装修,室外机安装位置等)1.4当地气候条件1.5型号规格圆整统一机房对机房空调的要求机房是数据处理中心,安装有大量的计算机、磁带机、磁介质、交换机、路由器等对环境温湿度、洁净度要求较高的精密设备,对机房环境有严格的要求,其中最重要的是机房温度、湿度和洁净度三个指标。

机房专用空调(精密空调)是为计算机机房(包括程控交换机房)专门设计的特殊空调机,精密空调系统的设计是为了进行精确的温度和湿度控制,精密空调系统具有高可靠性,保证系统终年连续运行,并且具有可维修性、组装灵活性和冗余性,可以保证数据机房四季空调正常运行。

机房设备精密空调全新设计方案

机房设备精密空调全新设计方案

机房设备精密空调全新设计方案背景:随着信息技术的快速发展,机房设备在现代社会中起着至关重要的作用。

而机房设备需要保持稳定的温度和湿度,以确保设备的正常运行。

因此,精密空调系统成为机房独有的空调方案。

现状:目前市场上存在多种精密空调系统,但仍存在一些问题。

首先,传统的精密空调系统需要大量的空间,并且安装复杂,占用机房的宝贵空间。

其次,传统的精密空调系统采用的制冷方式一般为机械制冷,需要消耗大量的能源,并且对环境有一定的污染。

此外,由于机房设备集中在一起,传统的精密空调系统的噪音也成为一个问题。

设计方案:1.利用空间:新设计的机房精密空调系统将采用紧凑型设计,以减少对机房空间的占用。

可以将其安装在机房的角落或地板上,以最大化地利用空间。

此外,还将提供可调节的风向和风速,以确保整个机房都能得到足够的冷却和通风。

2.环保能源:为了解决传统精密空调系统的能源消耗和环境污染问题,新设计的精密空调系统将采用新型的制冷技术。

其中一种可能的方案是采用蓄冰式制冷技术,通过在低峰时段制冷蓄冰,然后在高峰时段利用蓄冰进行制冷,以减少能源消耗。

此外,还可以考虑使用可再生能源来为系统供电,如太阳能板。

3.噪音控制:机房设备通常需要在24小时运行,因此需要考虑噪音对人员的影响。

新设计的精密空调系统将减少噪音的产生。

采用静音技术和噪音隔离材料,以降低系统的噪音水平。

此外,还将提供远程监控和控制功能,以确保及时检测和解决任何噪音问题。

4.智能控制:新设计的精密空调系统将采用智能控制技术,以提高系统的性能和效率。

通过传感器和自适应算法,系统可以自动调节温度和湿度,以满足机房设备的要求。

此外,还将提供远程监控和控制功能,以便管理员可以远程管理和控制系统,提高机房设备的可靠性和安全性。

结论:机房设备精密空调是确保机房设备正常运行的关键因素。

通过新设计的精密空调系统,可以减少对机房空间的占用,降低能源消耗和环境污染,控制噪音产生,提高系统的智能控制。

精密空调系统设计方案

精密空调系统设计方案

精密空调系统设计方案1、机房环境特点机房中的计算机及网络设备在运行中散热量大而且集中,散湿量极小,散热量的95%是显热,热湿比极大,这就需要大量的冷风将热量带走。

计算机设备除了对温度有要求外,对湿度亦有要求,专用空调实现了对湿度的自动控制,使计算机设备不论在极湿润的夏季还是在极干躁的冬季都能在恒湿状态下正常工作。

本机房空气环境设计参数:夏季温度 23±2℃冬季温度20±2℃夏季湿度 55±10% 冬季湿度55±10%洁净度粒度≥0.5μm 个数≤18000粒/分米3温度变化率≤5℃/时机房的环境是靠空调机来实现的。

但是,机房的洁净度则要求做到以下几点:第一、机房要密封、墙体围护结构要清洁。

第二、空调机设亚高效过滤网,并定期更换,从而保证机房空气在不断循环中得以净化。

我公司的方案设计可以保证,空气洁净度达到国标要求。

2、主机房区精密空调设计采用下送风、上回风的送风方式:设备散热量大且集中,进风口一般设置在设备下部,自下而上的冷空气迅速而有效的冷却设备。

由于本机房为数据机房,机房散热量较大,故应按较大的需冷量配置机房空调,同时参考需方的1+1备份的要求。

由图纸初步计算可知主机房面积约为100㎡,精密空调制冷量=UPS功率X功率因素X使用效率+机房面积X(110w/m²)机房总制冷量=120KV AX0.9X0.6+100 m²X(110w/m²)/1000=75.8KW,根据机房UPS配置以及实际的使用情况及后期扩容需要,建议按2台佳力图ME系列MEAU802风冷直接蒸发式机房专用机制冷量为83.4KW左右的精密空调配备。

采用1主1备的工作方式。

3、佳力图ME系列MEAU802机房专用机特点及参数。

ME系列采用模块化设计,每个模块都可独立工作,也可根据用户需要任意给合。

随着机房设备技术越来越先进、设备的结构越来越紧凑,同时需要相当高的散热效果和高精度的环境条件。

机房精密空调系统设计方案

机房精密空调系统设计方案

机房精密空调系统设计方案机房精密空调系统设计方案目录第一章精密空调系统配置31.1机房设计要求31.2机房负荷计算5第二章系统设计92.1系统概述92.2系统设计依据102.3系统设计原则及系统特点12第三章Liebert.PEX系列产品介绍133.1Liebert.PEX系列描述133.2Liebert.PEX机组的特点133.3Liebert.PEX机组的设计143.4Liebert.PEX机组的节能设计19第四章施工方案214.1空调及机柜摆放示意图214.2空调室内室外机安装原则224.3空调相关工程建议224.3.1防水工程234.3.2地板工程234.3.3天花工程244.3.4墙柱面工程244.3.5门窗工程244.3.6电气安装24第五章机房动力环境监控系统255.1系统内容255.2各子系统内容35第一章精密空调系统配置1.1机房设计要求根据中心机房的实际情况,我们建议选用恒温恒湿机房专用精密空调。

它可以保证电脑机房拥有一个恒久的良好的机房环境。

机房环境特点:机房中的环境设备在运行中散热量大而且集中,散湿量极小。

即机房设备散热量的95%是显热,热量大,湿量小,热湿比极大。

在这种情况下,空气处理可近似作为一个等湿降温过程。

在这种情况下的焓差小,要消除余热必然是大风量。

此外,因为计算机设备、网络设备24小时不间断运行,所以需要空调系统一年四季不间断地运行。

同时,根据机房的围护结构特点(主要是墙体、顶面、地面,包括:楼层、朝向、外墙、内墙及墙体材料,及门窗型式、单双层结构及缝隙、散热)、人员的发热量,照明灯具的发热量,新风负荷等各种因素,计算出计算机房所需的制冷量,因此选定空调的容量。

数据中心机房空气环境设计参数:机房的环境是靠空调机来实现的。

但是,保证机房的洁净度则要求做到以下几点:1. 机房要密封墙体围护结构清洁。

2. 机房要保持正压,防止脏空气侵蚀。

新风做到两级净化,即初效、亚高效过滤器,从而使输入机房的空气质量大大提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXX机房精密空调设计方案年月日目录第一章项目概述 (1)第二章设计依据 (2)1.1精密空调设计标准 (2)2设计依据 (2)3设计原理 (3)3.1舒适性空调与机房专用空调区别 (3)第三章精密空调设计 (7)1精确总热负荷的计算 (7)2机房热负荷估算法依据 (8)3机房热负荷估算法依据 (9)4空调室内室外机位置建议 (9)第四章艾默生机房精密空调介绍 ........................................... 错误!未定义书签。

1PEX系列描述................................................................... 错误!未定义书签。

2PEX机组的特点............................................................... 错误!未定义书签。

3PEX机组的设计............................................................... 错误!未定义书签。

4PEX P1025F技术参数...................................................... 错误!未定义书签。

第五章精密空调配置表 ........................................................... 错误!未定义书签。

第一章项目概述XXV机房层高3米,地板下高度30厘米。

根据及计算机机房设计国家标准,需要通过精密空调来实现对环境温度、湿度的调节,为计算机及网络设备的稳定运行提供优良的环境。

空调安装位置预留第二台精密空调位置。

目前机房内UPS的容量为20KVA,准备采用下送风方式。

机房平面布置图如下:第二章设计依据1.1精密空调设计标准计算中心机房属于大型重要的计算机中心。

机房内有严格的温、湿度要求,机房内按国标GB2887-89《计算机场地安全要求》的规定配置空调设备:同时,主机房区的噪声声压级小于68分贝主机房内要维持正压,与室外压差大于9.8帕送风速度不小于3米/秒在表态条件下,主机房内大于0.5微米的尘埃不大于18000粒/升为使机房能达到上述要求,应采用精密空调机组才能满足要求。

2 设计依据1.GB2887-89《计算机场地技术条件》;2.YD/T585-1999《通信用配电设备》;3.YD5040-97《通信电源设备安装设计规范》;4.YD/T 1051-2000《通信局(站)电源系统总技术要求》;5.YD/T 1104-2001《通信用开关电源系统监控技术要求和试验方法》;6. YD/T 1095一2000《信息技术设备用不间断电源通用技术条件》;7. GB 50174-2008《电子信息系统机房设计规范》;8. CECS72:97《建筑与建筑群综合布线系统工程设计规范》;9. CECS89:97《建筑与建筑群综合布线系统工程施工及验收规范》;3 设计原理3.1舒适性空调与机房专用空调区别目前机房应用舒适性空调发生和发现的主要问题如下:由温度异常引起的设备故障较多。

1、因湿度及洁净度引起的设备故障较多。

2、维护量大。

原因在于舒适性空调的设计及其能达到的标准不适合机房对温湿度的要求。

机房对温湿度要求较高,具体内容如下:1、保持温度恒定(控制在温差1-2 C之内)。

2、保持湿度恒定(控制在3%~5% RH之内)。

3、空气洁净度0.5微米/升<18,000。

4、换气次数/小时>30。

5、机房正压>10Pa。

6、空调设备具备远程监控及来电自启动功能。

因为舒适性空调无法彻底实现以上6个功能。

故障的原因及结果如下:1.机房温度无法保持恒定-会造成电子元气件的寿命大大降低。

2.局部环境过热–导致设备突然关机。

3.机房湿度过高-会产生冷凝水,导致微电路局部短路。

4.机房湿度过低-会产生有破坏性的静电,导致设备运行失常。

5.洁净度不够-交换数据错误,导致机组部件过热。

只有在机房应用机房专用精密空调,才能通过环境调节上彻底解决以上问题,保证不留任何隐患。

从原理上看,舒适性空调在设计上与精密空调的差异如下表:其具体体现的问题如下:1、舒适性空调出风温度过低舒适性空调的设计为小风量、大焓差。

出风温度设计在6-8o C ,换气次数设计在10-15次。

精密空调的设计为大风量、小焓差。

出风温度设计在10-14o C ,换气次数设计在30-60次。

舒适性空调出风温度为6-8o C ,而在湿度大于等于50%的时候,8o C为露点,就是说空气中的水蒸气在此温度下会凝结成水滴。

尤其对靠近空调出风处的设备局部极其不利,会导致微电路短路。

舒适性空调在不考虑湿度对设备影响的前提下,对近端设备可以有效降温,但由于换气能力及风量不足,导致换气次数不够,即对距离出风口较远的设备无法起到降温作用。

精密空调在出风温度设计上避免了“露点问题”,并通过大风量(换气次数最小设计为30次,即每2分钟将机房空气有效过滤一次)的设计解决了机房整体降温问题。

2、舒适性空调在-5o C以下即无法运行舒适性空调在设计理念上只是在夏季发挥降温功能,其夏冬两季蒸发器、冷凝器功能互换的设计决定了——室外温度在-5o C及以下时,即无法进行空气调节——无法降温和升温!而标准机房的特点是发热量大,其空调即使在冬季也要具备降温功能!精密空调的设计严格适应各类室外温度变化的要求,-40o C到+45o C 趋间保证空调24小时正常工作,包括降温和升温。

3、舒适性空调温度调节精度过低舒适性空调温度调节精度为6o C。

从风量及出风问题上考虑,仅仅保障近端设备处的温度。

温度的波动对设备稳定运行极其不利。

精密空调温度调节精度为1o C。

感应点为整个机房,温度无波动。

4、舒适性空调没有湿度控制功能舒适性空调无法进行湿度控制。

既没有加湿设备,也无法有效除湿。

湿度过高产生的水滴及湿度过低产生的静电对设备运行都极其不利。

精密空调的重要控制因数为湿度,可以达到1%的控制精度,湿度无波动。

5、舒适性空调设计寿命短精密空调(如LIEBERT)的设计寿命为10年(在中国,LIEBERT已经出现15年仍然正常运行的案例),运行要求为全年365天,每天24小时。

目前已经有一些舒适性空调厂家标称设计寿命超过5年,然而其计算方法为每年应用1-3个季度,每天运行不超过8小时,根据精密空调设计寿命的计算方法要求,其设计寿命绝对不超过2年。

6、舒适性空调基本没有空气过滤能力舒适性空调只具备简单的过滤功能,不提供过滤网备件,一般在应用1-2个月后即无过滤功能。

精密空调严格按照0.5 微米/升<18,000(B级)设计,配合以每小时30次的风量循环,保障机房洁净。

机房洁净对设备运行非常重要。

7、舒适性空调维护量大对舒适性空调而言,客户必须组织专门的队伍进行维护,维护量及维护成本高。

精密空调的设计针对“免维护”,其维护量只集中在机组自动提示的过滤网更换及加湿罐清理等简单工作,无须专业的维护队伍。

维护部门倾向于使用精密空调。

8、舒适性空调综合成本高①从一次性购买成本上看,如果使用舒适性空调,达到相同制冷量精密空调的价格是舒适性空调的2倍左右,但考虑使用寿命——精密空调的使用寿命空调是舒适性空调的2-4倍,也就是说,在10年时间里,我们可以只应用1批精密空调,而不是应用2批甚至3批舒适性空调。

②从运行成本上看,在发挥同样制冷效果的前提下,舒适性空调的耗电量是精密空调耗电量的1.5倍。

③从维护成本上看。

在发挥同样制冷效果的前提下,舒适性空调的维护量是精密空调维护量的2倍。

根据以上3种计算,从成本角度考虑,选择精密空调可以节省大量的投资、运行成本、维护成本。

第三章精密空调设计1 精确总热负荷的计算按照空调设计中负荷计算的要求,精确空调负荷的确定方法如下:机房主要热量的来源✧设备负荷(计算机及机柜热负荷);✧机房照明负荷;✧建筑维护结构负荷;✧补充的新风负荷;✧人员的散热负荷等。

✧其他热负荷分析:(1)计算机设备热负荷:Q1=860xPxη1η2η3 Kcal/hQ:计算机设备热负荷P:机房内各种设备总功耗η1:同时使用系数η2:利用系数η3 :负荷工作均匀系数通常,η1η2η3取0.6—0.8之间,本设计考虑容量变化要求较小,取值为0.6。

(2)照明设备热负荷:Q2=CxP Kcal/hP:照明设备标定输出功率C:每输出1W放热量Kcal/hw(白炽灯0.86口光灯1)根据国家标准《计算站场地技术要求》要求,机房照度应大于2001x,其功耗大约为20W/M2以后的计算中,照明功耗将以20 W/M2为依据计算。

(3)人体热负荷Q3=PxN Kcal/hN:机房常有人员数量P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为102Kcal。

(4)围护结构传导热Q4=KxFx(t1-t2) Kcal/hK:转护结构导热系统普通混凝土为1.4—1.5F:转护结构面积t1:机房内内温度℃t2:机房外的计算温度℃在以后的计算中,t1-t2定为10℃计算。

屋顶与地板根据修正系数0.4计算。

(5)新风热负荷计算较为复杂,在此方案中,我们以空调本身的设备余量来平衡,不另外计算。

(6)其他热负荷除上述热负荷外,在工作中使用的示波器、电烙铁、吸尘器等也将成为热负荷,由于这些设备功耗小,只粗略根据其输入功率与热功当量之积计算。

Q5=860xP2 机房热负荷估算法依据在实际工程方案设计中由于建筑物机构的复杂性,通常根据下表来选择机房单位面积的冷量需求,然后根据总面积计算出冷量需求。

本机房主要的热负荷来源于设备的发热量及维护结构的热负荷。

因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。

根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积按经验进行测算。

3 机房热负荷估算法依据据机房热负荷估算法计算冷量,按最平均参数计算,机房总冷负荷为400×60/1000=24KW。

推荐使用艾默生PEX1025下送风精密空调一套,另外机房空调间针对今后服务器等设备的扩容预留了第二套精密空调安装位置。

4 空调室内室外机位置建议1、室内机安装建议基本要求:A、房间整体通风顺畅,送风、回风无障碍。

B、安装位置综合考虑,结合上下水、液管、汽管连接。

C、采用风管送风方式。

二台机组共用一个静压箱。

每个机组与静压箱的连接风管安装风阀,风阀与机组采用联动工作方式。

2、空调安装示意图如现场无特殊要求,当室外机高于室内机时,建议垂直最大距离为20米;当室外机低于室内机时,建议垂直最大距离为5米;建议管道总长不超过60米。

相关文档
最新文档