2018中考数学复习第八单元统计与概率第28讲统计试题
(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)
海璧:2018 全国中考统计概率题【2018 安徽】“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为(2)赛前规定,成绩由高到低前 60﹪人参赛选手获奖,某参赛选手的比赛成绩为 78 分,试判断他能否获奖,并说明理由(3)成绩前 4 名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表发言,试求恰好选中 1 男 1 女的概率【2018 北京】某年级共有 300 名学生.为了解该年级学生 A,B 两门课程的学习情况,从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成 6 组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数海壁教育- 1 - 只教数学A 75.8m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中 m 的值(2)在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是(3)假设该年级学生都参加此次测试,估计 A 课程成绩跑过 75.8 分的人数【2018 福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为 70 元/日,每揽收一件抽成 2 元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过 40,每件提成 4 元;若当日揽件数超过 40,超过部分每件多提成 2 元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的 30 天中随机抽取 1 于,求这一天甲公司揽件员人均揽件数超过 40(不含 40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题①估计甲公司各揽件员的日平均揽件数②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.海壁教育- 2 - 只教数学【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:(1)a= ,b= 4上上上上(2)该调查统计数据的中位数是,众数是(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数(4)若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.海壁教育- 3 - 只教数学【2018 兰州】在一个不透明的布袋里装有 4 个标有 1,2,3,4 的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3 个小球中随机取出一个小球,记下数字为 y,这样确定了点M 的坐标(x,y).(1)画树状图或列表,写出点 M 所有可能的坐标(2)求点 M(x,y)在函数 y=x+1 的图象上的概率【2018 定西】在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【2018 定西】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不海壁教育- 4 - 只教数学完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C 对应的扇形的圆心角是度(2)补全条形统计图(3)所抽取学生的足球运球测试成绩的中位教会落在等级(4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?【2018 广东】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 21-1 图和题 21-2 图所示的不完整统计图.(1)被调查员工人数为人(2)把条形统计图补充完整(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?海壁教育- 5 - 只教数学【2018 深圳】某学校为了调查学生的兴趣爱好,抽查了部分学生,并绘制成如下表格和条形统计图。
中考数学第一部分教材知识梳理第八单元统计与概率第29课时统计试题
第八单元统计与概率第29课时统计湖南3年中考(2014~2016)命题点1 统计的相关概念1.(2014湘西州13题4分)每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况命题点2 平均数、众数、中位数2.(2015长沙7题3分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()A.平均数B.中位数C.众数D.方差3.(2016娄底7题3分)11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那他还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.(2016邵阳4题4分)在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()第4题图A.95 B.90C.85 D.805.(2016郴州5题3分)在郴州市中小学“创园林城市,创卫生城市,创文明城市”演讲比赛中,5位评委给靓靓同学的评分如下:9.0,9.2,9.2,9.1,9.5.则这5个数据的平均数和众数分别是()A.9.1,9.2 B.9.2,9.2C.9.2,9.3 D.9.3,9.26.(2016岳阳4题3分)某小学校园足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11C.10,9 D.10,117.(2015益阳3题5分)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.88.(2015岳阳13题4分)在一次文艺演出中,各评委对某节目给出的分数是:9.20,9.25,9.10,9.20,9.15,9.20,9.15,这组数据的众数是________.9.(2016常德13题3分)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是____.10.(2015株洲12题3分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是________分. 命题点3 方差的意义11.(2016衡阳7题3分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( ) A .平均数B .中位数C .众数D .方差12.(2015岳阳5题3分)现有甲、乙两个合唱队队员的平均身高均为170 cm ,方差分别是2S 甲、2S 乙,且2S 甲>2S 乙,则两个队的队员的身高较整齐的是( )A .甲队B .乙队C .两队一样整齐D .不能确定13.(2016永州6题4分)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8 乙:7、9、6、9、9 则下列说法中错误..的是( )A .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小14.(2016邵阳12题3分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最合适的人选是________.15.(2016郴州15题3分)下图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)第15题图命题点4 统计图(表)的分析16.(2015邵阳4题3分)如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()A.棋类B.书画C.球类D.演艺第16题图17.(2014怀化16题3分)某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图所示的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.第17题图第18题图18.(2014株洲12题3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为________.19.(2016娄底21题8分)在2016年CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分,为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到如图的两幅不完整的统计图表:第19题图根据所给信息,解答下列问题:(1)在频数分布表中,m=______,n=______;(2)请补全频数分布直方图;(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?20.(2016株洲21题8分)某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加四项活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图.请你根据统计图解答下列问题.第20题图(1)2015年比2011年增加________人;(2)请根据扇形统计图求出2015年参与跑步项目的人数;(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,各活动项目参与人数的百分比与2015年相同,请根据以上统计结果,估计2016年参加太极拳的人数.21.(2014永州20题8分)为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查结果分为四种情况:A.10本以下;B.10~15本;C.16~20本;D.20本以上.根据调查结果统计整理并制作了如图所示的两幅不完整的统计图表:各种情况人数统计频数分布表第21题图(1)在这次调查中一共抽查了________名学生;(2)表中x,y的值分别为:x=________,y=______;(3)在扇形统计图中,C部分所对应的扇形的圆心角是________度;(4)根据抽样调查结果,请估计九年级学生中一年阅读课外书20本以上的学生人数.22.(2016衡阳20题6分)为庆祝建党95周年,某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:第22题图(1)在本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为________;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)23.(2016岳阳21题8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:城区空气质量等级天数统计表第23题图(1)统计表中m=________,n=________,扇形统计图中,空气质量等级为“良”的天数占________%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因.据此,请你提出一条合理化建议.答案1.B 【解析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,据此即可判断.样本是所抽取的50名学生对“世界读书日”的知晓情况.故选B.2.C 【解析】对于商家而言,哪种尺码的鞋子销售量多,进货时就应偏向于进哪种尺码的鞋子,从而获得更多的利润.众数表示的是某组数据中出现次数最多的数,因此,商家应该关注的是鞋子尺码的众数.3.B 【解析】平均数表示11个同学的平均成绩;中位数表示有一半的人比中位数高,一半的人比中位数低;众数表示一个数据出现次数最多;方差表示数据的波动;11个同学选6个人,故要知道自己能否进入复赛,还需要知道所有参赛学生成绩的中位数. 4.B 【解析】根据折线统计图可得:90分的人数有5个,人数最多,故众数是90. 5.B 【解析】这5个数的平均数为:9.0+9.2+9.2+9.1+9.55=9.2,由于9.2出现的次数最多,两次,所以9.2是这组数的众数.6.B 【解析】众数是出现次数最多的那个数,11出现的次数最多,出现了10次;一共有22个数,中位数是将这组数据从小到大或从大到小排列,第11个数和第12个数的平均数,第11个数和第12个数都是11,故中位数为11.7.C 【解析】这组数据中4出现的次数最多,所以众数为4,因为共有5个人,所以将这组数据从小到大或从大到小排列,第3个人的劳动时间为中位数,故中位数为4,平均数为3+3.5+4×2+4.55=3.8故C 正确.8.9.20 【解析】这组数据中出现次数最多的数是9.20,∴众数是9.20.9.18 【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,∵把这组数据从小到大排序后为16,16,18,18,18,18,19,19,21,21,其中第5个和第6个数据都为18,∴这组数据的中位数为18.10.90 【解析】设孔明的物理得分为x 分,依题意得:95×0.6+0.4x =93,解得x =90. 11.D 【解析】判断一组数据是否稳定,关键是确定这组数据的方差.12.B 【解析】方差表示一组数据的离散程度,方差越小,数据的稳定性越好.∵2S 乙较小,∴数据乙的稳定性比甲好.13.C 【解析】A .x 甲=8+7+9+8+85=8,x 乙=7+9+6+9+95=8,此选项正确;B .甲中数据8出现的次数最多,故其众数为8,乙中数据9出现的次数最多,故其众数为9,此选项正确;C .根据中位数定义,把甲中全体数据由小到大排列,其中位于最中间的数为8,则甲的中位数为8,把乙中全体数据由小到大排列,其中位于最中间的数为9,则甲的中位数为9,此选项错误;D .2S 甲=15[(8-8)2+(7-8)2+(9-8)2+(8-8)2+(8-8)2]=0.4,2S 乙=15[(7-8)2+(9-8)2+(6-8)2+(9-8)2+(9-8)2]=1.6,此选项正确. 14.乙 【解析】因为甲、乙两人的平均环数相同,所以应比较方差,而方差反映了一组数据的波动大小,方差越大,波动越大,方差越小,波动越小.则应选派方差较小的一位.由2S 甲>2S 乙,则成绩较稳定的是乙. 15.甲 【解析】从图中可以看出甲的射击成绩有4个是8环,3个9环,3个7环,而乙的射击成绩有4个8环,2个9环,1个10环,1个7环,2个6环,相对于甲的成绩乙的成绩波动较大即方差较大.16.C 【解析】由扇形统计图可知,所占百分比最多的小组是球类,所以人数最多的兴趣小组是球类.17.2040 【解析】(2×5+3×30+4×20+5×15)÷70×560=2040(本).18.108° 【解析】参加中考的人数为60÷20%=300(人),A 等级所占的百分比为90300×100%=30%,所以表示A 等级的扇形的圆心角的大小为360°×30%=108°.19.解:(1)80;0.20;………………………………………………………(4分)【解法提示】∵总人数为200,∴频数m =总人数×频率=200×0.40=80,∵0.30+0.40+n +0.10=1,∴n =0.20.(2)补全频数分布直方图如解图;第19题解图…………………………………………………………………………………(6分)(3)∵抽取的200名学生的成绩中80分以上的有40+20=60(人),总人数为4000人,∴进入决赛的有4000×60200=1200(人).………………………………(8分) 20.解:(1)990;……………………………………………………………(2分)【解法提示】由折线统计图可知2015年参加人数为1600人,2011年参加人数为610人,则2015年比2011年增加的人数为1600-610=990(人).(2)由扇形统计图可知2015年参加跑步项目的人数占55%,则2015年参加跑步项目的人数为1600×55%=880(人);…………………………………(5分)(3)由题意知,2016年参与人数为1600×(1+15%)=1840(人),由扇形统计图可知2015年参加太极拳项目的人数占(1-5%-55%-30%)=10%,则2016年参加太极拳的人数为1840×10%=184(人).……………………………(8分)21.解:(1)200;……………………………………………………………(2分)【解法提示】此次被抽查的学生课外阅读是A 种情况的人数是20人,其所占百分比是10%,所以此次调查的学生人数为20÷10%=200(人).(2)60,80;………………………………………………………………(4分)【解法提示】由(1)知此次调查的学生人数为200人,B 种情况所占的百分比是30%;则B 种情况的人数x =200×30%=60(人),再根据分布表知A 种情况的人数是20人,D 种情况的人数是40人,∴C 种情况的人数y =200-20-60-40=80(人).(3)144;…………………………………………………………………(6分)【解法提示】C 种情况所对应的圆心角为360°×80200=144°. (4)800×40200=160(人).………………………………………………(7分) 答:估计九年级学生一年阅读课外书20本以上的学生人数为160人.(8分)22.解:(1)20%;(2分)【解法提示】∵选择代号B 的学生所在扇形圆心角度数为60°,∴选择代号B 的学生占抽样总数的60°360°=16,∵选择代号B 的学生共30人,∴抽样总数为3016=180人,∵选择代号A 的学生人数为36人,∴选择代号A 的学生占抽样总数的百分比为36180×100%=20%; (2)补全统计图如解图所示;第22题解图…………………………………………………………………………………(4分)【解法提示】选择代号C 的学生人数有180-36-30-44=70(人).(3)∵代号C 的曲目选择人数为70人,选择人数最多,∴代号C 的曲目是必唱曲目.全校1530人中选择必唱曲目C 的人数约为,1530×70180=595(人), 答:全校1530人中选择必唱曲目的人数约595人.…………………(6分)23.解:(1)20,8,55;……………………………………………………(3分)【解法提示】由扇形统计图可知等级为优的占所调查的80天中的25%,即m =80×25%=20(天),那么n =80-20-44-4-2-2=8(天);根据统计表或条形统计图可知等级为良的天气有44天,所以占80天中的4480×100%=55%. (2)补全条形统计图如解图所示:第23题解图…………………………………………………………………………………(4分)根据已知和第(1)问得出的结论可知全年365天中,空气质量等级为“优”和“良”的天数共有365×(25%+55%)=292(天);………………………(6分)(3)提倡选择电子爆竹、喜庆音乐、鲜花等安全、低碳的欢庆方式喜迎新春佳节.(合理即可)……………………………………………………………(8分)。
2018届中考数学横向复习 第八单元 统计与概率 第28讲 统计考点测试题
——————————教育资源共享步入知识海洋————————第八单元统计与概率第28讲统计1.(2017·重庆A卷)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查2.(2017·苏州)有一组数据:2,5,5,6,7,这组数据的平均数为(C)A.3 B.4 C.5 D.63.(2017·曲靖罗平县三模)下列特征量不能反映一组数据集中趋势的是(C)A.众数B.中位数C.方差D.平均数4.某校为了了解九年级500名学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制了如图所示的频数分布直方图,请你根据图示计算,估计该校1分钟仰卧起坐次数在25~30之间的学生人数为(D)A.12B.50C.165D.2005.(2015·云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,546.(2017·昆明官渡区二模)在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是(A)A.18,18,1 B.18,17.5,3C.18,18,3 D.18,17.5,17.(2015·曲靖改编)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的金额整理制成如图所示的直方图,根据图中信息,下列结论错误的是(A)A.样本中位数是200元B.样本容量是20C.该企业员工捐款的众数是100元D .该企业员工最大捐款金额是500元8.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为48.9.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是s 2甲=1.2,s 2乙=0.5,则在本次测试中,乙同学的成绩更稳定.(填“甲”或“乙”)10.今年5月份有关部门对计划去上海迪斯尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6_000.11.(2014·云南)为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人? (2)请补全条形统计图;(3)这个学校九年级共有学生1 200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?解:(1)20÷50%=40(人).答:这次随机抽取的学生共有40人. (2)B 等级人数:40-5-20-4=11(人). 补全条形统计图如图.(3)1 200×5+1140=480(人).答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.12.(2017·江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是5.13.(2017·昆明官渡区一模)随着科技的发展,电动汽车的性能得到显著提高,某市对市场上电动汽车的性能进行随机抽样调查,现随机抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据绘制成如下频数分布直方表和条形统计图.根据以上信息回答下列问题:(1)填空:a=0.3,b=24;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2 000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.解:(2)由(1)知,D组的频数为24台,补全条形图如图.(3)(0.20+0.10)×2 000=600(台).14.(2016·云南模拟)学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1 800名,那么请你估计最喜爱科普类书籍的学生人数.解:(1)90÷30%=300(名).答:一共调查了300名学生.(2)艺术的人数:300×20%=60(名),其他的人数:300×10%=30(名).补全折线图如图.(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)1 800×80300=480(名).答:1 800名学生中估计最喜爱科普类书籍的学生人数为480名.15.(2017·温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是4.8或5或5.2.提示:a可以为3或4或5.。
云南省2018届中考数学横向复习第八单元统计与概率第28讲统计考点测试题
第八单元统计与概率第28讲统计1.(2017·重庆A卷)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查2.(2017·苏州)有一组数据:2,5,5,6,7,这组数据的平均数为(C)A.3 B.4 C.5 D.63.(2017·曲靖罗平县三模)下列特征量不能反映一组数据集中趋势的是(C)A.众数B.中位数C.方差D.平均数4.某校为了了解九年级500名学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制了如图所示的频数分布直方图,请你根据图示计算,估计该校1分钟仰卧起坐次数在25~30之间的学生人数为(D)A.12B.50C.165D.2005.(2015·云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:A.42,43.5 B.42,42 C.31,42 D.36,546.(2017·昆明官渡区二模)在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是(A)A.18,18,1 B.18,17.5,3C.18,18,3 D.18,17.5,17.(2015·曲靖改编)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的金额整理制成如图所示的直方图,根据图中信息,下列结论错误的是(A)A.样本中位数是200元B.样本容量是20C.该企业员工捐款的众数是100元D.该企业员工最大捐款金额是500元8.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为48.9.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是s 2甲=1.2,s 2乙=0.5,则在本次测试中,乙同学的成绩更稳定.(填“甲”或“乙”)10.今年5月份有关部门对计划去上海迪斯尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6_000.11.(2014·云南)为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人? (2)请补全条形统计图;(3)这个学校九年级共有学生1 200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?解:(1)20÷50%=40(人).答:这次随机抽取的学生共有40人. (2)B 等级人数:40-5-20-4=11(人). 补全条形统计图如图.(3)1 200×5+1140=480(人).答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.12.(2017·江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是5.13.(2017·昆明官渡区一模)随着科技的发展,电动汽车的性能得到显著提高,某市对市场上电动汽车的性能进行随机抽样调查,现随机抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据绘制成如下频数分布直方表和条形统计图.根据以上信息回答下列问题:(1)填空:a=0.3,b=24;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2 000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.解:(2)由(1)知,D组的频数为24台,补全条形图如图.(3)(0.20+0.10)×2 000=600(台).14.(2016·云南模拟)学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1 800名,那么请你估计最喜爱科普类书籍的学生人数.解:(1)90÷30%=300(名).答:一共调查了300名学生.(2)艺术的人数:300×20%=60(名),其他的人数:300×10%=30(名).补全折线图如图.(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)1 800×80300=480(名).答:1 800名学生中估计最喜爱科普类书籍的学生人数为480名.15.(2017·温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是4.8或5或5.2.提示:a可以为3或4或5.。
人教版中考数学第一轮复习第八章 统计与概率
第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
毕节专版中考数学复习第8章统计与概率第28课时数据的分析精练课件
第28课时数据的分析(时间:45分钟)1.(2018・宇波中考)若一组数据4,1,7,工,5的平 均数为4,则这组数据的中位数为 (C )基础训练FC 、A.7B. 5C. 4D. 32.(2018・资阳中考)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3 : 5 : 2.小王经过考核后所得的分数依次为90,88,83分,那么小王的最后得分是(C ) A.87 B. 87. 5 C. 87. 6 D. 883.(2018 •扬卅中考)下列说法正确的是(B )A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7 °C,最低气温是一2 °C,则该日气温的极差是5 °C4.某校有35名同学参加我市的创卫知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(B ) A.众数B中位数 C.平均数 D.方差5. (2018 •宇夏中考)小壳家1月至10月的用电 量统计如图所示,这组数据的众数和中位数分 别是(C )f 用电量(度)OO0 5 0 5 0 5A. 30 和20B. 30 和25C. 30 和22. 5D. 30 和17. 56.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时数的说法正确的是(B )A.众数是8 B中位数是3C.平均数是3D.方差是0.347.(2018・泰州中考)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这四个统计量中,该鞋厂最关注的是众数■8.(2018・北部请中考)已知一组数据6,力,3,3,5,1的众数是3和5,则这组数据的中位数是丄9.(2018・株洲中考)睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8 h,& 6 h, & 8 h,则这三位同学该天的平均睡眠时间是8. 4 h .10. (2018 •呼和浩特中考)下表是随机抽取的某公司部分员工的月收入资料.月收入45 00018 00010 000 5 500 5 000 3 400 3 000 2 000/元人数111361112(1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.解:(1)样本的平均数为(45 000 + 18 000 + 10 000 + 5 500X3 + 5 000X6 + 3 400 + 3 000X11 + 2 000X 2)1(1 + 1 + 1 + 3 + 6 + 1 + 11 + 2 ) = 6 150 ;这组数据共有26 T,从大到小排序第13,14 T数据分别是3 400,3 000,(2)甲:宙样本平均数6 150元,估计公司全体员工月平均收入大约为6 150元;乙:由样本中位数为3 200元,估计公司全体员工约有一半的月收入超过3 200元,约有一半的月收入不足3 200元;(3)乙的推断比较科学合理.宙题意知样本中的26名员工,只有3名员工的收入在6 150元以上,原因是该样本数据极端值较大,所以平均数不能真实地反映实际情况11.(2018・咸宇中考)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016 年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分岀行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分岀行学生使用共享单车次数的中位数是_________ ,众数是_________ ,该中位数的意义是_______________________ ;(2)这天部分岀行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1 500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?解:(1)调查总人数为11 + 15 + 23 + 28+18-- 5 = 100(人),・•・中位数为第50,51 T数据的平均数,即中位数为字=3,众数为3.中位数的意义是这天部分出行学生约有一半使用共享单车的次数在3次以上(含3次). 故应填3,部分出行学生约有一半使用共享单车的次数在3次以上(含3次);0X11+1X15+2X23+3X28+4X18+5X5100~2.答:这天部分出行学生平均每人使用共享单车约2次;(3)1 500X?8[篇 + 5 = 765.答:估计这天使用共享单车次数在3次以匕(含3次)的学生有765人.能力提升12. (2018・张家界中考)若一组数据如,。
中考数学总复习 第八单元 统计与概率 第28讲 统计试题(2021学年)
广西贵港市2017届中考数学总复习第八单元统计与概率第28讲统计试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广西贵港市2017届中考数学总复习第八单元统计与概率第28讲统计试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广西贵港市2017届中考数学总复习第八单元统计与概率第28讲统计试题的全部内容。
第八单元统计与概率第28讲统计1.(2014·南宁)数据1、2、4、0、5、3、5的中位数和众数分别是( D )A.3和2B.3和3C.0和5D.3和52.(2014·贵港)某市5月份连续五天的日最高气温(单位:℃)分别为:33、30、30、32、35。
则这组数据的中位数和平均数分别是( D )A.32、33B.30、32C.30、31D.32、323.(2015·崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是x甲=85,x乙=85,x丙=85,x丁=85.方差是s错误!=3.8,s错误!=2。
3,s错误!=6.2,s错误!=5.2,则成绩最稳定的是( B )A.甲B.乙 C.丙D.丁4.(2016·滨州)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( D )A.15.5、15。
5 B.15。
5、15 C.15、15.5 D.15、155.(2016·雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如图所示扇形统计图,则在被调查的学生中,喜欢跑步和打羽毛球的学生人数分别是( B)A.30、40B.45、60 C.30、60 D.45、406.(2016·柳州模拟)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是( C )A.甲射击成绩比乙稳定B.乙射击成绩的波动比甲较大C.甲、乙射击成绩的众数相同D.甲、乙射中的总环数相同7.(2016·永州)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是( C )A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小8.(2016·深圳)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是8.9.(2015·河池)某学校计划开设A、B、C、D四门本校课程供学生选修,规定每个学生必须并且只能选修其中一门.为了了解学生的选修意向,现随机抽取部分学生进行调查,并将调查结果绘制成如图所示的条形统计图.已知该校学生的人数2 000人,由此估计选修A课程的学生有800人.10.(2014·柳州)一位射击运动员在10次射击训练中,命中靶的环数如图所示:请你根据图表,完成下列问题:(1)补充完成下面成绩表单的填写:射击序次12345678910成绩/环8978107910710(2)求该运动员这10次射击训练的平均成绩.解:平均成绩为:8+9+7+8+10+7+9+10+7+1010=8.5(环).11.(2016·桂林)每年5月的第二周为我国城市节约用水宣传周.某社区为了做好今年居民节约用水的宣传,从本社区6 000户家庭中随机抽取200户,调查他们家庭今年三月份的用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:用户三月份用水量频数分布表用水量h(吨)频数频率h≤3003<h≤6200。
全国2018年中考数学真题分类汇编 第28讲 概率
(分类)第28讲 概率知识点1 事件的分类与概率的意义知识点2 概率公式 知识点3 用频率估计概率 知识点4 用列表法或树状图求概率知识点1 事件的分类与概率的意义(2018南充)答案:A 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1(2018衡阳)答案:A5.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的(2018长沙)答案:C8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a0 ”是不可能事件(2018宿迁)答案:116. 小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。
若由小明先取,且小明获胜是必然事件,,则小明第一次取走火柴棒的根数是 ▲ .(2018达州)5.下列说法正确的是( )A .“打开电视机,正在播放《达州新闻》”是必然事件B .天气预报“明天降水概率%50,是指明天有一半的时间会下雨”C .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是20.3S =甲,20.4S =乙,则甲的成绩更稳定D .数据6,6,7,7,8的中位数与众数均为7(2018南通)答案:C5.下列说法中,正确的是( ) A.—个游戏中奖的概率是110,则做10次这样的游戏一定会中奖 B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C. 一组数据8,8,7,10,6,8,9的众数是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小(2018泰州)答案:C4.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球(2018淄博)2. 下列语句描述的事件中,是随机事件的为( )A .水能载舟,亦能覆舟B .只手遮天,偷天换日C .瓜熟蒂落,水到渠成D .心想事成,万事如意(2018德阳)答案:D(2018孝感)答案:D 5.下列说法正确的是( )A .了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B .甲乙两人跳绳各10次,其成绩的平均数相等,22S S 甲乙,则甲的成绩比乙稳定C .三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是13D .“任意画一个三角形,其内角和是360”这一事件是不可能事件(2018襄阳)答案:D8. 下列语句所描述的事件是随机事件的是( )A.任意画一个四边形,其内角和为180°B.经过任意两点画一条直线C.任意画一个菱形,是中心对称图形D.过平面内任意三点画一个圆(2018福建)答案:D(2018怀化)答案:A(2018齐齐哈尔)答案:A(2018沈阳)(2018烟台)答案:A(2018昆明)答案:D(2018包头)(2018广安)答案:D(2018徐州)知识点2 概率公式(2018·绵阳)答案:(2018成都)答案:612.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 .(2018内江)答案:2514. 有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是 .(2018金华丽水)答案:B6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是( ▲ ) A .61 B .41 C.31 D .127(2018柳州)答案:B(2018东营)答案:54 13. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 .(2018聊城)答案:B9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )红 黄蓝A .12 B .13 C .23 D .16(2018宁波)答案:C4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( ) A .45 B .35 C .25 D .15(2018岳阳)13.在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 .(2016长沙)答案:1216、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有 1 到 6 的点数,掷得面朝上的点数为偶数的概率 为 .(2018连云港)答案:D5.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是 A .23B .16C .13D .12(2018扬州)答案:4311.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是 .(2018天津)答案:61115.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .(2018杭州)答案:B7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
中考数学总复习 第八单元 统计与概率 第28课时 概率数学课件
第三页,共二十九页。
课前双基巩固
考点二 用频率(pínlǜ)估计概率
利用频率估计概率:一般地,在大量重复试验下,随机事件 A 发生的频率 (这里 n 是总试验次数,它必须相当大,m 是
在 n 次试验中事件 A 发生的次数)会稳定到某个常数 p 附近,于是,我们用 p 这个常数表示事件 A 发生的概率,即
张卡片,记该卡片上的数字为 y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果;
(2)求取出的两张卡片上的数字之和为偶数的概率 P.
第十八页,共二十九页。
高频考向探究
解:(1)(x,y)所有可能出现的结果如表格所示:
第
二
次
第
1
2
3
(1,2)
(1,3)
一
次
任意摸出 1 个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在 20%左右,则 a 的值大
约为( B )
A.12
B.15
C.18
D.21
4.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球 5 个,黄球 4 个,其余为白球.从袋子
1
中随机摸出一个球,“摸出黄球”的概率为 ,则袋中白球的个数为( B )
第
一
张
第
A
B
C
D
BA
CA
DA
CB
DB
二
张
A
B
AB
C
AC
BC
D
AD
BD
共有 12 种情况.
第二十四页,共二十九页。
DC
CD
高频考向探究
2018届甘肃中考数学《第八章统计与概率》总复习练习题(含答案)
第八章统计与概率第26讲统计(时间70分钟满分85分)A卷一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·重庆A)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.为了解某市七年级20000名学生的身高,从中抽取了500名学生,对其身高进行统计分析.以下说法中正确的是(D)A.20000名学生是总体B.每名学生是个体C.500名学生是抽取的一个样本D.每名学生的身高是个体3.(2017·苏州)有一组数据:2,5,5,6,7,这组数据的平均数为(导学号35694223)(C) A.3B.4C.5D.64.则这组数据的中位数与众数分别是(A)A.27,28 B.27.5,28 C.28,27 D.26.5,275.(2017·安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(导学号35694224)(A)A.280 B.240 C.300 D.2606.(2017·潍坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示,欲选一名运动员参赛,从平均数与方差两个因素分析,应选(C)A.甲B.乙C.丙D.丁7.下列说法正确的是(A)A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是s甲2=3.2,s乙2=2.9,则甲组数据更稳定二、填空题(本大题共7小题,每小题3分,共21分)8.(2017·上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是__80__万元.(导学号35694225)9.(2017·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有__680__人.10.(2017·日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183191169190177则在该时间段中,通过这个路口的汽车数量的平均数是__182__.11.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为__48人__.12.(2017·苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是__8__环.13.(2017·沈阳)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s甲2=0.53,s乙2=0.51,s丙2=0.43,则三人中成绩最稳定的是__丙__.(填“甲”或“乙”或“丙”)(导学号35694226)14.(2017·南京)如图是某市2013-2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是__2016__年,私人汽车拥有量年增长率最大的是__2015__年.三、解答题(本大题共2小题,共18分)15.(9分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类)A:共享单车;B:步行;C:公交车;D:的士;E:私家车,并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有__800__人,其中选择B类的人数有__240__人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.解:(2)补全条形统计图略;(3)12×(25%+30%+25%)=9.6(万人).答:估计该市“绿色出行”方式的人数为9.6万人.16.(8分)(2017·齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a =__70____0.40__(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第__3__组;(4)请估计该校七年级学生日阅读量不足1小时的人数. 解:(2)补全条形统计图略; (4)1200×(0.05+0.10)=1200×0.15=180(人).答:估计该校七年级学生日阅读量不足1小时的人数为180人.B 卷1.(4分)(2017·嘉兴)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a -2,b -2,c -2的平均数和方差分别是(B )A .3,2B .3,4C .5,2D .5,4 2.(4分)(2016·南京)若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为(导学号 35694227)(C )A .1B .6C .1或6D .5或6 3.(3分)(2017·咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)__1.4,1.35__. 4.(8分)(2017·沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m =__50__,n =__30__;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是__72__度;(3)请根据以上信息补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 解:(3)补图略;(4)由题意可得,600×1550=180(名).答:该校600名学生中约有180名学生最喜欢科普类图书.第27讲 概 率(时间70分钟 满分75分)一、选择题(本大题共7小题 ,每小题4分,共28分) 1.(2017·沈阳)下列事件中,是必然事件的是(A ) A .将油滴入水中,油会浮在水面上 B .车辆随机到达一个路口,遇到红灯 C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,一定正面向上 2.(2017·巴中)下列说法正确的是(C )A .“打开电视机,正在播放体育节目”是必然事件B .了解夏季冷饮市场上冰淇淋的质量情况适合用普查C .抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12D .甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是s 甲2=0.3,s 乙2=0.5,则乙的射击成绩稳定3.(2017·岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是(C )A.15B.25C.35D.454.(2017·赤峰)小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为(B )A.12B.14C.13D.185.(2017·南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为(C )A.15B.14C.13D.126.(2017·海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为(D )A.12B.14C.18D.1167.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是(导学号 35694228)(D )A.12B.13C.14D.16三、填空题(本大题共5小题 ,每小题3分,共15分) 8.(2017·泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4”,这个事件是__不可能事件__.(填“必然事件”“不可能事件”或“随机事件”)9.(2017·徐州)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为__23__.10.(2017·福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是__红球__.(导学号 35694229)11.(2017·营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是__15__个.12.(2016·重庆B )点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是__15__.(导学号 35694230)三、解答题(本大题共4小题,共32分) 13.(8分)(2017·毕节)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=24=12;(2)4种, ∴P (小王胜)=416=14,P (小张胜)=416=14,∴游戏公平.14.(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-2,乙袋中有三个完全相同的小球,分别标有数字-1,0和2,小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ,再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).(1)请用列表或画树状图的方法列出点P 所有可能的坐标; (2)求点P 在一次函数y =-x 图象上的概率. 解:(1)画树状图如解图所示:∴点P 所有可能的坐标为:(1,-1),(1,0),(1,2),(-2,-1),(-2,0),(-2,2);(2)∵只有(1,-1),(-2,2)这两点在一次函数y =-x 图象上,∴P (点P 在一次函数y =-x 的图象上)=26=13.15.(8分)(2016·曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y =3x图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率. 解:(1)整点坐标有A 1(-3,-1),A 2(-1,-3),A 3(3,1),A 4(1,3);(2)由表得共12∴P (关于原点对称)=412=13.16.(8分)(2017·西宁)西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E .社会实践;F .其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为__1000__,请补全条形统计图; (2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人? (3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.(导学号 35694231) 解:(1)补图略;(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人.答:全市学生中选择体育锻炼的人数约有16000人;(3)设两名女生分别用A 1,A 2,一名男生用B 表示,画树状图如解图,共有6种等可能的情况,恰好1男1女的有4种可能, 所以恰好选到1男1女的概率是46=23.第八章 统计与概率自我测试(时间80分钟 满分90分)一、选择题(本大题共7小题 ,每小题4分,共28分) 1.(2017·长沙)下列说法正确的是(D )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,-2的中位数是4D .“367人中有2人同月同日出生”为必然事件 2.(2017·阿坝州)对“某市明天下雨的概率是75%”这句话,理解正确的是(D ) A .某市明天将有75%的时间下雨 B .某市明天将有75%的地区下雨 C .某市明天一定下雨D .某市明天下雨的可能性较大 3.(2017·宜昌)九一(1)班在参加学校4×100 m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为(D )A .1 B.12 C.13 D.144.(2017·温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有(D )A .75人B .100人C .125人D .200人 5.(2017·南宁)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是(C )A .8.8分,8.8分B .9.5分,8.9分C .8.8分,8.9分D .9.5分,9.0分6.(2016·锦州)如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是(D )A.14B.34C.12D.387.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是(A )A .12B .9C .4D .38.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是(B )A .0.2B .0.17C .0.33D .0.14 9.(2017·烟台)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是(C )A .两地气温的平均数相同B .甲地气温的中位数是6℃C .乙地气温的众数是4℃D .乙地气温相对比较稳定 二、填空题(本大题共5小题 ,每小题3分,共15分)10.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有__35__.11.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50__4__12.(2017·随州)“抛掷一枚质地均匀的硬币,正面向上”是__随机__事件(从“必然”、“随机”、“不可能”中选一个).(导学号 35694232) 13.(2017·江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是__5__.14.(2017·杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是__49__.三、解答题(本大题共5小题,共47分) 15.(8分)(2017·哈尔滨)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名. 解:(1)10÷20%=50(名).答:本次调查共抽取了50名学生; (2)补图略;(3)1350×2050=540(名).答:估计最喜欢太阳岛风景区的学生有540名.16.(9分)现有分别标有数字1,2,3,4,5,6的6个质地和大小完全相同的小球. (1)若6个小球都装在一个不透明的口袋中,从中随机摸出一个,其标号为偶数的概率是多少?(2)若将标有数字1,2,3的小球装在不透明的甲口袋中,标有数字4,5,6的小球装在不透明的乙口袋中,现从甲、乙两个口袋中各随机摸出1个球,用列表或画树状图的方法表示所有可能出现的结果,并求摸出的两个小球上数字之和为6的概率.(导学号 35694233)解:(1)∵6个数中有3个偶数,∴选中标号为偶数的概率是12;(2)∴P (两个球上数字之和为6)=29.17.(9分)(2017·岳阳)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a =__25__,b =__0.10__;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?解:(2)补图略;(3)根据题意得:2000×0.10=200(人).答:该校2000名学生中评为“阅读之星”的约有200人. 18.(9分)(2016·黔南州)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14;(2)画树状图如解图,共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1, ∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.19.(12分)(2017·辽阳)某校以“我最喜爱的体育项目”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项),根据调查数据绘制了如下不完整的统计表和扇形统计图:(1)统计表中的m =__30__,n =__0.20__;(2)在扇形统计图中,“篮球”所在扇形的圆心角为__108__度;(3)该学校共有2400名学生,据此估计有多少名学生最喜爱乒乓球?(4)将2名最喜爱篮球的学生和2名最喜爱羽毛球的学生编为一组,从中随机抽取两人,请用列表或画树状图的方法求出所抽取的两人都选择了最喜爱篮球的概率.(导学号 35694234)解:(3)根据题意得2400×0.20=480(人). 答:估计有480名学生最喜爱乒乓球;(4)将喜爱篮球的两名学生标号为A 1,A 2,将喜爱羽毛球的两名同学标号为B 1,B 2,根据题意画树状图如解图,由图可知总共有12种结果,每种结果出现的可能性相同,其中两人都选择篮球的结果有2种,所以抽取的两人都选择了最喜爱篮球的概率是212=16.。
2018年中考数学总复习第八单元统计与概率专题28图表信息问题试题
专题28图表信息问题
2016~201
8详解详析第35页
1.(2017浙江温州一模,2,3分)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则书法兴趣小组的频率是
(C)
A.0.1
B.0.15
C.0.2
D.0.3
2.(2017湖北宜昌模拟,10,3分)
16名运动员的身高如表:
则该校16名运动员身高的平均数和中位数分别是(B)
A.173 cm,173 cm
B.174 cm,174 cm
C.173 cm,174 cm
D.174 cm,175 cm
3.(2018中考预测)如图,一次函数y=ax+b (a ≠0)与二次函数y=ax 2+bx (a ≠0)的图象大致是(B)
〚导学号92034124〛
4.(2017湖南衡阳模拟,13,5分)在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有5个. 〚导学号92034125〛。
2023届中考一轮复习 第八单元 统计与概率 第28讲 概率(含答案)
2023届中考一轮复习第八单元统计与概率第28讲概率一、选择题(共9小题)1. 下列语句描述的事件中,是随机事件的为( )A. 水能载舟,亦能覆舟B. 只手遮天,偷天换日C. 瓜熟蒂落,水到渠成D. 心想事成,万事如意2. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( )A. 49B. 13C. 29D. 193. 现有4张卡片,其中3张卡片正面上的字母是“A”,1张卡片正面上的字母是“B”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面字母相同的概率是( )A. 916B. 34C. 38D. 124. 刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A. 3√34πB. 3√32πC. 12πD. 14π5. 下列事件中,属于不可能事件的是( )A. 某个数的绝对值大于0B. 某个数的相反数等于它本身C. 任意一个五边形的外角和等于540∘D. 长分别为3,4,6的三条线段能围成一个三角形6. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A. 小亮明天的进球率为10%B. 小亮明天每射球10次必进球1次C. 小亮明天有可能进球D. 小亮明天肯定进球7. 在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为( )A. 310B. 110C. 19D. 188. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A. 23B. 16C. 13D. 129. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A. 47B. 37C. 27D. 17二、填空题(共6小题)10. 在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为710,则袋子内共有乒乓球的个数为.11. 某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.12. 在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为.13. 在−4,−2,1,2四个数中,随机取两个数分別作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.14. 如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.15. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.三、解答题(共4小题)16. 经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.17. 某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘).(1)若顾客选择方式一,则享受9折优惠的概率为.(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.18. 为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如图所示的两幅不完整的统计图.请你根据统计图解答下列问题.(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.19. 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如图不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.答案1. D2. A3. D4. B5. C【解析】A.某个数的绝对值大于0,是随机事件,故此选项错误;B.某个数的相反数等于它本身,是随机事件,故此选项错误;C.任意一个五边形的外角和等于540∘,是不可能事件,故此选项正确;D.长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.6. C7. B8. D9. A10. 1011. 2512. 2313. 1614. 11315. 10016. 画树状图:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,.所以P(两人之中至少有一人直行)=5917. (1)14(2)画树状图:由树状图可知共有12种等可能结果,两个指针指向同一个字母的结果只有2种:(A,A),(B,B),∴P(顾客享受8折优惠)=212=16.18. (1)120【解析】这次参与调查的村民人数为:24÷20%=120(人).(2)喜欢广场舞的人数为:120−24−15−30−9=42(人),补全的条形统计图如图1所示:(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:30120×360∘=90∘.(4)画树状图如图2所示:一共有12种等可能的情况出现,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:16.19. (1)100;35【解析】∵被调查的总人数m=10÷10%=100(人),∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35.(2)网购人数为100×15%=15(人),微信对应的百分比为40100×100%=40%,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人).(4)列表如表:共有12种等可能结果,这两位同学最认可的新生事物不一样的有10种,∴这两位同学最认可的新生事物不一样的概率为1012=56.。
中考一轮复习--第28讲 概率
机,任选一个频道,屏幕上正在播放广告是随机事件;D.抛掷一枚硬
币两次,第一次正面向上,第二次反面向上是随机事件.
方法总结关键是理解必然事件为一定会发生的事件.解决此类问
题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、
解决问题,提高自身的数学素养.
考法1
考法2
考法3
考法4
对应练1(2018·山东淄博)下列语句描述的事件中,是随机事件的
为( D )
A.水能载舟,亦能覆舟
B.只手遮天,偷天换日
C.瓜熟蒂落,水到渠成
D.心想事成,万事如意
对应练2(2019·内蒙古赤峰)不透明袋子中有除颜色外完全相同
的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事
A
A
B
C
D
(B,A)
(C,A)
(D,A)
(C,B)
(D,B)
B
(A,B)
C
(A,C)
(B,C)
D
(A,D)
(B,D)
(D,C)
(C,D)
由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是
科技社团D的结果有6种,所以小明两次抽取的卡片中有一张是科
技社团D的概率为 6 = 1.
12
2
考法1
考法2
考点梳理
自主测试
考点三 利用频率估计概率
在大量重复试验中,事件A出现的频率稳定在一个常数
m
们可以估计事件A发生的概率约为 n .
m
n
附近,我
考点四 概率的应用
对于游戏规则是否公平问题,需要计算游戏双方获胜的概率,通
2020年中考数学复习 第8章 统计与概率 第28课时 数据的分析(精讲)试题
第28课时数据的分析毕节中考考情及预测近五年中考考情2019年中考预测年份考查点题型题号分值中位数和众数是必考内容,预计2019年将继续考查,平均数和方差也有可能考查,以选择题的形式呈现.2018 中位数与众数选择题 6 32017平均数、众数、中位数与极差选择题 5 3方差选择题10 32016 众数选择题 5 3中位数解答题24(4) 22015 中位数与众数选择题7 32014 方差选择题 5 3中位数与众数选择题7 3毕节中考真题试做平均数、中位数和众数1.(2015·毕节中考)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是( C)A.10,12B.12,11C.11,12D.12,122.(2017·毕节中考)对一组数据:-2,1,2,1,下列说法不正确的是( A)A.平均数是1B.众数是1C.中位数是1D.极差是4极差与方差3.(2017·毕节中考)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手甲乙丙丁方差0.023 0.018 0.020 0.021则这10次跳绳中,这四个人发挥最稳定的是( B)A.甲B.乙C.丙D.丁毕节中考考点梳理平均数、中位数、众数数据的代表定义特性平均数(1)算术平均数:一般地,对于n 个数x 1,x 2,…,x n ,我们把__1n(x 1+x 2+…+x n )__叫做这n 个数的平均数,简称平均数,记为x. (2)加权平均数:实际问题中,一组数据x 1,x 2,…,x n 里的各个数据的“重要程度”分别用w 1,w 2,…,w n 表示,这组数据的平均数x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n称为这n 个数的加权平均数.大小与每个数据有关,容易受极端值的影响.续表数据的 代表 定义特性中位数一般地,n 个数据按大小顺序排列,处于最中间位置一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 具有唯一性,受极端值影响小,不能充分利用所有数据的信息.众数 一组数据中出现次数最多的那个数据叫做这组数据的众数.不具有唯一性,各个数据的重复次数大致相等时没有特别意义.方差1.极差与方差极差是一组数据中最大数据与最小数据的差. 方差是各个数据与平均数差的平方的平均数. s 2=__1n [(x 1-x)2+(x 2-x)2+…+(x n -x)2] .其中x 是x 1,x 2,…,x n 的平均数,s 2是方差. 2.极差与方差的意义一般而言,一组数据的极差、方差越小,这组数据就越稳定.1.(2018·毕节中考)某同学将自己7次体育测试成绩(单位:分)绘制成如下折线统计图,则该同学7次测试成绩的众数和中位数分别是( A )A .50和48B .50和47C .48和48D .48和432.(2018·成都中考)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( B )A.极差是8 ℃B.众数是28 ℃C.中位数是24 ℃D.平均数是26 ℃3.(2018·邵阳中考)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐( C)A.李飞或刘亮B.李飞C.刘亮D.无法确定中考典题精讲精练平均数、中位数和众数例1(2014·毕节中考)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是( C)A.23,24B.24,22C.24,24D.22,24【解析】众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的一个数据(或最中间两个数据的平均数).这组数据中,24出现了2次,出现的次数最多;把这组数据从小到大排列19,20,22,24,24,26,27,最中间的数是24.极差和方差例2某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分请根据表中数据解答下列问题:(1)把表格补充完整;(2)在这五次测试中,成绩比较稳定的同学是________;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是________,________;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.【解析】(1)根据平均数和方差的公式计算可得;(2)根据方差越小,成绩越稳定;根据优秀率=优秀次数总的次数×100%计算可得优秀率;(3)可从平均数、优秀率、稳定性方面综合考虑. 【答案】解:(1)x 乙=70+90+100+80+805=84,s 2乙=15[(70-84)2+(90-84)2+(100-84)2+(80-84)2+(80-84)2]=104.故应填:84,104; (2)∵甲的方差>乙的方差, ∴成绩比较稳定的同学是乙. 甲的优秀率=25×100%=40%,乙的优秀率=45×100%=80%.故应填:乙,40%,80%; (3)选乙参加比赛比较合适.理由:从平均数来看,乙同学的平均分较高;从优秀率来看,乙同学的优秀率较高;从稳定性来看,乙同学的成绩较稳定.因此选乙参加比赛比较合适.1.(2018·淮安中考)若一组数据3,4,5,x,6,7的平均数是5,则x 的值是( B )A .4B .5C .6D .72.(2016·毕节中考改编)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这组数据的中位数是__53__,众数是__52和54__.3.(原创题)已知两组数据:a 1,a 2,a 3,a 4,a 5和a 1-1,a 2-1,a 3-1,a 4-1,a 5-1,下列结论中正确的是( C )A .平均数相等,方差相等B .平均数相等,方差不相等C .平均数不相等,方差相等D .平均数不相等,极差不相等4.(2018·荆门中考)甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表:第一次 第二次 第三次 第四次 第五次 第六次 甲 9 8 6 7 8 10 乙879788对他们的训练成绩作如下分析,其中说法正确的是( D )A .他们训练成绩的平均数相同B .他们训练成绩的中位数不同C .他们训练成绩的众数不同D .他们训练成绩的方差不同5.(2018·宜昌中考)为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( A )A .小明的成绩比小强稳定B .小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八单元统计与概率
第28讲统计
1.(2014·巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000.其中说法正确的有(C)
A.4个B.3个C.2个D.1个
2.(2013·广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式是________,图中的a的值是________.(D)
A.全面调查,26
B.全面调查,24
C.抽样调查,26
D.抽样调查,24
3.(2017·唐山路北区三模)下表为某市2017年5月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是(C)
A.14 ℃,14 ℃ B.14 ℃,13 ℃
C.13 ℃,13 ℃ D.13 ℃,14 ℃
4.(2017·河南)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是(D)
A.255分 B.84分 C.84.5分 D.86分
5.(2017·河北中考考试说明)某商场对上周女装的销售情况进行了统计,如下表所示:
经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是(C)
A.平均数 B.中位数 C.众数 D.方差
6.(2017·日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:
请你估计该200户家庭这个月节约用水的总量是(A)
A.240吨 B.360吨 C.180吨 D.200吨
7.(2017·广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:。