高三数学高考导学练系列教案:算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法初步
考纲导读
算法的含义、程序框图
(一)了解算法的含义,了解算法的思想。
(二)理解程序框图的三种基本逻辑结构:顺序结构、条件结构和循环结构。
知识网络
高考导航
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础。算法初步虽然是新课标增加的内容,但与前面的知识有着密切的联系,并且与实际问题的联系也非常密切。因此,在高考中算法初步知识将与函数、数列、三角、概率、实际问题等知识点进行整合,是高考试题命制的新“靓”点。这样试题就遵循了“在知识网络交汇处设计试题”的命制原则,既符合高考命题“能力立意”的宗旨,又突出了数学的学科特点。这样做,可以从学科的整体高度和思维价值的高度考虑问题,可以揭示数学各知识之间得到的内在联系,可以使考查达到必要的深度。
考查形式与特点是:
(1)选择题、填空题主要考查算法的含义、流程图、基本算法语句等内容,一般在每份试卷中有1~2题,多为中档题出现。
(2)在解答题中可通过让学生读程序框图去解决其它问题,此类试题往往是与数列题结合在一起,具有一定的综合性,可以考查学生的识图能力及对数列知识的掌握情况.
第1课时算法的含义
1.算法的概念:对一类问题的机械的、统一的求解方法称为算法。2.算法的特性:(1)有限性(2)确定性
例1.给出求1+2+3+4+5的一个算法。解:算法1
第一步:计算1+2,得到3
第二步:将第一步中的运算结果3与3相加,得到6
第三步:将第二步中的运算结果6与4相加,得到10
第四步:将第三步中的运算结果10与5相加,得到15算法2
第一步:取n=5第二步:计算
第三步:输出运算结果变式训练1.写出求111
123
100
+
+++
的一个算法.解:第一步:使1S =,;第二步:使2I =;第三步:使1
n I
=
;第四步:使S S n =+;第五步:使1I I =+;
第六步:如果100I ≤,则返回第三步,否则输出S .
例2. 给出一个判断点P ),(00y x 是否在直线y=x-1上的一个算法。解:第一步:将点P ),(00y x 的坐标带入直线y=x-1的解析式第二步:若等式成立,则输出点P ),(00y x 在直线y=x-1上若等式不成立,则输出点P ),(00y x 不在直线y=x-1上
变式训练2.任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.分析:(1)质数是只能被1和自身整除的大于1的整数.
(2)要判断一个大于1的整数n 是否为质数,只要根据质数的定义,用比这个整数小的数去除n ,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.
2
1n n )(+
解:算法:第一步:判断n 是否等于2.若n=2,则n 是质数;若n >2,则执行第二步.
第二步:依次从2~(n-1)检验是不是n 的因数,即整除n 的数.若有这样的数,则n 不是质数;若没有这样的数,则n 是质数.例3. 解二元一次方程组: ⎩⎨
⎧=+-=-②
y x ①y x 1
212分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.
解:第一步:② - ①×2,得: 5y=3; ③第二步:解③得 53=
y ; 第三步:将53=y 代入①,得 5
1=x .变式训练3.设计一个算法,使得从10个确定且互不相等的数中挑选出最大的一个数.解:算法1
第一步:假定这10个数中第一个是“最大值”;
第二步:将下一个数与“最大值”比较,如果它大于此“最大值”,那么就用这个数取代“最大值”,否则就取“最大值”;
第三步:再重复第二步。
第四步:在这十个数中一直取到没有可以取的数为止,此时的“最大值”就是十个数中的最大值。
算法2
第一步:把10个数分成5组,每组两个数,同组的两个数比较大小,取其中的较大值;
第二步:将所得的5个较大值按2,2,1分组,有两个数的组组内比较大小,一个数的组不变;
第三步:从剩下的3个数中任意取两个数比较大小,取其中较大值,并将此较大值与另一个数比较,此时的较大值就是十个数中的最大值。
例4. 用二分法设计一个求方程022
=-x 的近似根的算法.分析:该算法实质是求2的近似值的一个最基本的方法.
解:设所求近似根与精确解的差的绝对值不超过0.005,算法:
第一步:令()22-=x x f .因为()()02,01> 2 1x x m += ,判断f (m )是否为0.若是,则m 为所求;若否,则继续判断()()m f x f ⋅1大于0还是小于0. 第三步:若()()01>⋅m f x f ,则x 1=m ;否则,令x 2=m. 第四步:判断005.021<-x x 是否成立?若是,则x 1、x 2之间的任意值均为满足条件的近似 根;若否,则返回第二步. 变式训练4.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.解:算法或步骤如下: S1 人带两只狼过河; S2 人自己返回; S3 人带一只羚羊过河; S4 人带两只狼返回; S5 人带两只羚羊过河; S6 人自己返回; S7 人带两只狼过河; S8 人自己返回; S9 人带一只狼过河. 第2课时程序框图 (1)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。 学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: