新人教版七年级数学下册复习提纲资料
最新2023年人教版七年级数学下册复习提纲(全册)
最新2023年人教版七年级数学下册复习
提纲(全册)
1. 基本概念复
- 数的基本概念和运算规律
- 有理数的概念和性质
- 整式的加减乘除法
- 算术式和代数式的转化
2. 分数与分式
- 分数的概念和意义
- 分数的相等性质和大小比较
- 分数的四则运算
- 分式的概念和运算法则
3. 一次函数
- 一次函数的概念和性质
- 一次函数的图像和表示方法
- 一次函数的斜率和截距
- 一次函数的应用问题
4. 几何图形与运动
- 几何图形的分类和性质
- 平面图形的周长和面积计算- 直角坐标系和平面直角坐标系- 图形的变换与运动
5. 数据统计
- 统计调查的方法和步骤
- 数据的收集和整理
- 统计图表的绘制和分析
- 数据的描述和解读
6. 算法与逻辑
- 算法的基本概念和特点
- 算法设计的基本思想和方法- 逻辑推理和问题求解
- 编程思维的培养
7. 考试复重点
- 各章节的重点知识和考点
- 典型题型的解题思路和方法
- 题的抽取和分类复
- 考前重点强化和应试技巧
以上就是最新2023年人教版七年级数学下册的复习提纲,希望对你的学习和备考有所帮助。
祝你学习进步!。
人教版新教材七年级下册数学复习重难点(考前必背)
人教版新教材七年级下册数学复习重难点(考前必背)本文档旨在为七年级下册数学考试前的复提供重要知识点的梳理和总结,帮助学生有针对性地复,并提高考试成绩。
一、整数的加减运算1. 整数加法的规律:- 两个正整数相加,结果仍为正整数。
- 两个负整数相加,结果仍为负整数。
- 正整数与负整数相加,结果的符号由绝对值较大的整数决定。
2. 整数减法的规律:- 正整数减去正整数,结果可能为正整数、零或负整数。
- 负整数减去负整数,结果可能为正整数、零或负整数。
- 正整数减去负整数,结果的符号由绝对值较大的整数决定。
二、倍数与约数1. 倍数:- 若整数A能被整数B整除,那么A是B的倍数。
- 若整数n是整数m的倍数,那么m是n的约数。
2. 最大公约数:- 两个或多个整数公有的约数中最大的一个称为最大公约数。
3. 最小公倍数:- 两个或多个整数公有的倍数中最小的一个称为最小公倍数。
三、平方与阶乘1. 平方:- 一个数的平方是指该数与自身相乘的运算。
- 求一个数的平方可以使用乘法运算符(*)。
2. 阶乘:- 一个正整数n的阶乘是指小于等于n的所有正整数相乘的结果,用n!表示。
- 求一个数的阶乘可以使用循环结构。
四、分数的加减乘除运算1. 分数的相加、相减:- 分子相乘后相加(减),分母保持不变。
2. 分数的相乘:- 分子相乘,分母相乘。
3. 分数的相除:- 分子相乘,分母相乘。
五、平行线与相交线1. 平行线:- 两条直线永远不会相交的线称为平行线。
- 平行线上的任意一对夹角相等。
2. 相交线:- 两条直线在空间某一点相交而形成的角称为相交线。
- 相交线上的任意一对夹角互补,即相加为180°。
以上是人教版新教材七年级下册数学考前复习的重难点,请同学们针对这些知识点进行复习,并多做练习题,加深对知识的理解和掌握。
祝大家取得优异的考试成绩!。
新人教版七年级下册数学知识点整理
新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
人教版七年级下册数学复习提纲(精选7篇)
人教版七年级下册数学复习提纲〔精选7篇〕篇1:人教版七年级下册数学复习提纲人教版七年级下册数学复习提纲1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、篇2:人教版七年级下册数学复习提纲第五章相交线与平行线5.1 相交线对顶角(vertical angles)相等。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
假如两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:两条直线被第三条直线所截,假如同位角相等,那么两直线平行。
两条直线被第三条直线所截,假如内错角相等,那么两直线平行。
两条直线被第三条直线所截,假如同旁内角互补,那么两直线平行。
5.3 平行线的性质两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系6.1 平面直角坐标系含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。
第七章三角形7.1 与三角形有关的线段三角形(triangle)具有稳定性。
7.2 与三角形有关的角三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角7.3 多边形及其内角和n边形内角和等于:(n-2)•180度多边形(polygon)的外角和等于360度。
篇3:人教版七年级下册数学复习提纲第八章二元一次方程组8.1 二元一次方程组方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
人教版七年级数学下册期中考试复习提纲
人教版七年级数学下册复习大纲第五章相交线与平行线本章知识考点分析:1、平行线的性质及判定必考内容2、命题的真假性、将命题改写3、证明题(完型填空、自主证明)4、选择题、填空题中相关知识的考点(相交线、平行线的性质;垂线段最短、过直线外一点有且只有一条直线平行于已知直线)5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(若有n条直线相交于同一点,则有n(n-1)对对顶角)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
人教版七年级数学下册知识提纲
人教版七年级数学下册知识提纲一、有理数1.有理数的概念及表示•有理数的定义•有理数的表示方式(分数、小数)•有理数的语言表达2.有理数的比较大小•有理数比较的方法•有理数比较的注意事项3.有理数的加减法•有理数加减的基本法则•有理数加减的运算法则4.有理数的乘除法•有理数乘法的运算法则•有理数除法的运算法则5.有理数的混合运算•有理数混合运算的运算法则•有理数混合运算的注意事项二、代数表达式1.代数式的概念及表示•代数式的定义•代数式中的常见符号2.代数式的加减法•代数式加减的基本法则•代数式加减的运算法则3.展开式与因式分解式•展开式的定义及基本思想•展开式的运算方法•因式分解式的定义及基本思想•因式分解式的运算方法三、图形的认识1.平面图形的认识•点、线、面的概念•直线、射线、线段的区别•等边、等腰、直角、等角三角形的认识•三角形内角和的性质2.空间图形的认识•立方体、正方体、长方体的认识•棱锥、棱柱、圆锥、圆柱的认识•表面积和体积的计算方法四、方程与不等式1.方程的认识•方程的定义及基本概念•化归、移项、解方程的方法•一元一次方程、二元一次方程的认识2.不等式的认识•不等式的定义及基本概念•不等式的加减乘除变形法•一元一次不等式的认识五、统计1.指标的认识•均值、众数、中位数的概念•指标的计算方法2.图形的认识•条形统计图、折线统计图、饼图的认识•图形的绘制方法3.概率的认识•事件及其概率的概念•概率的求解方法•等可能事件的概率计算。
人教版七年级下数学三角形知识点归纳、典型例题及考点分析
BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
人教版初一数学重点
人教版初一数学重点
人教版初一数学的重点内容如下:
1. 小数与分数:包括小数的读写、大小比较、四则运算等基本操作;分数的读写、化简、比较大小、四则运算等基本操作。
2. 代数与方程:包括代数式的计算与化简、一元一次方程的解法、应用题等内容。
3. 几何:包括图形的分类与性质、图形的相似与全等、角的概念与性质、平面镜映射等内容。
4. 数据与统计:包括数据的收集与整理、频数表与频率表、直方图与折线图的绘制、中位数与众数的计算等内容。
5. 几何变换:包括平移、旋转、翻转等常见几何变换的基本概念和性质。
6. 比例与百分数:包括比例的计算与应用、百分数的计算与应用等内容。
这些是初一数学人教版教材中的重点内容,希望能对你有所帮助!如果有具体的问题,可以告诉我,我会尽力进行解答。
最新人教版七年级下册数学《立方根》学习笔记整理
最新人教版七年级下册数学《立方根》学
习笔记整理
立方根是数学中的一个重要概念,它与立方数密切相关。
立方
根是指一个数的立方等于该数的算术平方的数。
以下是关于立方根
的研究笔记整理。
一、立方根的定义
立方根是一个数的算术平方的数。
记作∛x,读作“x的立方根”。
二、立方根的性质
1. 正数的立方根是正数。
2. 零的立方根是零。
3. 负数没有实数的立方根。
4. 两个正数的积的立方根等于它们的立方根的积。
5. 两个正数的商的立方根等于它们的立方根的商。
6. 一个正数的立方根的立方等于这个正数。
三、求解立方根的方法
1. 利用估算法求解立方根。
通过估算的方法可以近似地求得一个数的立方根。
2. 利用开方法求解立方根。
也可以使用开方法的变形公式求解立方根。
四、立方根的应用
立方根在实际生活中有很多应用。
例如:
1. 几何学中,立方根可以用于计算立方体的边长或体积等。
2. 英语中,可以通过对词根进行立方根运算,来推测一些单词的意思。
3. 物理学中,立方根可以应用于计算物体的密度等。
以上是关于立方根的学习笔记整理。
希望这些内容对你有所帮助,如果有任何问题,请随时咨询。
永嘉县X中学七年级数学下册 第八章 二元一次方程组知识点归纳 新人教版
二元一次方程组知识点归纳、解题技巧汇总、练习题1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
注意:二元一次方程组不一定都是由两个二元一次方程合在一起组成的!也可以由一个或多个二元一次方程单独组成。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
2.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7y=59/7 为方程组的解基本思路:未知数又多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
新人教版七年级数学知识点归纳(上下册)
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
数学人教版七年级下册调查与统计
第十章统计与调查复习提纲一.知识要点(一)调查方式的合理选择1.统计调查的基本步骤:(1)收集数据——___________________收集数据的方法:a、民意调查:如投票选举b、实地调查:如现场进行观察、收集、统计数据c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
注意:选择收集数据的方法,要掌握两个要点:①是要简便易行,②要真实、全面(2)整理数据——___________________划计法:整理数据时,用“正”的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。
(3)描述数据——____________________(4)分析数据——____________________2.收集数据的方法:全面调查:为了一定的目的的而考察________________的调查叫做全面调查,也叫___________。
抽样调查:从被考察的全体对象中__________________进行考察,根据_____________的情况来估计______________的情况的调查方式叫做抽样调查。
为了获得较为准确的调查结果,抽样时要注意样本的__________和___________,即采取随机抽样的方法。
分层抽样调查:将总体按其属性分成若干类型或层,然后在______________________中随机抽样。
类型一:调查方法的考查2:下列调查中,适合用普查(全面调查)方法的是().A.电视机厂要了解一批显像管的使用寿命;B.要了解我市居民的环保意识;C.要了解我市“阳山水蜜桃”的甜度和含水量;D.要了解某校数学教师的年龄状况.思路点拨:A、B、C工作量太大,太复杂,只能作抽样调查,而D可以作普查,即全面调查.解析:D.总结升华:在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.举一反三:【变式】下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在上海市调查我国公民的受教育程度;(3)在中学生中调查青少年对网络的态度;(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;(5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.【答案】(1)中的抽样不太合适,抽样时,应该让成绩好、中、差的同学都有代表参加;(2)中上海市的经济发达,公民受教育的程度较高,不具有代表性;(3)中青少年不仅仅是中学生,还有为数众多的非中学生,中学生对网络的态度不代表青少年对网络的态度(4)中抽样是随机的,因此可以认为抽样合适;(5)中调查的人数太少,各年级的情况可能有所不同,因此抽样不合适.3.调查方法的选择:1:为了了解2009年河南省中考数学考试情况,从所有考生中抽取600名考生的成绩进行考查,指出该考查中的总体和样本分别是什么?思路点拨:从概念上来看,总体即全部考查对象,样本是一部分考查对象,还要注意考查的对象是数量指标.解析:总体是2009年河南省参加中考考试的所有考生的数学成绩;样本是抽取的600名考生的数学成绩.总结升华:统计中的研究对象是数据,而不是具体的人或物. 在叙述总体和样本时,要注意他们的范围和数量指标.举一反三:【变式】2007年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().A.4591名学生的外语成绩是总体;B.此题是抽样调查;C.样本是80名学生的外语成绩;D.样本是被调查的80名学生.【答案】D.(二)统计图的选择条形统计图:(1)条形统计图能清楚地表示出每个项目中_________________。
七年级下册数学复习提纲
七年级下册数学复习提纲
整数
•负数的概念和运算
•整数的加减乘除及其性质
•整数的绝对值
•整数的比较
•整数运算中的应用问题
分数
•分数的概念及其计算
•分数的化简
•分数的比较和大小关系
•分数的乘除及其应用
小数
•小数的概念及其转化
•小数的加减乘除
•小数的比较和大小关系
•小数的运用
代数式
•数学符号的含义
•代数式及其基本性质
•代数式的运算及其应用
•代数式的化简和因式分解
等式与方程
•等式的概念及其性质
•等式的变形及其应用
•方程的概念及其解法
•一元一次方程和一元一次方程的应用
图形的认识
•基本图形的认识及其性质
•相似图形及其比
•常见图形的面积和周长
几何初步
•平面和空间的概念
•直线、射线、线段、角度和圆的概念
•与角度和弧度有关的计算
•三角形、矩形、平行四边形、梯形的面积和周长
统计与概率
•数据的搜集与整理
•平均数、中位数、众数
•相关系数和散点图
•概率的概念及其计算
以上为七年级下册数学的复习提纲,建议根据教材中相关内容进行系统学习和练习,加深对数学知识的理解和掌握,为进一步学习打下坚实的基础。
新人教版七年级数学培训资料Word版上下册(全年级章节培优已整理完善)
七年级数学培训资料Word版上下册目录第01讲与有理数有关的概念(2--8)第02讲有理数的加减法(3--15)第03讲有理数的乘除、乘方(16--22)第04讲整式(23--30)第05讲整式的加减(31--36)第06讲一元一次方程概念和等式性质(37--43)第07讲一元一次方程解法(44--51)第08讲实际问题与一元一次方程(52--59)第09讲多姿多彩的图形(60--68)第10讲直线、射线、线段(69--76)第11讲角(77--82)第12讲与相交有关概念及平行线的判定(83--90)第13讲平行线的性质及其应用(91--100)第14讲平面直角坐标系(一)(101--106)第15讲平面直角坐标系(二)(107--112)第16讲认识三角形(113--119)第17讲认识多边形(120--126)第18讲二元一次方程组及其解法(127--134)第19讲实际问题与二元一次方程组(135--145)第20讲三元一次方程组和一元一次不等式组(146--155)第21讲一元一次不等式(组)的应用(156--164)第22讲一元一次不等式(组)与方程(组)的结合(165--174)第23讲数据的收集与整理(175--186)模拟测试一模拟测试二模拟测试三第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= .03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c|c |的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a +bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】 01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B . 02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b 05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和3 06.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b | ③若|a |=|b |,则a =-b ④若|a |=|b |,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba的形式,试求a 、b 的值.13.已知|a |=4,|b |=5,|c |=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , ,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc|abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组 09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp|3mnp |= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l |+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l |)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)132164116181412-a -b 0b a【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b>a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号) 02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+3 5+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+2 50+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+ (49)49(491)2⨯+=1225 ∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+1 2004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-3 04.两个有理数的和是正数,下面说法中正确的是()05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14 B .14- C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c+61d 等于( ) A .18 B .316 C .732 D .1564 03.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c25632015201051216158412410982654321534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________ 08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+...+n 3的公式并计算出13+23+33+43+ (1003)值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算 ⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯= ⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=- 【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a b +=,则ab =___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a b a b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是( )A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么ab a b a b ab ++的值是多少?03.如果0x y x y +=,试比较x y -与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy 的值; ⑵求32008x y的值. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy=-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ 【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003 B .31004 C .1334 D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若|ab |=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a b m cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a,则a 的取值范围( ) A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >1 07.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1a b =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( ) A .0 B .1 C .2 D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较x y-与xy 的大小.14.若a 、b 、c 为有理数且1a b c a b c ++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个 02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0 C .ab 2cde <0 D .abcd 4e <0 04.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-1 07.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c 08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________. 09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少? 11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,错误!未找到引用源。
人教版七年级下册数学期末总复习课件
1
1
变式:已知9 13和9 13的小数部分分别为a和b
6、设a和b互为相反数,c和d互为负倒数,x的绝对值为 5,
4 5 则代数式x (a b cd)x ( a b 3 cd) ___________
2
1 4. m-27 + n-8=0,则 m- n =______
14、 如图4,∠1= ∠2, ∠C= ∠D, 求证: ∠A= ∠F 15、 如图5,∠D= ∠E, ∠ABE= ∠D+ ∠E, BC是∠ABE的平分线, 求证:BC∥DE
16、如图,已知AB∥CD,请猜想各个图中∠AMC 与∠MAB、 ∠MCD的关系
第六章实数的复习
?
本章知识结 构图 开平方
复习回顾
把下列各数填在相应的大括号内: 5 1, , , 3.14, 0 , 3. 3 3 3, 3, 7
tan30 ,
.
……};
0
cos600 ,
3
64,
2.1010010001
整数集合:{
-1,0,3 64
5 分数集合:{ ……}; , 3.14, 3. 3 3 3 , cos60° 7 5 3.14,0,3. 3 3 3 ,cos60°, 3 64 有理数集合:{ -1,, …}; 7
当方程中出现立方时,一般都有一个解
选择题
1、代数式 a a 1 a 2的最小值是( B )
1 2
A.0 B. C.0 D.不存在
2
2、若
m
m,则实数m在数轴上的对应点一定在(
C)
A.原点左侧 B.原点右侧 C.原点或原点左侧 D.原点或原点右侧
3、若式子 ( 4-a) 是一个实数,则满足这个条件的a的值有(B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学下册复习提纲
第五章 相交线与平行线
5.1 相交线
对顶角相等。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短。
本知识点可会出现的填空题中来考)。
5.2 平行线 (重点知识必考)
1、经过直线外一点,有且只有一条直线与这条直线平行。
2、 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
3、直线平行的条件:
4、两条直线被第三条直线所截,如果同位角相等,那么两直线平行 两条直线被第三条直线所截,如果内错角相等,那么两直线平行(内错角相等,两直线平行)。
5、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行(同旁内角互补,两直线平行)。
5.3 平行线的性质 (重点知识必考)
1、两条平行线被第三条直线所截,同位角相等(两直线平行,同位角相等)。
2、两条平行线被第三条直线所截,内错角相等(两直线平行,内错角相等)。
3、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。
判断一件事情的语句,叫做命题(本考点可能会出现在填空题中命题的改写和选择题中判断命题的真假性)。
本章知识考点分析:
1、平行线的性质及判定必考内容
2、命题的真假性、将命题改写
3、证明题(完型填空、自主证明)
4、选择题、填空题中相关知识的考点(相交线、平行线的性质;垂线段最短、过直线外一点有且只有一条直线平行于已知直线)
第六章 实数
6.1 平方根
若一个数的平方等a ,那这个数叫做a 的平方根;(即若x 2=a ,那么x 叫做a 的平方根,其中a 为非负数,即a ≥0.表示方式为x 2=a ⇔x=a ±,其中a x =叫做a 的算术平方根),(本知识考点重点出现在填空题、选择题与计算题中相关的应用)。
6.2立方根
若一个数的立方等a,那么这个数叫做a的立方根(即若x3=a,那么x叫做a的立方根,表示方式:x3=a⇔3a
x=立方根只有一个),(本知识考点重点出现在填空题、选择题与计算题中相关的应用)。
6.3 实数
无限不循环小数又叫做无理数。
有理数和无理数统称实数。
考点分析:
1、有理数与无理数在填空和选择题可能会出现
2、一个数的平方根和一个代数式的平方根的区别(细心点呀)
3、一个正数的平方根有两个且这两个平方根互为相反数(即它们的和等于0)
4、唯一性:平方根等于它本身的数只有0;立方根等于它本身的数有1、-1和0共三个;算术平方根等于它本身的数有1和0两个。
第七章平面直角坐标系
7.1 平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对。
本章知识考点可能会出现在:
1、判断某个点在第几象限或某个点在第几象限再求相应未知数的值;
2、在平面直角坐标系中将某个图形作一次或两次平移后求出平前或平移后各对应点的坐标。
第八章二元一次方程组
8.1 二元一次方程组
1、方程中含有未知数(如:x和y),并且未知数的指数(或未知项的次数)都是1,像这样的方程叫做二元一次方程(本知识考点会出现在填空题和选择题中,注意次数为1和系数不为0)。
2、把两个含有相同未知数二元一次方程合在一起,就组成了一个二元一次方程组。
3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解(二元一次方程的解可能会出现在选择题中验根问题)。
4、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解(二元一次方程组的解可能会出现在选择题中验根问题)。
8.2 消元
5、将未知数的个数由多化一(最终解一元一次方程然后反代解决二元三元、逐一解决的想法,叫做消元思想。
6、本章知识考点
a、计算题
b、选择、填空
c、应用题
第九章不等式与不等式组
9.1 不等式
1、用小于号或大于号表示大小关系的式子,叫做不等式。
2、使不等式成立的未知数的值叫做不等式的解。
3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。
4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
5、不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3 一元一次不等式组
6、把两个一元一次不等式合在起来,就组成了一个一元一次不等式组。
7、本章知识考点
a、选择题
b、计算题)
c、简单的一元一次不等式的应用题
第十章数据的收集、整理与描述
一、知识要点
1、全面调查:对全体对象的调查叫做全面调查(优点:调查结果比较精确;缺点:费时、费力)。
2、抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查(优点:投入少、操作方便,而且有时只能用抽样的方式去调查;缺点:调查结果与总体的结果可能有一些误差)
3、总体:要考察的全体对象称为总体.
4、个体:组成总体的每一个考察对象称为个体.
5、样本:被抽取的那些个体组成一个样本.
6、样本容量:样本中个体的数目称为样本容量.
7、简单随机抽样调查:抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种简单的随机抽样。
二、统计图的分类:
1.条形统计图——适用于显示不同对象之间的数量特征,根据长方形(条形)的高度能直观地看出被统计对象的量的大小、多少等。
2.折线统计图——适用于显示同一事物在不同的数量变化特征,根据折线的变化能直观地看出事物的变化(如上升或下降、增长快慢等)趋势。
3.扇形统计图——用圆代表整体,能直观地显示各部分(不同的统计对象)所占的百分比,适用于显示不同对象之间数量上的比例关系。
注意:求圆心角度数=所占百分比×3600
4.频数分布直方图——对收集得到的数据,可通过“划计”的方法整理成频数分布表,画出频数分布直方图.它①能够显示数据的分布情况,②易于显示各组之间的频数差别.制作频数分布直方图的步骤为 :①找出所有数据中的最大值和最小值,并算出它们的
差(极差=最大值-最小值).②决定组距和组数(组数=组数极差或组距组距极差 ).③列出频数分布表.④画频数分布直方图。
5.本章知识考点分析:
1、总体、样本、个体与样本容量会在选择题出现
2、四类统计图的考点中重点注意条形统计图、扇形统计图和直方图的补全及频数的补全等。