高考分类题库考点1 集合
2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析(附答案)
2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析第一节 集合1.(2023全国甲卷理科1)设集合 31,A x x k k Z ,32,B x x k k Z ,U 为整数集,则 U A B ð( )A. 3,x x k k ZB. 31,x x k k ZC. 32,x x k k ZD.【要点分析】根据整数集的分类,以及补集的运算即可解出.【过程解析】因为整数集 3,3+1,3+2,x x k k x x k k x x k k Z Z Z Z ,=U Z ,所以 3,U A B x x k k Z ð. 故选A .2.(2023全国甲卷文科1)设全集 1,2,3,4,5U ,集合 1,4M , 2,5N ,则U N M ð( )A. 2,3,5B. 1,3,4C. 1,2,4,5D. 2,3,4,5 【要点分析】利用集合的交并补运算即可得解.【过程解析】因为全集{1,2,3,4,5}U ,集合{1,4}M ,所以 2,3,5U M ð, 又{2,5}N ,所以{2,3,5}U N M ð.故选A.3.(2023全国乙卷理科2)设集合U R ,集合 1M x x , 12N x x ,则 2x x …( )A. U M N ðB.U N M ðC. U M N ðD.U M N ð 【要点分析】由题意逐一考查所给的选项运算结果是否为 2x x …即可.【过程解析】由题意可得 2M N x x ,则 2U M N x x ð…,选项A 正确; 1U M x x ð…,则 1U N M x x ð ,选项B 错误;11M N x x ,则 11U M N x x x 或ð剠,选项C 错误;12U N x x x 或ð剠,则 12U M N x x x 或ð…,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集 0,1,2,4,6,8U ,集合 0,4,6M , 0,1,6N ,则U M N ð( )A. 0,2,4,6,8B. 0,1,4,6,8C. 1,2,4,6,8D.U 【要点分析】由题意可得U N ð的值,然后计算U M N ð即可. 【过程解析】由题意可得 2,4,8U N ð,则 0,2,4,6,8U M N ð. 故选A.5.(2023新高考I 卷1)已知集合 2,1,0,1,2M ,260N x x x ,则M N( ) A. 2,1,0,1B. 0,1,2C. 2D. 2【过程解析】260,23,N x x x ,所以 2M N ,故选C.6.(2023新高考II 卷2)2.设集合 0,,1,2,22A a B a a ,若A B ,则a ( ) A. 2 B. 1 C.23D.1 【过程解析】因为A B ,所以必有20a 或220a ,解得2a 或1a . 当2a 时, 0,2,1,0,2A B ,不满足A B ; 当1a 时, 0,1,1,1,0A B ,符合题意.所以1a . 故选B.7.(2023北京卷1)已知集合 20M x x …, 10N x x ,则M N ( ) A. 21x x … B. 21x x … C. 2x x … D. 1x x【要点分析】先化简集合,M N ,然后根据交集的定义计算.【过程解析】由题意,{20}{|2}M xx x x ∣,{10}{|1}N x x x x ∣, 根据交集的运算可知,{|21}M N x x .故选A.8.(2023天津卷1)已知集合 1,2,3,4,5,1,3,1,2,4U A B ,则U B A ð( ) A . 1,3,5B . 1,3C . 1,2,4D . 1,2,4,5【要点分析】对集合B 求补集,应用集合的并运算求结果;【过程解析】由{3,5}U B ð,而{1,3}A ,所以{1,3,5}U B A ð. 故选A.第二节 充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1 ”是“sin cos 0 ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【要点分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解. 【过程解析】当2,0 时,有22sin sin 1 ,但sin cos 0 , 即22sin sin 1 推不出sin cos 0 ;当sin cos 0 时, 2222sin sin cos sin 1 ,即sin cos 0 能推出22sin sin 1 .综上可知,22sin sin 1 是sin cos 0 成立的必要不充分条件. 故选B.2.(2023新高考I 卷7)已记n S 为数列 n a 的前n 项和,设甲: n a 为等差数列;乙:n S n为等差数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【过程解析】 n a 为等差数列,设首项为1a 公差为d ,则112n n n S na d,111222n S n d d a d n a n ,所以n S n为等差数列,所以甲是乙的充分条件. n S n为等差数列,即 1111111n n n n n n nS n S S S na S n n n n n n 为常数, 设为t ,即11n nna S t n n ,故 11n n S na tn n , 1112n n S n a t n n n ,两式相减得 1112n n n n n a S S na n a tn ,12n n a a t 为常数,对1n 也成立,所以 n a 为等差数列,所以甲是乙的必要条件. 所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ,则“0x y ”是“2x yy x”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【要点分析】解法一:证明充分性可由0x y 得到x y ,代入x yy x化简即可,证明必要性可由2x y y x 去分母,再用完全平方公式即可;解法二:由x y y x通分后用配凑法得到完全平方公式,证明充分性可把0x y 代入即可;证明必要性把2x yy x代入,解方程即可.【过程解析】解法一:充分性:因为0xy ,且0x y ,所以x y , 所以112x y y y y x y y,所以充分性成立; 必要性:因为0xy ,且2x yy x, 所以222x y xy ,即2220x y xy ,即 20x y ,所以0x y .所以必要性成立.所以“0x y ”是“2x yy x”的充要条件.故选C. 解法二:充分性:因为0xy ,且0x y ,所以 2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy,所以充分性成立; 必要性:因为0xy ,且2x yy x, 所以 22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy, 所以20x y xy,所以 20x y ,所以0x y ,所以必要性成立.所以“0x y ”是“2x yy x”的充要条件. 故选C.4.(2023天津卷2)“22a b ”是“222a b ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件【要点分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【过程解析】由22a b ,则a b ,当0a b 时222a b ab 不成立,充分性不成立; 由222a b ab ,则2()0a b ,即a b ,显然22a b 成立,必要性成立; 所以22a b 是222a b ab 的必要不充分条件. 故选B.。
高考集合复习及答案
高效训练·能力提升1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素。
集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B ,或B ⊃A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。
即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集注:空集是任何集合的子集。
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊆B 或B ⊇A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂(读作“A 交B ”),即:B A ⋂=}{B x A x x ∈∈且,|。
B A ⋂=A B ⋂,B A ⋂B B A A ⊆⋂⊆,。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃(读作“A 并B ”),即:B A ⋂=}{B x A x x ∈∈或,|。
B A ⋃=A B ⋃,⊆A B A ⋃,⊆B B A ⋃。
8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含一、选择题1.已知集合A ={y |y =|x |-1,x ∈R},B ={x |x ≥2},则下列结论正确的是cA .-3∈AB .3∉BC .A ∩B =BD .A ∪B =B2.已知集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为c A .2 B .3 C .4 D .53.已知集合A ={1,2,3},B ={2,3},则DA .A =B B .A ∩B =∅C .A BD .B A4. (2017·全国Ⅲ)已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为BA .1B .2C .3D .45. (2017·全国Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则AA .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32 B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32 D .A ∪B =R 6. (2016·山东)设集合A ={y |y =2x ,x ∈R},B ={x |x 2-1<0},则A ∪B = CA .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)7. (2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B = CA .{1,-3}B .{1,0}C .{1,3}D .{1,5}8.已知集合A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(∁R B )= DA .[-1,0]B .[1,2]C .[0,1]D .(-∞,1]∪[2,+∞)二、填空题9. (2017·江苏)已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为_____1___.10.设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=_____{x |-3<x ≤-1}B 组 能力提升1.设集合A ={0,1},集合B ={x |x >a },若A ∩B =∅,则实数a 的取值范围是 BA .a ≤1B .a ≥1C .a ≥0D .a ≤02.设全集U =R ,A ={x |2x (x -2)<1},B ={x |y =ln(1-x )},则右图中阴影部分表示的集合为 DA .{x |x ≥1}B .{x |x ≤1}C .{x |0<x ≤1}D .{x |1≤x <2}3.已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z},B ={x |x =2b +1,b ∈Z},C ={x |x =4c +1,c ∈Z},则有A .m +n ∈AB .m +n ∈BC .m +n ∈CD .m +n 不属于A ,B ,C 中任意一个集合4.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是 BA .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)5.已知集合A ={x ∈R||x +2|<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =_____0.21.(陕西理12)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n =【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠的集合S 为 (A )57(B )56 (C )49 (D )8【答案】B 23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
高考一轮复习题型归纳专题1:集合
第一章:集合题型1、集合的基本概念知识点摘要:➢ 集合元素的特征:确定性、互异性、无序性。
➢ 集合常用的表示方法:列举法、描述法、图示法、区间法。
➢ 元素与集合的关系:属于和不属于。
➢ 常用数集的表示:C —复数集;R —实数集;Q —有理数集;Z —整数集;N —自然数集;N+或N*—正整数集。
➢ 集合分类:①按元素个数分为有限集、无限集和空集;②按元素属性分为数集、点集和其他元素。
典型例题精讲精练:1. 若},,0{},,1{2b a a a b a +=,求20202020b a+的值.【答案:1】2. 已知集合,,且B A },,0{B },,,{A ==-=y x y x xy x 求实数x 与y 的值.【答案:x=y=-1】3. 设R b a ∈,,集合b}ab {0a}b a {1,,,,=+,则=-a b ( )【答案:C 】 A.1 B.-1 C.2 D.-24. 集合A=},2,0{a ,B=},1{2a .若A ∪B={0,1,2,4,16},则a 的值为( )【答案:D 】A .0 B.1 C.2 D.45. 已知集合{}5,4,3,2,1=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 集合中所含的元素的个数为( )【答案:D 】A.3B.6C.8D.10题型2、集合之间的基本关系知识点摘要:➢ 集合与集合之间的关系:①包含关系,②相等关系,③真子集关系。
➢ 规定:空集是任何集合的子集;是任何非空集合的真子集;一个集合是它自己的子集。
➢ 若集合有n 个元素,则该集合有n 2个子集,有12-n 个真子集,有22-n 个非空真子集。
典型例题精讲精练:2.1.集合关系判断问题1. 设集合},214||{},,412|{Z k k x x x N Z k k x x M ∈+==∈+==,则( )【答案:B 】 N M A =. N M B ⊂. N M C ⊃. ∅=N M D I .2. 设集合⎭⎬⎫⎩⎨⎧≤--=023|x x x M ,集合N={}01)4(|≤-⋅-)(x x x ,则M 与N 的关系是( )【答案:D 】 A. M=N B.M ∈N C. N M ≠⊃ D. N M ≠⊂3. 已知{}x y R y M =∈=|, N={}2|m x R x =∈,则下列关系中正确的是( )【答案:B 】A. N M ≠⊃B. M=NC. M ≠ND. M N ≠⊃4. 集合{}{}{}Z m m z z S Z l l y y P Z k k x x M ∈+==∈+==∈-==,16|,,13|,,23|之间的关系是( )【答案:C 】A. M P S ≠⊂≠⊂B. M P S ≠⊂=C. M P S =≠⊂D. M P S =≠⊃2.2.已知集合间的关系,求参数的取值范围5. 已知集合{}1|2==x x P ,集合{}1|==ax x Q ,若P Q ⊆,那么a 的值为 。
知识点一 匀变速直线运动--2022年高考物理分类题库
知识点一匀变速直线运动,要通过前方一长为1.(2022·全国甲卷)长为l的高速列车在平直轨道上正常行驶,速率为vL的隧道。
当列车的任一部分处于隧道内时,列车速率都不允许超过v(v<v)。
已知列车加速所用时间至和减速时加速度的大小分别为a和2a,则列车从减速开始至回到正常行驶速率v少为()A.+B.+C.+D.+【解析】选C。
由题知当列车的任一部分处于隧道内时,列车速率都不允许超过v(v<v0),则列车进隧道前必须减速到v,则有v=v0-2at1,解得t1=,列车进隧道时至完全出隧道前匀速行驶,有t2=,列车尾部出隧道后立即加速到v0,有v0=v+at3,解得t3=,则列车从减速开始至回到正常行驶速率v0所用时间至少为t=+,故选C。
2.(多选)(2022·全国乙卷)质量为1kg的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。
已知物块与地面间的动摩擦因数为0.2,重力加速度大小取g=10m/s2。
则()A.4s时物块的动能为零B.6s时物块回到初始位置C.3s时物块的动量为12kg·m/sD.0~6s时间内F对物块所做的功为40J【解析】选A、D。
物块与地面间的摩擦力大小为f=μmg=2N。
0~3s内,对物块由动量定理有:(F'-f)t1=mv3,解得v3=6m/s,则3s时物块的动量为p=mv3=6kg·m/s,故选项C错误;设3s后经过时间t物块的速度减为0,由题图可知3~6s内水平力大小F'=4N,由动量定理有:-(F'+f)t=0-mv3,解得t=1s,则物块在4s时速度减为0,则4s物块的动能为零,故选项A正确;0~3s 内,物块发生的位移为x 1,由动能定理有:(F -f )x 1=m,解得x 1=9m 。
3~4s 过程中,对物块由动能定理有:-(F'+f )x 2=0-m,解得x 2=3m 。
考向01 集合(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版)
考向01 集合【2022年新高考全国Ⅰ卷】1. 若集合{4},{31}M x N x x =<=≥∣,则M N = ( )A. {}02x x ≤< B. 123xx ⎧⎫≤<⎨⎬⎩⎭C. {}316x x ≤< D. 1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【2022年全国甲卷】2. 设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()U A B ⋃=ð( )A. {1,3}B. {0,3}C. {2,1}-D. {2,0}-【答案】D【解析】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.【2022年全国乙卷】3. 设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A. 2M ∈ B. 3M∈ C. 4M∉ D. 5M∉【答案】A【解析】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误.故选:A【2022年北京卷】4. 已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( )A. (2,1]- B. (3,2)[1,3)-- C. [2,1)- D.(3,2](1,3)-- 【答案】D【解析】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .易错题【01】对集合中元素的类型理解不到位集合问题是高考必考问题,一般作为容易题出现,求解集合问题的关键是理解集合中元素的类型,特别是用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是连续数集、离散数集、点集或其他类型的集合.易错题【02】忽略集合中元素互异性利用元素与集合的关系或两集合之间的关系求参数的值,集合中元素的互异性常常容易忽略,求解问题时要特别注意,求出以后一定要代入检验,看看是否满足元素的互异性.易错题【03】忽略空集空集是任何集合的子集,在涉及集合关系,如根据,A B ⊆求参数的值或范围要注意A 是否可以为∅,根据A B =∅ 求参数的值或范围必须优先考虑空集的情况,否则会造成漏解.易错题【04】忽视集合转化的等价性把用描述法表示的集合转化为用列举法表述的集合或化简集合容易忽略等价性,如去分母忽略分母不为零,解含有对数式的不等式要保证对数式有意义,要注意集合中的限制条件等.1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( )A .{1,0}- B .{0,1} C .{1,0,1}- D .{0,1,2}【答案】D【解析】{|1}B x x =>-,A B ={0,1,2}.注意注意代表元素的字母是x 还是y.2.已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则A B 中元素的个数为( )A .3 B .2 C .1 D .0【答案】B【解析】圆221x y +=与y x =有两个交点,A B 中元素的个数为2,注意集合中元素的特征,这两个集合是点集。
高考数学 考点 第一章 集合与常用逻辑用语 集合(理)-人教版高三全册数学试题
集合1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示运算文字语言集合语言图形语言记法交集属于A且属于B的所有元素组成的集合{x|x∈A,且x∈B}A∩B并集属于A或属于B的元素组成的集合{x|x∈A,或x∈B} A∪B补集全集U中不属于A的元素组成的集合称为集合A相对于集合U的补集{x|x∈U,x∉A} ∁U A概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A中可以分别得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.1.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为() A .2B .3C .4D .6 【答案】C【解析】集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=, {(AB x ∴=,*)|,}{(1,7)8,y xy x y N x y ⎧∈=⎨+=⎩,(2,6),(3,5),(4,4)}.AB ∴中元素的个数为4.故选C .2.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则AB 中元素的个数为()A .2B .3C .4D .5 【答案】B【解析】集合{1A =,2,3,5,7,11},{|315)B x x =<<, {5A B ∴=,7,11}, AB ∴中元素的个数为3.故选B .3.(2020•新课标Ⅱ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(AB =)A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2} 【答案】D【解析】集合{|||3A x x =<,}{|33x Z x x ∈=-<<,}{2x Z ∈=-,1-,0,1,2}, {|||1B x x =>,}{|1x Z x x ∈=<-或1x >,}x Z ∈, {2AB ∴=-,2}.故选D .4.(2020•新课标Ⅰ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(AB =)A .{4-,1}B .{1,5}C .{3,5}D .{1,3} 【答案】D【解析】集合2{|340}(1,4)A x x x =--<=-,{4B =-,1,3,5}, 则{1AB =,3},故选D .5.(2020•某某)设集合{|13}A x x =,{|24}B x x =<<,则(AB =)A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x << 【答案】C【解析】集合{|13}A x x =,{|24}B x x =<<, {|14}AB x x ∴=<.故选C .6.(2020•某某)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(PQ =)A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x << 【答案】B【解析】集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}PQ x x =<<.故选B .7.(2020•某某)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .62%B .56%C .46%D .42% 【答案】C【解析】设只喜欢足球的百分比为x ,只喜欢游泳的百分比为y ,两个项目都喜欢的百分比为z ,由题意,可得60x z +=,96x y z ++=,82y z +=,解得46z =.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C .8.(2020•某某)设集合{2A =,3,5,7},{1B =,2,3,5,8},则(AB =)A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C【解析】因为集合A ,B 的公共元素为:2,3,5 故{2AB =,3,5}.故选C .9.(2020•某某)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂)A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 } 【答案】C【解析】全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3}, 则{2UB =-,1-,1},(){1U A B ∴=-⋂,1},故选C .10.(2020•)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(AB =)A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2} 【答案】D【解析】集合{1A =-,0,1,2},{|03}B x x =<<,则{1A B =,2},故选D .11.(2020•新课标Ⅰ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}AB x x =-,则(a =)A .4-B .2-C .2D .4 【答案】B【解析】集合2{|40}{|22}A x x x x =-=-,1{|20}{|}2B x x a x x a =+=-,由{|21}AB x x =-,可得112a -=,则2a =-. 故选B .12.(2020•新课标Ⅱ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3}C .{2-,1-,0,3}D .{2-,1-,0,2,3} 【答案】A【解析】集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2}, 则{1A B =-,0,1,2}, 则(){2UAB =-,3},故选A .13.(2019•全国)设集合2{|20}P x x =->,{1Q =,2,3,4},则PQ 的非空子集的个数为()A .8B .7C .4D .3 【答案】B【解析】{|P x x =或;{2P Q ∴=,3,4};PQ ∴的非空子集的个数为:1233337C C C ++=个.故选B .14.(2019•某某)设集合{1A =-,1,2,3,5},{2B =,3,4},{|13}C x R x =∈<,则()(AC B =)A .{2}B .{2,3}C .{1-,2,3}D .{1,2,3,4} 【答案】D【解析】设集合{1A =-,1,2,3,5},{|13}C x R x =∈<, 则{1AC =,2},{2B =,3,4}, (){1AC B ∴=,2}{2⋃,3,4}{1=,2,3,4};故选D .15.(2019•某某)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B =)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3} 【答案】A 【解析】{1UA =-,3},()U A B ∴{1=-,3}{1-⋂,0,}l {1}=-故选A .16.(2019•新课标Ⅲ)已知集合{1A =-,0,1,2},2{|1}B x x =,则(AB =)A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2} 【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-, 所以{1AB =-,0,1},故选A .17.(2019•新课标Ⅱ)已知集合{|1}A x x =>-,{|2}B x x =<,则(AB =)A .(1,)-+∞B .(,2)-∞C .(1,2)-D .∅【答案】C【解析】由{|1}A x x =>-,{|2}B x x =<,得{|1}{|2}(1,2)AB x x x x =>-<=-.故选C .18.(2019•新课标Ⅱ)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则(AB =)A .(,1)-∞B .(2,1)-C .(3,1)--D .(3,)+∞ 【答案】A【解析】根据题意,2{|560}{|3A x x x x x =-+>=>或2}x <, {|10}{|1}B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞;故选A .19.(2019•新课标Ⅰ)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA =)A .{1,6}B .{1,7}C .{6,7}D .{1,6,7} 【答案】C【解析】{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7}, {1U C A ∴=,6,7},则{6UBA =,7}故选C .20.(2019•)已知集合{|12}A x x =-<<,{|1}B x x =>,则(AB =)A .(1,1)-B .(1,2)C .(1,)-+∞D .(1,)+∞ 【答案】C 【解析】{|12}A x x =-<<,{|1}B x x =>,{|12}{|1}(1,)AB x x x x ∴=-<<>=-+∞.故选C .21.(2019•新课标Ⅰ)已知集合{|42}M x x =-<<,2{|60}N x x x =--<,则(MN =)A .{|43}x x -<<B .{|42}x x -<<-C .{|22}x x -<<D .{|23}x x << 【答案】C【解析】{|42}M x x =-<<,2{|60}{|23}N x x x x x =--<=-<<, {|22}MN x x ∴=-<<.故选C .22.(2018•全国)已知全集{1U =,2,3,4,5,6},{1A =,2,6},{2B =,4,5},则()(U A B =)A .{4,5}B .{1,2,3,4,5,6}C .{2,4,5}D .{3,4,5} 【答案】A【解析】由全集{1U =,2,3,4,5,6},{1A =,2,6}, 得{3UA =,4,5},{2B =,4,5},则(){3U A B =,4,5}{2⋂,4,5}{4=,5}.故选A .23.(2018•新课标Ⅱ)已知集合22{(,)|3A x y x y =+,x Z ∈,}y Z ∈,则A 中元素的个数为() A .9B .8C .5D .4 【答案】A【解析】当1x =-时,22y ,得1y =-,0,1, 当0x =时,23y ,得1y =-,0,1, 当1x =时,22y ,得1y =-,0,1, 即集合A 中元素有9个,24.(2018•某某)设集合{1A =,2,3,4},{1B =-,0,2,3},{|12}C x R x =∈-<,则()(A B C =)A .{1-,1}B .{0,1}C .{1-,0,1}D .{2,3,4} 【答案】C 【解析】{1A =,2,3,4},{1B =-,0,2,3},(){1AB ∴=,2,3,4}{1-⋃,0,2,3}{1=-,0,1,2,3,4},又{|12}C x R x =∈-<, (){1AB C ∴=-,0,1}.故选C .25.(2018•某某)设全集为R ,集合{|02}A x x =<<,{|1}B x x =,则()(R A B =⋂) A .{|01}x x <B .{|01}x x <<C .{|12}x x <D .{|02}x x << 【答案】B 【解析】{|02}A x x =<<,{|1}B x x =,{|1}R B x x ∴=<, (){|01}R AB x x ∴=<<.故选B .26.(2018•新课标Ⅰ)已知集合{0A =,2},{2B =-,1-,0,1,2},则(AB =)A .{0,2}B .{1,2}C .{0}D .{2-,1-,0,1,2} 【答案】A【解析】集合{0A =,2},{2B =-,1-,0,1,2}, 则{0AB =,2}.故选A .27.(2018•新课标Ⅱ)已知集合{1A =,3,5,7},{2B =,3,4,5},则(AB =)A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7}【解析】集合{1A =,3,5,7},{2B =,3,4,5}, {3AB ∴=,5}.故选C .28.(2018•新课标Ⅰ)已知集合2{|20}A x x x =-->,则(RA =)A .{|12}x x -<<B .{|12}x x -C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x - 【答案】B【解析】集合2{|20}A x x x =-->, 可得{|1A x x =<-或2}x >, 则:{|12}RA x x =-.故选B .29.(2018•新课标Ⅲ)已知集合{|10}A x x =-,{0B =,1,2},则(AB =)A .{0}B .{1}C .{1,2}D .{0,1,2} 【答案】C 【解析】{|10}{|1}A x x x x =-=,{0B =,1,2},{|1}{0AB x x ∴=⋂,1,2}{1=,2}.故选C .30.(2018•)已知集合{|||2}A x x =<,{2B =-,0,1,2},则(AB =)A .{0,1}B .{1-,0,1}C .{2-,0,1,2}D .{1-,0,1,2} 【答案】A【解析】{|||2}{|22}A x x x x =<=-<<,{2B =-,0,1,2}, 则{0AB =,1},故选A .31.(2018•某某)已知全集{1U =,2,3,4,5},{1A =,3},则(UA =)A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】根据补集的定义,UA 是由所有属于集合U 但不属于A 的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.{2UA =,4,5}故选C .32.(2020•某某)已知集合{1A =,2,4},集合{2B =,4,5},则AB =_________.【答案】{2,4}【解析】因为{1A =,2,3},{2B =,4,5}, 则{2AB =,4}.故答案为:{2,4}.33.(2020•某某)已知集合{1A =-,0,1,2},{0B =,2,3},则AB =_________.【答案】{0,2}【解析】集合{0B =,2,3},{1A =-,0,1,2}, 则{0AB =,2},故答案为:{0,2}.34.(2020•某某)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a =_________. 【答案】3【解析】3A ∈,且A B ⊆,3B ∴∈,3a ∴=, 故答案为:3.35.(2019•某某)已知集合(,3)A =-∞,(2,)B =+∞,则AB =_________.【答案】(2,3)【解析】根据交集的概念可得(2,3)A B =.故答案为:(2,3).36.(2019•某某)已知集合{1A =-,0,1,6},{|0B x x =>,}x R ∈,则AB =_________.【答案】{1,6}【解析】{1A =-,0,1,6},{|0B x x =>,}x R ∈,{1AB ∴=-,0,1,6}{|0x x >,}{1x R ∈=,6}.故答案为:{1,6}.37.(2019•某某)已知集合{1A =,2,3,4,5},{3B =,5,6},则AB =_________.【答案】{3,5}【解析】集合{1A =,2,3,4,5}, {3B =,5,6}, {3AB ∴=,5}.故答案为:{3,5}.38.(2019•某某)已知集合[A t =,1][4t t ++,9]t +,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是_________.【答案】1或3-【解析】当0t >时,当[a t ∈,1]t +时,则[4t aλ∈+,9]t +,当[4a t ∈+,9]t +时,则[t aλ∈,1]t +,即当a t =时,9t aλ+;当9a t =+时,t aλ,即(9)t t λ=+; 当1a t =+时,4t aλ+,当4a t =+时,1t aλ+,即(1)(4)t t λ=++,(9)(1)(4)t t t t ∴+=++,解得1t =.当104t t +<<+时,当[a t ∈,1]t +时,则[t aλ∈,1]t +.当[4a t ∈+,9]t +,则[4t aλ∈+,9]t +,即当a t =时,1t aλ+,当1a t =+时,t aλ,即(1)t t λ=+,即当4a t =+时,9t aλ+,当9a t =+时,4t aλ+,即(4)(9)t t λ=++,(1)(4)(9)t t t t ∴+=++,解得3t =-.当90t +<时,同理可得无解. 综上,t 的值为1或3-. 故答案为:1或3-.39.(2018•某某)已知集合{0A =,1,2,8},{1B =-,1,6,8},那么AB =_________.【答案】{1,8} 【解析】{0A =,1,2,8},{1B =-,1,6,8},{0AB ∴=,1,2,8}{1-⋂,1,6,8}{1=,8},故答案为:{1,8}.40.(2018•某某)已知集合{|02}A x x =<<,{|11}B x x =-<<,则AB =_________.【答案】{|01}x x << 【解析】{|02}A x x =<<,{|11}B x x =-<<,{|01}AB x x ∴=<<.故答案为:{|01}x x <<.1.(2020•汉阳区校级模拟)设全集{|25U x x =-<,}x Z ∈,{0A =,2,3,4},{2B =-,1-,0,1,2},则图中阴影部分所表示的集合为()A .{0,2}B .{3,4}C .{0,3,4}D .{2-,1-,0,1,2} 【答案】B【解析】全集{|25U x x =-<,}{2x Z ∈=-,1-,0,1,2,3,4},{0A =,2,3,4},{2B =-,1-,0,1,2},{3U C B ∴=,4},∴图中阴影部分所表示的集合为:(){3U AC B =,4}.故选B .2.(2020•金凤区校级四模)已知集合{|21}A x x =-<<,2{|30}B x x x =-,则(AB =)A .(0,1)B .(2-,3]C .[0,1)D .(1,3]【答案】C 【解析】{|21}A x x =-<<,{|03}B x x =,[0AB ∴=,1).故选C .3.(2020•某某四模)已知集合{(,)|}A x y y x ==,2{(,)|}B x y y x ==,则AB 的元素个数为()A .0B .1C .2D .4 【答案】C【解析】集合{(,)|}A x y y x ==,2{(,)|}B x y y x ==,{(AB x ∴=,2)|}{(0,0)y xy y x =⎧=⎨=⎩,(1,1)}, AB ∴的元素个数为2.故选C .4.(2020•龙凤区校级模拟)集合{|13}A x x =-<<,2{|60B x x x =+-<,}x Z ∈,则(AB =)A .(1,2)-B .(3,3)-C .{0,1}D .{0,1,2} 【答案】C【解析】集合{|13}A x x =-<<,2{|60B x x x =+-<,}{|32x Z x x ∈=-<<,}{2x Z ∈=-,1-,0,1}, {0AB ∴=,1}.故选C .5.(2020•某某模拟)已知集合2{|3}A x x =<,2{|3}B x x x =<,则(AB =)A .(B .C .(D .(0,3) 【答案】B【解析】{}{}22|3(|3(0,3)A x x B x x x =<==<=,∴(0,3)AB =.故选B .6.(2020•南岗区校级模拟)若全集U R =,集合{|(6)}A x y lg x ==-,{|21}x B x =>,则图中阴影部分表示的集合是()A .(2,3)B .(1-,0]C .[0,6)D .(-∞,0] 【答案】D【解析】全集U R =,集合{|(6)}{|6}A x y lg x x x ==-=<,{|21}{|0}x B x x x =>=>, {|0}U B x x ∴=.∴图中阴影部分表示的集合为:(){|0}U AB x x =.故选D .7.(2020•香坊区校级一模)已知集合2{|2}A x Z x x =∈-,{1B =,}a ,若B A ⊆,则实数a 的取值集合为()A .{1-,1,0,2}B .{1-,0,2}C .{1-,1,2}D .{0,2} 【答案】B【解析】2{|2}{|12}{1A x Z x x x Z x =∈-=∈-=-,0,1,2},因为B A ⊆, 若B A ⊆,则1a =-或0或2. 则实数a 的取值的集合为{1-,0,2} 故选B .8.(2020•东湖区校级模拟)已知集合{||21|3}A x x =-,2{|(6)}B x y lg x x ==--,则(RA B =)A .(1,3)-B .∅C .(2,3)D .(2,1)-- 【答案】B【解析】因为{||21|3}{|2A x x x x =-=或1}x -, 所以(1,2)RA =-,2{|(6)}{|3B x y lg x x x x ==--=>或2}x <-, 则RAB =∅.故选B .9.(2020•某某二模)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(UA B =)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3} 【答案】C【解析】{1U =-,0,1,2,3},{0A =,1,2},{1B =-,0,1}, {0A B ∴==,1}, (){1UAB ∴=-,2,3}.故选C .10.(2020•兴庆区校级四模)若集合2{|430}A x x x =-+=,{2B =,3,4},则(AB =)A .{1}B .{2}C .{3}D .{1,2,3,4} 【答案】C 【解析】{1A =,3},{2B =,3,4},{3}AB ∴=.故选C .11.(2020•镜湖区校级模拟)已知集合{||2A x x =,}x Z ∈,2{|60}B x x x =--<,则(AB =)A .{2-,1-,0,1,2,3}B .{2-,1-,0,1,2}C .{1-,0,1,2}D .{2-,1-,0,1} 【答案】C 【解析】{2A =-,1-,0,1,2},{|23}B x x =-<<,{1A B ∴=-,0,1,2}.故选C .12.(2020•某某模拟)集合{|2A x x =>,}x R ∈,2{|230}B x x x =-->,则(AB =)A .(-∞,1)(3-⋃,)+∞B .(3,)+∞C .(2,)+∞D .(2,3) 【答案】B 【解析】{|2}A x x =>,{|1B x x =<-或3}x >,(3,)AB ∴=+∞.故选B .13.(2020•某某模拟)已知集合{|(1)}A x y ln x ==-,{|21}x B x =>,则(AB =)A .[1,)+∞B .(1,)+∞C .(0,)+∞D .(0,1) 【答案】B【解析】集合{|(1)}{|1}A x y ln x x x ==-=>,{|21}{|0}x B x x x =>=>, {|1}(1,)AB x x ∴=>=+∞.故选B .14.(2020•庐阳区校级模拟)设集合{|23}A x lnx ln =,{|6}B x x =,则(AB =)A .{|03}x x <B .{|6}x xC .{|06}x x <D .{|36}x x 【答案】B【解析】集合{|23}{|03}A x lnx ln x x ==<, {|6}B x x =, {|6}AB x x ∴=.故选B .。
高考数学必刷真题分类大全-专题01-集合与常用逻辑用语
【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(
)
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.
考点01 集合-备战2021年新高考数学一轮复习考点一遍过
C.4D.6
【答案】C
【解析】由题意, 中的元素满足 ,且 ,
由 ,得 ,
所以满足 的有 ,
故 中元素的个数为4.故选C.
考向二集合的基本运算
集合的基本运算
1.【2020年高考全国Ⅰ卷文数】已知集合 则
A. B.
C. D.
【答案】D
【解析】由 解得 ,
所以 ,
又因为 ,所以 ,故选D.
2.【2020年高考天津】设全集 ,集合 ,则
A. 或 B. 或
C. 或 D. 或
6.【2020湖南省高三二模(理)】设 , ,则
A. B.
C. D.
7.【2020重庆市巴蜀中学高三月考数学(理)试题】已知集合 ,集合 ,则
A. B.
C. D.
8.【2020辽宁葫芦岛市普通高中高三质量监测数学(理)】 , ,则
A. B.
C. D.
9.【2020届安徽省芜湖市高三下学期教育教学质量监测理科数学试题】已知集合 ,6 ,则
A. B.
C. D.
10.【2020河北省高三月考】已知集合 , ,则
A. B.
C. D.
题组一
1.D【解析】 ,故选D.
2.B【解析】 .故选B.
3. 【解析】∵ , ,
∴ .故答案为 .
4.D【解析】因为 ,
或 ,
所以 .故选D.
5.C【解析】A={x|x≥1},B={0,1,2},所以A∩B={1,2}.
【名师点睛】冠词的运用要把握a一般表示泛指某一类人或物,意为"任何一个,任一"。the表示表示特指,或有某类型的修饰。
6.B【解析】∁RB={x|x<1},所以A∩(∁RB)={x|0<x<1}.故选B.
考点01 高中数学-集合-考点总结及习题
考点01集合【命题趋势】集合在历年高考中都是送分题,且常以下面几种考查方式进行命制:1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Ve n n)图表达集合的关系及运算.【重要考向】一、集合的基本概念二、集合间的基本关系三、集合的基本运算四、与集合有关的创新题目集合的基本概念集合的基本概念1.元素与集合的关系:a Aa A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:确定性一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合互异性集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素无序性集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅. 4.常用数集及其记法:集合非负整数集(自然数集)正整数集整数集有理数集实数集复数集符号N*N或+N Z Q R C注意:实数集R不能表示为{x|x为所有实数}或{R},因为“{}”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法.【巧学妙记】(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合,然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的意义(2)利用集合元素的限制条件求参数的值或确定集合中的元素的个数时,要注意检验集合是否满足元素的互异性.1.已知集合A ={x |x 2+px +q =0}={2},则p =_______,q =_______.【答案】-44【分析】根据A ={x |x 2+px +q =0}={2},由2是方程x 2+px +q =0的等根求解.【详解】因为A ={x |x 2+px +q =0}={2},所以2420-40p q p q ++=⎧⎨=⎩,解得-44p q =⎧⎨=⎩,故答案为:-4,42.下列各组中的M 、P 表示同一集合的是①{}(){}3,1,3,1M P =-=-;②(){}(){}3,1,1,3M P ==;③{}{}221,1M y y x P t t x ==-==-;④{}(){}221,,1M y y x P x y y x ==-==-A .①B .②C .③D .④【答案】C【解析】对于①,两个集合研究的对象不相同,故不是同一个集合.对于②,两个集合中元素对应的坐标不相同,故不是同一个集合.对于③,两个集合表示同一集合.对于④,集合M 研究对象是函数值,集合P 研究对象是点的坐标,故不是同一个集合.由此可知本小题选C.【名师点睛】本小题主要考查两个集合相等的概念,属于基础题.对四组集合逐一分析,由此判断出正确的选项.集合间的基本关系表示关系自然语言符号语言图示本基本关系子集集合A 中任意一个元素都是集合B 的元素A B⊆(或B A ⊇)真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A B⊂≠(或B A ⊃≠)相等集合A ,B 中元素相同或集合A ,B 互为子集A B=空集空集是任何集合的子集,是任何非空集合的真子集A ∅⊆,()B B ⊂∅≠∅≠必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n -个非空子集,有21n -个真子集,有22n -个非空真子集.(2)子集关系的传递性,即,A B BC A C ⊆⊆⇒⊆.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.【巧学妙记】3.设集合{}11A x x =-≤,{}20B x x a =-+<,若A B B ⋃=,则a 的取值范围为()A .(),0-∞B .(],0-∞C .()2,+∞D .[)2,+∞(1)若集合A 中含有n 个元素,则有2n 个子集,有21n -个非空子集,有21n -个真子集,有22n -个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆.【答案】A 【分析】先解出集合A ,根据A B B ⋃=,可知A B ⊆,构造关于a 的不等式组,解得a 的范围.【详解】{}{}11=02A x x x x =-≤≤≤,2a B x x ⎧⎫=>⎨⎬⎩⎭,由A B B ⋃=得A B ⊆,所以0a <.故选:A.【点睛】(1)A B B A B ⋃=⇔⊆,A B A A B ⋂=⇔⊆.(2)由B A ⊆求参数的范围容易漏掉=B ∅的情况.4.设集合{|21,}A x x n n ==-∈Z ,{|41,}B x x n n ==-∈Z ,则()A .ABB .B AC .A B ∈D .B A∈【答案】B 【分析】分2n k =和21n k =-两种情况得出集合A ,由此可得选项.【详解】解:对于集合A ,当2n k =,k ∈Z 时,41,x k k =-∈Z ,当21n k =-,k ∈Z 时,43,x k k =-∈Z ,所以{|41,A x x k ==-或}43,x k k =-∈Z ,所以BA ,故选:B .5.已知集合{}240,A x x x N =-<∈,则集合A 的子集的个数是()A .2B .3C .4D .5【答案】C 【分析】先求出集合A ,再根据集合元素的个数即可求出子集个数.【详解】{}{}240,0,1A x x x N =-<∈=,有2个元素,则集合A 的子集的个数是224=.故选:C.集合的基本运算1.集合的基本运算运算自然语言符号语言Venn 图交集由属于集合A 且属于集合B 的所有元素组成的集合{|}A B x x A x B =∈∈ 且并集由所有属于集合A 或属于集合B 的元素组成的集合|}{A B x x A x B =∈∈ 或补集由全集U 中不属于集合A 的所有元素组成的集合{|}U A x x U x A =∈∉且ð2.集合运算的相关结论交集A B A ⊆ A B B ⊆ A A A = A ∅=∅ A B B A = 并集A B A ⊇ A B B ⊇ A A A = A A ∅=A B B A = 补集()U U A A=痧U U =∅ðU U∅=ð()U A A =∅ð()U A A U= ð【巧学妙记】6.设集合{1,2,3,4}A =,{2,4}B =,则集合{1,3}=()A .AB B .()R A BðC .A BD .()R B A⋂ð【答案】B 【分析】由集合补集和交集的定义运算即可.【详解】解:因为集合{1,3}的元素都在集合A 中,但不在B 中,所以为()R A C B I .故选:B .7.设集合{}23,log P a =,{},Q a b =,若{}0P Q ⋂=,则P Q ⋃=()A .{}3,0B .{}301,,C .{}3,0,2D .{}3012,,,【答案】B 【分析】由已知可得出关于a 、b 的方程组,求出a 、b 的值,即可得出P Q U .【详解】已知集合{}23,log P a =,{},Q a b =,且{}0P Q ⋂=,则2log 0a b ==,解得1a =,所以,{}0,3P =,{}0,1Q =,因此,{}0,1,3P Q ⋃=.故选:B.与集合有关的创新型题目解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.8.设A B ,是R 的两个子集,对任意x ∈R ,定义:01x A m x A ∉⎧=⎨∈⎩,,,,01.x B n x B ,,,∉⎧=⎨∈⎩①若A B ⊆,则对任意x ∈R ,(1)m n -=__________;②若对任意x ∈R ,1m n +=,则A B ,的关系为__________.【答案】0A B=R ð【解析】①∵A ⊆B ,∴x ∉A 时,m =0,m (1−n )=0.x ∈A 时,必有x ∈B ,∴m =n =1,m (1−n )=0.综上可得:m (1−n )=0.②对任意x ∈R ,m +n =1,则m ,n 的值一个为0,另一个为1,即x ∈A 时,必有x ∉B ,或x ∈B 时,必有x ∉A ,∴A ,B 的关系为A B =R ð.【名师点睛】本题主要考查新定义知识的应用,集合之间的基本关系等知识,意在考查学生的转化能力和计算求解能力.解答本题时,由题意分类讨论x ∉A 和x ∈A 两种情况即可求得(1)m n -的值,结合题中的定义和m ,n 的关系即可确定A ,B 之间的关系.1.已知全集{}2,U x x x =≤∈Z ,集合{}1,0,2A =-,{}2,1B =--,则()U A B ⋂=ð()A .{}2-B .{}1-C .{}2,1--D .∅2.已知集合{}12A x x =<<,集合{}B x x m =>,若()A B =∅R ð,则m 的取值范围为()A .(],1-∞B .(],2-∞C .[)1,+∞D .[)2,+∞3.设全集U =R ,集合{}1A x x =≥-,{}23B x x =-≤<,则集合()U A B ⋂ð是()A .{}21x x -<<-B .{}21x x -≤<-C .21}x x -<≤-D .{}21x x -≤≤-4.设集合(1,3)A =,{}230B x x =->,则A B = ()A .33,2⎛⎫-- ⎪⎝⎭B .33,2⎛⎫- ⎪⎝⎭C .31,2⎛⎫⎪⎝⎭D .3,32⎛⎫ ⎪⎝⎭5.设全集为R ,{}()0M x f x =≠,{}()0N x g x =≠,那么集合{}()()0x f x g x =等于()A .()()R RM N痧B .()R M N ⋃ðC .()R M NðD .()()R RM N ⋃痧6.已知全集{0,1,2,3,4}U =,集合{0,1,3}A =,{2,3,4}B =,则U ()A B ⋂=ð()A .∅B .{0,1,2,4}C .{1,4}D .{0,2}7.已知集合{}20A x x =->,集合{1,2,3,4}B =,那么集合A B = ()A .[2,4]B .[3,4]C .{3,4}D .{2,3,4}8.已知集合{A =-,{}cos ,B y y R θθ==∈,则A B = ()A .∅B .{}0C .{}1,0-D .{-9.已知集合{}2,M y y x x ==-∈R ,{}12N x x =-<≤,则M N = ()A .(]1,2-B .[]0,2C .(]1,0-D .()1,0-10.已知0a >,集合{1A x x ==-或2}x ≥,{}22230B x x ax a =--≥.(1)当1a =时,求A B .(2)若A B ⊆,求实数a 的取值范围.1.(2018·全国高考真题(文))已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02,B .{}12,C .{}0D .{}21012--,,,,2.(2017·全国高考真题(文))已知集合A ={}|2x x <,B ={}|320x x ->,则A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R3.(2020·海南高考真题)设集合A {2,3,5,7},B ={1,2,3,5,8},则A B =()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}4.(2020·天津高考真题)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B = ð()A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---5.(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}6.(2020·全国高考真题(文))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .57.(2020·全国高考真题(文))已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}8.(2019·北京高考真题(文))已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A .(–1,1)B .(1,2)C .(–1,+∞)D .(1,+∞)9.(2018·全国高考真题(文))已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0}B .{1}C .{1,2}D .{0,1,2}10.(2020·江苏高考真题)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.11.(2019·江苏高考真题)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.12.(2018·江苏高考真题)已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B ⋂=________.1.(2021·北京八十中高三其他模拟)已知集合{}{}7,27A y y B x x =<=-≤≤,则A B = ()A .{}22x x -≤<B .{}7x x ≤C .{}7x x <D .{}27x x -≤<2.(2021·广东珠海市·高三二模)已知集合{|0.71,}x A x x R =>∈,2{|20,}B x x x x R =--<∈,则A B = ()A .()0,1B .()1,0-C .()1,2D .()1,2-3.(2021·奉新县第一中学高三三模(文))集合{}ln(1)A x y x ==-,{}1,2,3,5B =,则A B = ()A .{}1,2,3B .{}2,3,5C .{}3,5D .{}1,24.(2021·麻城市实验高级中学高三其他模拟)若集合()2{|ln 21}A y y x x ==-++,{}ln 1|B y y =<,则A B = ()A .[]0,e B .(]0,e C .(]0,ln 2D .()0,e 5.(2021·江苏南通市·高三其他模拟)已知集合3{}12A =,,,{1012}B =-,,,,若M A ⊆且M B ⊆,则M 的个数为()A .1B .3C .4D .66.(2021·安徽合肥一中高三其他模拟(理))设集合{}2,x A y y x R ==∈,{}2230B x x x =--<,则A B = ()A .(1,3)-B .(0,3)C .(1,0)-D .(1,3)7.(2021·北京市大兴区精华培训学校高三三模)已知集合{}0,1,2,3A =,2{|4}B x x =,则A B = ()A .{}2,1,0,1,2,3--B .{}0,1,2,3C .{}1,0,1-D .{}0,1,28.(2021·山东潍坊市·高三三模)已知全集{}1,2,3,4,5U =,集合{}1,2A =,{}3,4B =,则集合{}5=()A .()U A B ðB .()()U U A B 痧C .()U A B ðD .()U B A ⋃ð9.(2021·江西高三其他模拟(文))若集合{}2270A x x x =-<,{}3B x x =>,则A B = ()A .{}0x x >B .732x x ⎧⎫<<⎨⎬⎩⎭C .702x x ⎧⎫<<⎨⎬⎩⎭D .{0x x <或}3x >10.(2021·四川攀枝花市·高三三模(文))已知集合{}12M x x =-<≤,{}0N x x =>,则集合() R M N ⋂=ð().A .{}02x x <≤B .{}2x x ≤C .{}02x x x ≤>或D .{}10x x -<≤11.(2021·临川一中实验学校高三其他模拟(文))已知集合{},n A x x i n N ==⊂,集合1,1n i B x x n N i ⎧⎫+⎪⎪⎛⎫==⊂⎨⎬ ⎪-⎝⎭⎪⎪⎩⎭,其中i 为虚数单位,则集合A 与集合B 的关系是()A .AB B .B AC .A B =D .A B≠参考答案跟踪训练1.A【分析】先求出集合U ,再根据交集补集定义求解即可.【详解】 {}{}2,2,1,0,1,2U x x x =≤∈=--Z ,{}2,1U A ∴=-ð,(){} U 2A B ∴⋂=-ð.故选:A.2.A【分析】由()A B =∅R ð,得A B ⊆,从而可求出m 的取值范围【详解】由题知()A B =∅R ð,得A B ⊆,则1m £,故选:A .3.B【分析】先由集合A 先求出U A ð,然后再求交集运算.【详解】由{}1A x x =≥-,则{}U |1A x x =<-ð又{}23B x x =-≤<,所以(){}U |21A B x x ⋂=-≤<-ð故选:B4.D【分析】化简集合B ,由交集运算即可.【详解】因为(1,3)A =,{}3230(,)2B x x =->=+∞,所以3,32A B ⎛⎫=⎪⎝⎭ ,故选:D5.D【分析】首先得到{}{()()0|()0x f x g x x f x ===或}()0g x =,再结合已知条件即可得到答案.【详解】因为{}{()()0|()0x f x g x x f x ===或}()0g x =,又因为{}()0M x f x =≠,{}()0N x g x =≠,所以{}()()()()0R R x f x g x M N ==⋃痧.故选:D6.B【分析】根据集合交集及补集的定义即可求解.【详解】解:因为集合{0,1,3}A =,{2,3,4}B =,所以{}3A B ⋂=,又全集{0,1,2,3,4}U =,所以U (){0,1,2,4}A B = ð,故选:B.7.C【分析】首先求解集合A ,最后求集合的交集即可.【详解】因为集合{}20A x x =->,所以{}2A x x =>,又集合{1,2,3,4}B =,所以{}3,4A B = ,故选:C8.C【分析】由余弦函数的值域,先求出集合B ,再求交集.【详解】{}{}cos ,11B y y R y y θθ==∈=-≤≤,又{A =-所以{}1,0A B ⋂=-故选:C9.C【分析】首先求解集合M ,再求M N ⋂.【详解】解:∵{}0M y y =≤,{}12N x x =-<≤,∴(]1,0M N ⋂=-.故选:C .10.(1){1A B x x ⋂==-或3}x ≥;(2)12,33⎡⎤-⎢⎣⎦【分析】(1)当1a =时,可解得集合B ,根据交集运算的定义,即可得答案.(2)当0a >时,可得集合B ,根据A B ⊆,可列出方程组,求得a 的范围;当0a =时,经检验符合题意;当0a <时,根据A B ⊆,可列出方程组,求得a 的范围,综合即可得答案.【详解】(1)当1a =时,{}2230B x x x =--≥,解得{3B x x =≥或1}x ≤-,所以{1A B x x ⋂==-或3}x ≥.(2)令22230x ax a --=,解得3x a =或x a =-,当0a >时,3a a >-,所以集合{3B x x a =≥或}x a ≤-,因为A B ⊆,所以132a a -≤-⎧⎨≤⎩,解得23a ≤,所以203a <≤,当0a =时,集合B =R ,满足A B ⊆,当0a <时,3a a ->,所以集合{B x x a =≥-或3}x a ≤,因为A B ⊆,所以132a a -≤⎧⎨-≤⎩,解得13a ≥-,所以103a >≥-,综上:实数a 的取值范围为12,33⎡⎤-⎢⎥⎣⎦.真题再现1.A【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果.【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =I ,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2.A【详解】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=< ,选A .点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.3.C【分析】根据集合交集的运算可直接得到结果.【详解】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C【点睛】本题考查的是集合交集的运算,较简单.4.C【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--ð,则(){}U 1,1A B =- ð.故选:C.【点睛】本题主要考查补集运算,交集运算,属于基础题.5.D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = ,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.6.B【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7.D【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.8.C【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}A x x B x =-<<=>,∴(1,)A B =-+∞ ,故选C.【点睛】考查并集的求法,属于基础题.9.C【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.10.{}0,2【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =I 故答案为:{}0,2.【点睛】本题考查了交集及其运算,是基础题型.11.{1,6}.【分析】由题意利用交集的定义求解交集即可.【详解】由题知,{1,6}A B = .【点睛】本题主要考查交集的运算,属于基础题.12.{1,8}.【详解】分析:根据交集定义{}A B x x A x B 且⋂=∈∈求结果.详解:由题设和交集的定义可知:{}1,8A B = .点睛:本题考查交集及其运算,考查基础知识,难度较小.模拟检测1.B【分析】直接利用集合的并运算,即可得到答案;【详解】 {}{}{}77,27A y y x x B x x =<=<=-≤≤,∴A B = {}7x x ≤,故选:B.2.B【分析】通过解不等式分别求出集合A 、B ,进而可求得A B .【详解】由0.71x >得0x <,所以(),0A =-∞;由220x x --<得12x -<<,所以()1,2B =-.所以,()1,0A B =-I .故选:B.3.B【分析】解不等式化简集合A ,再进行交运算,即可得到答案;【详解】 {}{}ln(1)1A x y x x x ==-=,{}1,2,3,5B =,∴A B = {}2,3,5,故选:B.4.C【分析】先化简集合A B ,,再求A B 得解.()222ln 21=ln[(21)]ln[(1)2]ln 2y x x x x x =-++---=--+≤,所以()(]2{|ln 21,ln 2A y y x x ==-++=-∞,{}()|ln 10,B y y e =<=,所以(]0,ln 2A B ⋂=.故选:C5.C【分析】由M A ⊆且M B ⊆得,()M A B ⊆⋂,根据交集及子集的定义即可求解.【详解】解: 集合3{}12A =,,,{1012}B =-,,,,{}1,2A B ∴= ,又M A ⊆且M B ⊆,()M A B ∴⊆ ,即{}1,2M ⊆,M ∴的个数为224=个,故选:C.6.B【分析】求函数值域求得集合A ,解一元二次不等式求得集合B ,由此求得A B .【详解】()()220,2313013x x x x x x >--=+-<⇔-<<{}0A y y => ,{}13B x x =-<<,(0,3)A B ∴⋂=.故选:B7.D先求得集合B ,再根据集合的交集运算可得选项.【详解】因为[]2{|4}22B x x =≤=-,,所以A B = {}0,1,2.故选:D .8.A【分析】根据并集及补集的定义对选项一一分析即可.【详解】对于A ,(){}5U A B ⋃=ð,故A 正确;对于B ,()(){}{}{}3,4,51,2,51,2,3,4,5U U A B ⋃=⋃=痧,故B 错误;对于C ,(){}{}{}3,4,53,43,4,5U A B =⋃= ð,故C 错误;对于D ,(){}{}{}1,2,51,21,2,5U B A ⋃=⋃=ð,故D 错误;故选:A9.A【分析】解一元二次不等式可求得集合A ,由并集定义可得结果.【详解】(){}727002A x x x x x ⎧⎫=-<=<<⎨⎬⎩⎭,{}3B x x =>,{}0A B x x ∴⋃=>.故选:A.10.D【分析】先求得(] R ,0N =-∞ð,再结合集合的运算,即可求解.【详解】由题意,集合{}0N x x =>,可得(] R ,0N =-∞ð,又由集合{}12M x x =-<≤,可得()(]R 1,0M N ⋂=-ð.11.C【分析】先由题中条件,由复数的运算,化简两集合,进而可判断两集合之间关系.【详解】由题意,{},1,,1A i i =--,集合B 中11i i i +=-,所以{},1,,1B i i A =--=.故选:C.。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
(完整版)高考集合专题复习
高中集合专题复习一、集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性。
(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集:N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c ……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R|x-3>2} ,{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn 图:4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作B A ⊄或A B ⊄2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A A ⊆②真子集:如果A 属于B,且A ≠B 那就说集合A 是集合B 的真子集,记作B A ⊆(或A B ⊆) ③如果 B A ⊂,C B ⊂ ,那么 C A ⊂④ 如果B A ⊂ 同时A B ⊂,那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
2024年高考数学真题分类汇编01:集合与常用逻辑用语
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题ห้องสมุดไป่ตู้
10.(2024·上海)设全集U 1, 2,3, 4,5 ,集合 A 2, 4 ,则 A
.
1.A
参考答案:
【分析】化简集合 A ,由交集的概念即可得解.
【解析】因为 A x | 3 5 x 3 5 , B 3, 1, 0, 2,3 ,且注意到1 3 5 2 ,
【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件. 【解析】根据立方的性质和指数函数的性质, a3 b3 和 3a 3b 都当且仅当 a b ,所以二者 互为充要条件. 故选:C.
10. 1, 3, 5
【分析】根据补集的定义可求 A .
【解析】由题设有 A 1,3,5 ,
b
或
a
b
”的(
)条件.
A.必要而不充分条件
B.充分而不必要条件
C.充分且必要条件
D.既不充分也不必要条件
8.(2024·天津)集合 A 1, 2,3, 4 , B 2,3, 4,5 ,则 A B ( )
A.1, 2,3, 4
B.2,3, 4
C.2, 4
D. 1
9.(2024·天津)设 a,b R ,则“ a3 b3 ”是“ 3a 3b ”的( )
【解析】因为 A 1, 2,3, 4,5,9, B x x A ,所以 B 1, 4,9,16, 25,81 ,
则 A B 1, 4,9 , ðA A B 2, 3, 5
故选:D
5.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【解析】对 A,当 a b 时,则 a b 0 ,
2024年高考数学 高三大一轮复习专题01 集合
专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。
2021年高考数学试题分项 专题01 集合与常用逻辑用语(含解析)
2021年高考数学试题分项 专题01 集合与常用逻辑用语(含解析)1.【xx 高考四川,理1】设集合,集合,则( )【答案】A【考点定位】集合的基本运算.2.【xx 高考广东,理1】若集合,,则( )A .B .C .D . 【答案】.【考点定位】一元二次方程的解集,集合的基本运算. 3.【xx 高考新课标1,理3】设命题:,则为( )(A ) (B ) (C ) (D ) 【答案】C【考点定位】本题主要考查特称命题的否定 4.【xx 高考陕西,理1】设集合,,则( )A .B .C .D . 【答案】A【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算. 5.【xx 高考湖北,理5】设,. 若p :成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D.p既不是q的充分条件,也不是q的必要条件【答案】A【考点定位】等比数列的判定,柯西不等式,充分条件与必要条件.6.【xx高考天津,理4】设,则“ ”是“ ”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【考点定位】不等式解法与充分条件、必要条件.7.【xx高考重庆,理1】已知集合A=,B=,则()A、A=BB、AB=C、ABD、BA 【答案】D【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.8.【xx高考福建,理1】若集合(是虚数单位),,则等于 ( )A. B. C. D.【答案】C【考点定位】1、复数的概念;2、集合的运算.9.【xx高考重庆,理4】“”是“”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件【答案】B【考点定位】充分必要条件.10.【xx高考新课标2,理1】已知集合,,则()A.B.C.D.【答案】A【考点定位】集合的运算.11.【xx高考天津,理1】已知全集,集合,集合,则集合( )(A)(B)(C)(D)【答案】A【考点定位】集合的运算.12.【xx高考安徽,理3】设,则是成立的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【考点定位】1.指数运算;2.充要条件的概念.13.【xx高考山东,理1】已知集合,,则()(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【考点定位】1、一元二次不等式;2、集合的运算.14.【xx高考浙江,理4】命题“且的否定形式是()A. 且B. 或C. 且D. 或【答案】D.【考点定位】命题的否定15.【xx高考浙江,理1】已知集合,,则()A. B. C. D.【答案】C.【考点定位】1.解一元二次不等式;2.集合的运算.16.【xx高考山东,理12】若“”是真命题,则实数的最小值为 .【答案】1【考点定位】1、命题;2、正切函数的性质.17.【xx高考江苏,1】已知集合,,则集合中元素的个数为_______.【答案】5【考点定位】集合运算28288 6E80 満35517 8ABD 誽AL i 28204 6E2C 測'38558 969E 隞34539 86EB 蛫 t21953 55C1 嗁>。
高考集合试题及答案
高考集合试题及答案一、选择题1. 集合A={x|x<10},集合B={x|x>5},求A∩B。
A. {x|x<5}B. {x|x>10}C. {x|5<x<10}D. {x|x>=10}答案:C2. 已知集合C={y|y=x^2, x∈R},求C中所有元素的和。
A. 0B. 无法计算C. 正无穷D. 1答案:B二、填空题1. 集合D={1,2,3},集合E={2,3,4},求D∪E。
答案:{1,2,3,4}2. 若集合F={x|0≤x≤1},求F的补集。
答案:{x|x<0或x>1}三、解答题1. 已知集合G={x|x^2-5x+6=0},求G的所有元素。
解:首先解方程x^2-5x+6=0,分解因式得(x-2)(x-3)=0,所以x=2或x=3。
因此,集合G={2,3}。
2. 集合H={x|-3≤x≤3},求H的子集个数。
解:集合H有7个元素,根据子集个数公式2^n(其中n为集合元素个数),H的子集个数为2^7=128。
四、证明题1. 证明:若A⊆B,则A∪B=B。
证明:根据集合并集的定义,A∪B包含所有属于A或B的元素。
由于A⊆B,A中的所有元素也属于B,所以A∪B中的元素与B中的元素完全相同,即A∪B=B。
2. 证明:若A∩B=∅,则A∪B=A+B。
证明:由于A∩B=∅,说明A和B没有共同元素。
因此,A∪B中的元素要么是A的元素,要么是B的元素,这正是A+B的定义,所以A∪B=A+B。
2012-2022十年高考真题分类汇编 专题01 集合概念与运算(解析版)
专题01 集合概念与运算十年大数据*全景展示年份题号考点考查内容考点1 集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .5【答案】B 【解析】由题意,{5,7,11}A B =,故A B 中元素的个数为3,故选B2.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .6【答案】C 【解析】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故AB 中元素的个数为4.故选C .3.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .0【答案】B 【解析】由题意可得,圆221x y += 与直线y x = 相交于两点()1,1,()1,1--,则A B 中有两个元素,故选B .4.【2018新课标2,理1】已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4【答案】A 【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =−1,0,1,当x =−1时,y =−1,0,1;当x =0时,y =−1,0,1;当x =−1时,y =−1,0,1;所以共有9个,选A .5.【2013山东,理1】已知集合A ={0,1,2},则集合B =中元素的个数是 A .1B .3C .5D .9【答案】C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个,故选C .6.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a = A .4 B .2 C .0D .0或4【答案】A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =,故选A .7.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2【答案】C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素,故选C . 8.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .1{}|,x y x A y A -∈∈【答案】C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.9.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则 A .i ∈S B .2i ∈S C .3i ∈S D .2i∈S 【答案】B 【解析】∵2i =-1∈S ,故选B .10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.【答案】3-【解析】不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.考点2 集合间关系【试题分类与归纳】1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则 A .AB B .B AC .A B =D .A B =∅【答案】B 【解析】A=(-1,2),故B ⊂≠A ,故选B .2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B【答案】B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =B B .A B =∅∩C .AB D .B A【答案】D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D . 4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( ) A .N M ⊆ B .MN M = C .M N N = D .{2}M N =【答案】D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则( ) A .P Q ⊆ B .Q P ⊆ C .R C P Q ⊆ D .R Q C P ⊆【答案】D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D . 6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P =,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1][1,+∞)【答案】C 【解析】因为PM P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则( ) A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 【解析】A=(-,0)∪(2,+),∴A ∪B=R ,故选B .8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D【答案】B 【解析】∵正方形一定是矩形,∴C 是B 的子集,故选B .9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,{}2|320,A x x x x =-+=∈R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D .考点3 集合间的基本运算【试题分类与归纳】1.【2011课标,文1】 已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有 (A )2个 (B)4个 (C)6个 (D)8个【答案】B 【解析】∵P=M ∩N={1,3}, ∴P 的子集共有22=4,故选B .2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N= A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 【答案】A 【解析】M=(-1,3),∴M ∩N={0,1,2},故选A .3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N= ( ) (A ){-2,-1,0,1} (B ){-3,-2,-1,0}(C ){-2,-1,0} (D ){-3,-2,-1 }【答案】C 【解析】因为集合M={}|31x x -<<,所以M∩N={0,-1,-2},故选C .4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A ){1,4}(B ){2,3}(C ){9,16}(D ){1,2}【答案】A ;【解析】依题意,{}1,4,9,16B =,故{}1,4A B =.5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=∞∞A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A 【解析】∵A=(,1][3,)-∞-⋃+∞,∴A B ⋂=[-2,-1],故选A .6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A .{1} B .{2} C .{0,1} D .{1,2}【答案】D 【解析】∵{}{}2=32012N x x x x x -+≤=≤≤,∴MN ={}1,2,故选D .7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N =( )A. )1,2(- B .)1,1(- C .)3,1( D .)3,2(- 【答案】B 【解析】MB =(-1,1),故选B .8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅ B .{}2 C .{0} D .{2}- 【答案】B 【解析】∵{}1,2B =-,∴AB ={}2.9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则AB =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A 【解析】由题意知,)1,2(-=B ,∴}0,1{-=⋂B A ,故选A .10.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D . 11.【2015新课标2,文1】已知集合,,则( )A .B .C .D . 【答案】A 【解析】由题知,)3,1(-=⋃B A ,故选A .12.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂= (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D 【解析】由题知A =(1,3),B=),23(+∞,所以B A ⋂=3(,3)2,故选D . 13.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】由题知B ={0,1},所以AB ={0,1,2,3},故选C .{}|12A x x =-<<{}|03B x x =<<A B =()1,3-()1,0-()0,2()2,314.【2016新课标3,理1】设集合,则T S ⋂=(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2][3,+)【答案】D 【解析】由题知,),3[]2,(+∞⋃-∞=S ,∴T S ⋂=(0,2][3,+),故选D . 15.【2016新课标2,文1】已知集合,则( )(A ) (B ) (C )(D )【答案】D 【解析】由题知,)3,3(-=B ,∴}2,1{=⋂B A ,故选D . 16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B 【解析】由题知,}5,3{=⋂B A ,故选B .17.【2016新课标3,文1】设集合,则=(A ) (B ) (C ) (D ) 【答案】C 【解析】由题知,}10,6,2,0{=B C A ,故选C . 18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A 【解析】由题知,)0,(-∞=B ,∴{|0}AB x x =<,故选A .19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C 【解析】由{}1AB =得1B ∈,所以3m =,{}1,3B =,故选C .21.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =( )A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,{}{}|(2)(3)0,|0S x x x T x x =--≥=>∞∞∞∞∞{123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},{0,2,4,6,8,10},{4,8}A B ==A B {48},{026},,{02610},,,{0246810},,,,,【答案】A 【解析】由题意{1,2,3,4}A B =,故选A .22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B 【解析】由题意可得,{}2,4AB =,故选B .23.【2018新课标1,理1】已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2}【答案】B 【解析】由题知,A ={x|x <−1或x >2},∴C R A ={x|−1≤x ≤2},故选B . 24.【2018新课标3,理1】已知集合A ={x|x −1≥0},B ={0 , 1 , 2},则A ∩B = A .{0} B .{1} C .{1 , 2} D .{0 , 1 , 2}【答案】C 【解析】由题意知,A={|x x ≥1},所以A ∩B ={1,2},故选C . 25.【2018新课标1,文1】已知集合,,则( )A .B .C .D .【答案】A 【解析】根据集合交集中元素的特征,可以求得,故选A .26.【2018新课标2,文1】已知集合,,则A .B .C .D .【答案】C 【解析】,故选C27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A=( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 29.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A 【解析】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】由题知,(1,2)AB =-,故选C .31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 32.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】{1,3}UA =-,{1}UA B =-.故选A .33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A CB =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】由题知,{}1,2AC =,所以{}{}{}{}1,22,3,41,2,3,4A C B ==,故选D .34.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I∅,则=N M A .MB .NC .ID .∅【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A BA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x << 【答案】B 【解析】因为{1}B x x =≥,所以{|1}RB x x =<,因为{02}A x x =<<,所以()=R AB {|01}x x <<,故选B .36.【2017山东,理1】设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B =( )A .(1,2)B .(1,2]C .(2,1)-D .[2,1)- 【答案】D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D .37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤ 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,,,选B .38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A 【解析】由题意可知{|12}PQ x x =-<<,选A .39.【2016年山东,理1】设集合 则=A .B .C .D .【答案】C 【解析】集合A 表示函数2xy =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =A .{1}B .{4}C .{1,3}D .{1,4}【答案】D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =,故选D .41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =A .[0,1)B .(0,2]C .(1,2)D .[1,2] 【答案】C 【解析】{|02}RP x x ,故(){|1<<2}RP Q =x x ,故选C .42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 【答案】A 【解析】{|12}A x x ,{|13}B x x ,∴{|13}A B x x .43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则AB 等于( )A .{}1-B .{}1C .{}1,1-D .∅ 【答案】C 【解析】由已知得,故,故选C .44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则MN =A .{}1,4B .{}1,4--C .{}0D .∅ 【答案】D 【解析】 由(4)(1)0x x 得4x 或1x ,得{1,4}M .由(4)(1)0x x 得4x 或1x ,得{1,4}N .显然=∅MN .45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】,,所以,故选A .2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞{},1,,1A i i =--AB ={}1,1-{}{}20,1x x x M ==={}{}lg 001x x x x N =≤=<≤[]0,1MN =46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合 {}1,3,4,6,7B =,则集合U A B =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8【答案】A 【解析】{2,5,8}U B =,所以{2,5}U A B =,故选A .47.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA .[0,2]B .(1,3)C .[1,3)D .(1,4)【答案】B 【解析】∵{}1,2B =-,∴A B ⋂={}2,故选B .48.【2014浙江,理1】设全集,集合,则 A . B . C . D .【答案】B 【解析】由题意知{|2}U x N x =∈≥,{|Ax N x =∈,所以{|2x N x ∈<≤,选B .49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB = A .{|0}x x ≥ B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<,故选D .50.【2013山东,】已知集合均为全集的子集,且,,则 A .{3} B .{4}C .{3,4}D . 【答案】A 【解析】由题意{}1,2,3A B =,且,所以A 中必有3,没有4,{}3,4U C B =,故{}3.51.【2013陕西,理1】设全集为R ,函数的定义域为M ,则为A .[-1,1]B .(-1,1)C .D .【答案】D 【解析】的定义域为M =[-1,1],故R M =,选D .52.【2013湖北,理1】已知全集为,集合,,则( )A .B .{}|24x x ≤≤C .D .{}2|≥∈=x N x U {}5|2≥∈=x N x A =A C U ∅}2{}5{}5,2{=A C U B A 、}4,3,2,1{=U (){4}U A B ={1,2}B =U AB =∅{1,2}B=U A B =()f x =C M R ,1][1,)(∞-⋃+∞-,1)(1,)(∞-⋃+∞-()f x (,1)(1,)-∞-⋃+∞R 112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或【答案】C 【解析】,,.53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂【答案】D 【解析】因为{1,2,3,4}M N =,所以()()n n C M C N ⋂=()U C M N ={5,6}.54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I ∅,则=N MA .MB .NC .ID .∅ 【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B =,则实数a 的值为_. 【答案】1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( ) A .{4,1}- B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选D .57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选B . 58.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选D .59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B = ( )A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--[)0,A =+∞[]2,4B =[)()0,24,R A C B ∴=+∞【答案】A 【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-.故选A .60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<< 则PQ = ( ) A .{|12}x x <≤ B .{|23}x x << C .{|23}x x <≤ D .{|14}x x <<【答案】B 【解析】由已知易得{}23P Q x x =<<,故选B .61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则AB = A .{1,0,1}- B .{0,1}C .{1,1,2}-D .{1,2} 【答案】D 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选D .62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A BA .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x << 【答案】C 【详解】[]()[)1,32,41,4A B ==,故选C .63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C 【解析】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-,故选C .64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则AB = . 【答案】{}2,4【解析】由交集定义可知{}2,4A B =,故答案为:{}2,4.65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则AB = . 【答案】{}0,2【解析】由题知,{}0,2A B =.考点4 与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10【答案】D .【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D .2.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有9个元素(即9个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.3.【2013广东,理8】设整数,集合,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若和都在中,则下列选项正确的是A .,B .,C .,D ., 【答案】B 【解析】特殊值法,不妨令,,则,,故选B .如果利用直接法:因为,,所以…①,…②,…③三个式子中恰有一个成立;…④,…⑤,…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时,于是,;第二种:①⑥成立,此时,于是,;第三种:②④成立,此时,于是,;第四种:③④成立,此时,于是,.综合上述四种情况,可得,.4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是( )22{(,)1,,}A x y x y x y =+≤∈Z A {(,)||2,||2,,}B x y x y x y =≤≤∈Z ABCD 12121122{(,)(,),(,)}AB x x y y x y A x y B ⊕=++∈∈1111DC B A 45477=-⨯4n ≥{}1,2,3,,X n =(),,x y z (),,z w x S (),,y z w S ∈(),,x y w S ∉(),,y z w S ∈(),,x y w S ∈(),,y z w S ∉(),,x y w S ∈(),,y z w S ∉(),,x y w S ∉2,3,4x y z ===1w =()(),,3,4,1y z w S =∈()(),,2,3,1x y w S =∈(),,x y z S ∈(),,z w x S ∈x y z <<y z x <<z x y <<z w x <<w x z <<x z w <<w x y z <<<(),,y z w S ∈(),,x y w S ∈x y z w <<<(),,y z w S ∈(),,x y w S ∈y z w x <<<(),,y z w S ∈(),,x y w S ∈z w x y <<<(),,y z w S ∈(),,x y w S ∈(),,y z w S ∈(),,x y w S ∈A .1B .2C .3D .4【答案】C 【解析】①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a ,b 属于同一类,不妨设a ,b ∈[k]={5n k +丨n ∈Z},则a =5n+k ,b =5m+k ,n ,m 为整数,a b -=5(n -m)+0∈[0]正确,故①③④正确,答案应选C .5.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,k i i i a a a },定义X 的“特征数列”为12100,,,x x x ,其中 121k i i i x x x ====,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1) 子集{135,,a a a }的“特征数列”的前三项和等于 ;(2) 若E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99; E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.【解析】 (1) 子集{135,,a a a }的特征数列为:1,0,1,0,1,0,0,0……0.所以前3项和等于1+0+1=2.(2)∵E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;∴P 的“特征数列”:1,0,1,0 … 1,0. 所以P = },,{99531a a a a .∵E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,,可知:j =1时,123q q q ++=1,∵11q =,∴2q =3q =0;同理4q =1=7a =…=32n q -.Q 的“特征数列”:1,0,0,1,0,0 …1,0,0,1.所以Q = },,,{10097741a a a a a .∴ {=⋂Q P },,971371a a a a ,∵97=1+(17-1)×6,∴共有17个相同的元素.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=,1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅, 11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-).令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件.故B 是一个满足条件且元素个数最多的集合.。
集合-三年( 2019-2021年)高考真题数学分类汇编
集合-三年( 2019-2021年)高考真题数学分类汇编一、单选题(共30题;共150分)1.(5分)(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B【解析】【解答】解:由题设可得C U B={1,5,6},故A∩(C U B)={1,6}.故答案为:B【分析】根据交集、补集的定义求解即可.2.(5分)(2021·北京)已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.(−1,2)B.(−1,2]C.[0,1)D.[0,1]【答案】B【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.3.(5分)(2021·浙江)设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A.{x|x>−1}B.{x|x≥1}C.{x|−1<x<1}D.{x|1≤x<2}【答案】D【解析】【解答】因为A={x|x≥1},B={x|−1<x<2},所以A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。
4.(5分)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则C u(MUN)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}【答案】A【解析】【解答】因为U={1,2,3,4,5},集合M={1,2},N={3,4} 则MUN ={1,2,3,4},于是C u(MUN)= {5} 。
故答案为:A【分析】先求 MUN ,再求 C u (MUN ) 。
5.(5分)(2021·全国甲卷)设集合 M ={1,3,5,7,9},N ={x ∣2x >7} ,则 M ∩N =( ) A .{7,9} B .{5,7,9} C .{3,5,7,9}D .{1,3,5,7,9}【答案】B【解析】【解答】解:由2x>7,得x >72,故N ={x|x >72},则根据交集的定义易得M∩N={5,7,9}. 故答案为:B【分析】根据交集的定义求解即可.6.(5分)(2021·全国甲卷)设集合M={x|0<x <4},N={x| 13≤x≤5},则M∩N=( )A .{x|0<x≤ 13 }B .{x| 13 ≤x <4}C .{x|4≤x <5}D .{x|0<x≤5}【答案】B【解析】【解答】解:M∩N 即求集合M,N 的公共元素,所以M∩N={x|13≤x ﹤4},故答案为:B【分析】根据交集的定义求解即可.7.(5分)(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z },T={t|t=4n+1,n∈Z },则S∩T=( ) A .∅B .SC .TD .Z【答案】C【解析】【解答】当n=2k (k ∈Z) 时,S={s|s=4k+1, k ∈z },当n=2k+1 (k ∈Z) 时,S={s|s=4k+3, k ∈z } 所以T ⊂S,所以S ∩T =T , 故答案为:C.【分析】分n 的奇偶讨论集合S 。
备战2021届新高考数学经典题必刷考点01 集合的概念与表示以及基本关系(解析版)
考点01 集合的概念与表示以及基本关系一、集合的有关概念1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =.3.集合的常用表示法 集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法.4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.空集:不含有任何元素的集合,记作∅.2.集合与集合之间的关系(1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =.(3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作A B 或B A .空集是任何集合的子集,是任何非空集合的真子集.难度:★★★☆☆ 建议用时: 15分钟 正确率 : /141.(2018·全国高考真题(理))已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为() A .9 B .8 C .5 D .4【答案】A【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.2.(2013·江西高考真题(文))若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( ) A .4B .2C .0D .0或4 【答案】A 【解析】2=40,0 4.0.A a a a a A A ∴∆-=∴==集合中只有一个元素,或又当时集合中无元素,故选考点:该题主要考查集合的概念、集合的表示以及集合与一元二次方程的联系.3.(2013·全国高考真题(理))设集合={1,2,3}A ,B={45},,={x|x=a+b,a A,b B}M ∈∈,则M 中元素的个数为( )A .3B .4C .5D .6【答案】B【详解】由题意知x a b =+,,a A b B ∈∈, 则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B.【考点定位】集合的概念4.(2012·全国高考真题(理))已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .10 【答案】D【解析】列举法得出集合()()()()()()()()()(){}2,1314151324252435354B =,,,,,,,,,,,,,,,,,,,共含10个元素. 故答案选D5.(2013·全国高考真题(理))已知集合A ={x |x 2-2x >0},B ={x |x },则( ). A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B 【答案】B【详解】 依题意{}|02A x x x =或,又因为B ={x |x ,由数轴可知A ∪B =R ,故选B.6.(2015·重庆高考真题(理))已知集合A={}1,2,3,B={}2,3,则( )A .A=BB .A B=∅C .A BD .B A【答案】D【详解】 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.考点:本题考查子集的概念,考查学生对基础知识的掌握程度.8.(2020·东台市创新学校高一月考)设28150A x x x ,10B x ax ,若A B B =,则实数a 的值可以为( ) A .15 B .0 C .3 D .13【答案】ABD【分析】先将集合A 表示出来,由A B B =可以推出B A ⊆,则根据集合A 中的元素讨论即可求出a 的值.【详解】 28150x x -+=的两个根为3和5,3,5A ,A B B =,B A ∴⊆,B ∴=∅或{}3B =或5B 或{}3,5B =,当B =∅时,满足0a =即可,当{}3B =时,满足310a -=,13a ∴=, 当5B 时,满足510a ,15a ∴=, 当{}3,5B =时,显然不符合条件,∴a 的值可以是110,,35.故选:ABD.【点睛】本题主要考查集合间的基本关系,由A B B =推出B A ⊆是解题的关键.9.(2020·福建省华安县第一中学高一期中)设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A .x Q ∀∈,有x P ∈B .x P ∃∈,使得x Q ∉C .∃∈x Q ,使得x P ∉D .x Q ∀∉,有x P ∉【答案】CD【分析】由两集合交集的结果推出Q 是P 的真子集,再根据真子集的概念进行判断.【详解】因为P Q Q ⋂=,且P Q ≠,所以Q 是P 的真子集,所以x Q ∀∈,有x P ∈,x P ∃∈,使得x Q ∉,CD 错误.故选:CD【点睛】本题考查集合交集的概念、真子集的概念10.(2020·福建三明市·高一期中)(多选题)已知集合{}220A x x x =-=,则有( )A .A ∅⊆B .2A -∈C .{}0,2A ⊆D .{}3A y y ⊆< 【答案】ACD【分析】 先化简集合{0,2}A =,再对每一个选项分析判断得解.【详解】由题得集合{0,2}A =,由于空集是任何集合的子集,故A 正确:因为{}0,2A =,所以CD 正确,B 错误.故选ACD.【点睛】本题主要考查集合的化简,考查集合的元素与集合的关系,意在考查学生对这些知识的理解掌握水平. 11.(2020·平潭县新世纪学校高一期中)(多选)已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}2【答案】AC【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果. 【详解】∪A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∪结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,12.(2015·湖北高考真题(理))已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C【详解】 因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.考点:1.集合的相关知识,2.新定义题型.13.(2010·湖南高考真题(文))若规定E={}1,210...a a a 的子集{}12...,n k k k a a a 为E 的第k 个子集,其中k=12111222n k k k ---+++,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______【答案】5,【详解】(1)由题意新定义知,{}1,3,a a 中11k =,23k =,,故第一空应填5; (2)因为,所以E 的第211个子集包含,此时211-128=83;又因为,,所以E 的第211个子集包含,此时83-64=19;又因为,,所以E 的第211个子集包含,此时19-16=3;又因为,,所以E 的第211个子集包含,此时3-2=1;因为,所以E 的第211个子集包含;故E 的第211个子集是.故第二空应填.14.(2019·上海高考真题)已知集合[][],14,9A t t t t =+⋃++,0A ∉,存在正数λ,使得对任意a A ∈,都有A a λ∈,则t 的值是____________【答案】1或3-【分析】根据t 所处的不同范围,得到[],1a t t ∈+和[]4,9a t t ∈++时,aλ所处的范围;再利用集合A 的上下限,得到λ与t 的等量关系,从而构造出方程,求得t 的值.【详解】 0A ∉,则只需考虑下列三种情况:①当0t >时,[][],14,9a t t t t ∈+++11111,,941a t t t t ⎡⎤⎡⎤∴∈⎢⎥⎢⎥+++⎣⎦⎣⎦ 又0λ> ,,941a t t t t λλλλλ⎡⎤⎡⎤⇒∈⎢⎥⎢⎥+++⎣⎦⎣⎦ A a λ∈ 914t t t t λλ⎧≥⎪⎪+∴⎨⎪≤+⎪+⎩且419t t t tλλ⎧≥+⎪⎪+⎨⎪≤+⎪⎩ 可得:()()()()()()991414t t t t t t t t λλ⎧+≤≤+⎪⎨++≤≤++⎪⎩()()()914t t t t λ∴=+=++ 1t ⇒=②当90t +<即9t <-时,与①构造方程相同,即1t =,不合题意,舍去③当1040t t +<⎧⎨+>⎩即41t -<<-时 可得:11t t t t λλ⎧≥⎪⎪+⎨⎪≤+⎪⎩且4994t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪+⎩ ()()()149t t t t λ∴=+=++ 3t ⇒=-综上所述:1t =或3-【点睛】本题考查利用集合与元素的关系求解参数的取值问题,关键在于能够通过t 的不同取值范围,得到a 与a λ所处的范围,从而能够利用集合的上下限得到关于λ的等量关系,从而构造出关于t 的方程;难点在于能够准确地对t 的范围进行分类,对于学生的分析和归纳能力有较高的要求,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点1 集合一、选择题1.(2015·浙江高考理科·T1)已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q = ( )A.[0,1)B.(0,2]C.(1,2)D.[1,2]【解题指南】先由一元二次不等式化简集合P,再利用集合的运算性质求解.【解析】选C.由题意得, {}02P x x x =≤或≥,所以()0,2R C P =,所以()R P Q =(1,2) .2.(2015·浙江高考理科·T6)设A,B 是有限集,定义d(A,B)=card(A ∪B)-card(A ∩B),其中card(A)表示有限集A 中的元素个数,命题①:对任意有限集A,B “A ≠B ”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C). ( )A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立【解题指南】充分理解d(A,B)=card(A ∪B)-card(A ∩B)与card(A)的意义.【解析】选A.命题①显然正确,如图亦可知d(A,C)表示的区域不大于d(A,B)+d(B,C)表示的区域,故命题②也正确.3.(2015·浙江高考文科·T1)已知集合P={x|x 2-2x ≥3},Q={x|2<x<4},则P ∩Q= ( )A.[3,4)B.(2,3]C.(-1,2)D.(-1,3] 【解题指南】化简集合P,再求P ∩Q.【解析】选A.由题意得,P={x|x ≥3或x ≤-1},所以P ∩Q=[3,4).4.(2015·安徽高考文科·T2)设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()R A C B =( )A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}【解题指南】应用集合的运算法则进行计算。
【解析】选B 。
因为}{1,5,6U C B =,所以}{()1U A C B ⋂=,所以选B 。
5. (2015·广东高考理科·T1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M ∩N= ( )A.ΦB.{-1,-4}C.{0}D.{1,4}【解题指南】先求出两个集合,然后再进行交集的运算.【解析】选A. 因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅.6. (2015·广东高考文科·T1)若集合M={-1,1},N={-2,1,0},则M ∩N= ( )A.{0,-1}B.{0}C.{1}D.{1,1}【解析】选C. {}1=N M 7. (2015·北京高考文科·T1)设集合A={x|-5<x<2},B={x|-3<x<3},则A ∩B= ( )A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3}【解析】选A.如图,得A ∩B={x|-3<x<2}.8.(2015·天津高考理科·T1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B = A.{}2,5 B.{}3,6 C.{}2,5,6 D.{}2,3,5,6,8【解析】选A.UB={2,5,8},所以,集合U A B ={2,5},9.(2015·天津高考文科·T1)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A U B () ( )A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【解析】选B.A={2,3,5},{2,5}U B 则A U B (){2,5}10.(2015·四川高考文科·T1)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A ∪B= ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}【解题指南】本题考查集合的并集.通过解不等式,把集合A 化为最简形式,然后把两集合在数轴上表示出来,便可得出答案.【解析】选A.由(x+1)(x-2)<0,得-1<x<2,即{}12A x x =-<<,所以A ∪B={x|-1<x<3}.11.(2015·四川高考理科·T1)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A ∪B= ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 【解题指南】本题考查集合的并集.通过解不等式,把集合A 化为最简形式,然后把两集合在数轴上表示出来,便可得出答案.【解析】选A.由(x+1)(x-2)<0,得-1<x<2,即A={}21|<<-x x ,所以A ∪B={x|-1<x<3}.12.(2015·新课标全国卷Ⅰ文科·T1)已知集合A={x,B={6,8,10,12,14},则集合A ∩B 中的元素个数为 ( )A.5B.4C.3D.2 【解题指南】将集合A 中取n=0,1,2,3,4,求出集合A 中的元素,然后求A ∩B,从而确定元素个数.【解析】选D.因为A=,B=,所以A ∩B=.13.(2015·新课标全国卷Ⅱ理科·T1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A ∩B= ( )A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}【解析】选A.由已知得B={x|-2<x<1},故A ∩B={-1,0}.14.(2015·新课标全国卷Ⅱ文科·T1)已知集合A={x|-1<x<2},B={x|0<x<3},则A ∪B= ( )A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【解析】选A.因为A={x|-1<x<2},B={x|0<x<3},所以A ∪B=.15.(2015·山东高考理科·T1)已知集合A={x|x 2-4x+3<0},B={x|2<x<4},则A ∩B= ( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)【解题指南】先解不等式,求出集合A,进而求出集合A ∩B.【解析】选C.A={x|1<x<3},B={x|2<x<4},故A ∩B={x|2<x<3}.16.(2015·山东高考文科·T1)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A ∩B= ( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)【解题指南】先解不等式化简集合B,进而求出集合A ∩B.【解析】选C.A={x|2<x<4},B={x|1<x<3},故A ∩B={x|2<x<3}.17.(2015·重庆高考理科·T1)已知集合{}{}1,2,3,2,3A B ==,则( )A.A B =B.A B =∅C.A B ≠⊂D.B A ≠⊂ 【解题指南】直接利用集合之间的关系进行判断即可.【解析】选D.因为{}{}1,2,3,2,3A B ==,由集合之间的关系可知B A ≠⊂. 18.(2015·重庆高考文科·T1)已知集合{}{}1,2,3,1,3A B ==,则A B =( )A.{}2B.{}1,2C.{}1,3D.{}1,2,3【解题指南】直接利用集合之间的运算求交集即可.【解析】选C.因为{}{}1,2,3,1,3A B ==,所以A B ={}1,3.19.(2015·福建高考文科·T2)若集合M={x|-2≤x<2},N={0,1,2},则M ∩N 等于 ( )A.{0}B.{1}C.{0,1,2}D.{0,1}【解题指南】交集找公共的元素.【解析】选D.因为集合N 中的元素0∈M,1∈M,2∉M,所以M ∩N=.20. (2015·陕西高考理科·T1)设集合M={x|x 2=x},N={x|lgx ≤0},则M ∪N= ( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]【解题指南】根据题意先求出集合M 和集合N,再求M ∪N 即可.【解析】选A.集合M=,集合N=,M ∪N=, 所以M ∪N=[0,1].21. (2015·陕西高考文科·T1)设集合M={x|x2=x},N={x|lgx≤0},则M∪N= ( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]【解题指南】根据题意先求出集合M和集合N,再求M∪N即可.【解析】选A.集合M=,集合N=,M∪N=,所以M∪N=[0,1].二、填空题22.(2015·江苏高考·T1)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.【解题指南】利用并集的概念,写出A∪B即可得出元素个数.【解析】因为A={1,2,3},B={2,4,5},所以A∪B={1,2,3,4,5},共5个元素.答案:5关闭Word文档返回原板块。