圆锥的侧面积和全面积

合集下载

小学数学教案认识圆锥的侧面积和全面积

小学数学教案认识圆锥的侧面积和全面积

小学数学教案认识圆锥的侧面积和全面积【教案】认识圆锥的侧面积和全面积I. 教学目标通过本课的学习,学生将能够:1. 认识圆锥的定义和特点;2. 理解圆锥的侧面积和全面积的概念;3. 运用所学知识计算圆锥的侧面积和全面积。

II. 教学准备1. 教师准备:- 教学课件;- 圆锥模型或图片;- 计算圆锥侧面积和全面积的示例。

2. 学生准备:- 纸和铅笔;- 学习笔记。

III. 教学过程Step 1:导入与激发1. 创设情境:让学生观察一个圆锥,并提问:- 你们能描述一下这个形状吗?- 它有哪些特点?- 它与其他几何形体有何不同之处?2. 引发思考:- 学生的回答将引出圆锥的概念,进而引发他们对圆锥侧面积和全面积的思考。

Step 2:学习知识点1. 学习圆锥的定义:- 描述圆锥的形状和特点。

2. 圆锥的侧面积:- 定义侧面积的概念;- 通过示例演示如何计算圆锥的侧面积;- 引导学生总结计算公式和步骤。

3. 圆锥的全面积:- 定义全面积的概念;- 通过示例演示如何计算圆锥的全面积;- 引导学生总结计算公式和步骤。

Step 3:巩固与拓展1. 练习计算圆锥的侧面积和全面积:- 提供一些练习题,让学生独立计算。

2. 拓展思考:其他几何体的面积计算- 引导学生思考并比较圆锥与其他几何体的侧面积和全面积计算方法。

Step 4:总结与评价1. 总结所学内容:- 学生与教师一起总结圆锥、侧面积和全面积的定义和计算方法。

2. 检查学习成果:- 提问学生关于圆锥的相关问题,检查他们对所学知识的掌握程度。

IV. 作业1. 独立完成作业册上有关圆锥侧面积和全面积的练习题。

V. 教学反思通过本节课的设计,学生在观察、思考和实践中获得对圆锥侧面积和全面积的认识。

在教学过程中,教师注重激发学生的兴趣和思维,让学生通过自主思考和合作学习,获得知识的深度理解和运用能力。

同时,注重巩固和扩展学生的知识,提高他们的综合思维和问题解决能力。

圆锥侧面积和全面积

圆锥侧面积和全面积
S全 =S上圆锥侧 +S下圆锥侧 =2.4 4 +2.4 3 =16.8
答:这个几何体的全面积为
点拨:将比较复杂的问题转化为熟悉的问题来解决
再变一变
如图将例题中得到的圆锥BD展开, 求所得扇形圆心角的度数?
再变一变
点拨:
• 1.圆锥的底面直径为80cm.母线长为90cm,求它的 全面积.
5200
• 2.有一扇形的半径为30,圆心角为120°用它做一 个圆锥模型的侧面,求这个圆锥的底面半径和高.
r=10, h= 20 2
1、把一个用来盛爆米花的圆锥 形纸杯沿母线剪开,可得一个半 径为20cm,圆心角为90°的扇形 .求该纸杯的底面半径和高度. 2、 制作如图所示的圆锥形铁皮烟 囱帽,其尺寸要求为:底面直径 80cm,母线长50cm,求烟囱帽铁皮的 面积(精确到1cm²)
请 你 欣 赏
Байду номын сангаас
知识回顾
A R 圆的周长公式:
C=2πR
l 圆的面积公式: S=πr²
n
B
o
注意:公式中的n不带单位
圆锥:圆锥可以看作是一个直角三角形绕它的一条直角
边旋转一周所形成的几何体
圆 锥 侧面 的 结 构 特 底面 征
高:连接顶点与底面圆心的线段
母线:我们把圆锥底面圆周上 任意一点与圆锥顶点的连线 底面半径
由 2πr=25π得
h=12
l
根据勾股定理得 : 122 52 l 2
r=5
O
┓r
S圆锥侧 rl 5 13 =65
做20顶这样的纸帽需要纸: 20 65 =130
答:要制作20顶这样的纸帽要用130πcm2的纸.

九年级圆锥知识点公式归纳

九年级圆锥知识点公式归纳

九年级圆锥知识点公式归纳圆锥作为几何学中的重要概念,是我们在九年级几何学学习中必须掌握的知识点之一。

它具有广泛的应用,涉及到各个领域,如建筑、机械制造、地质勘探等等。

在这篇文章中,我们将对九年级圆锥的知识点进行归纳总结,着重介绍与圆锥相关的公式。

首先,我们来看圆锥的定义和基本性质。

圆锥是由一个顶点和一个底面构成的几何体,底面可以是一个圆或任意多边形。

圆锥的高度是从顶点到底面的距离。

圆锥的侧面是从顶点到底边的曲面,底边被称为底面的圆周。

根据圆锥的性质,我们可以得出以下几个重要公式。

1. 圆锥的体积公式:圆锥的体积可以通过以下公式计算:V = 1/3 * 底面积 * 高度。

其中,底面积可以根据底面的形状来计算,如底面为圆形时,底面积公式为πr^2,其中r为底面圆的半径;而底面为多边形时,可以根据具体情况进行计算。

2. 直角圆锥的斜高公式:直角圆锥是指底面为正方形且顶点位于底面中心的圆锥。

直角圆锥的斜高(l)可以通过以下公式计算:l = 根号下(h^2 + r^2),其中h为圆锥的高度,r为底面正方形的边长。

圆锥的表面积是指圆锥的所有面积之和,包括底面和侧面。

计算圆锥的表面积可以根据底面的形状和侧面的曲面来进行。

3. 圆锥的侧面积公式:圆锥的侧面积可以通过以下公式计算:S = 1/2 * 底边周长 * 斜高。

其中,底边周长可以根据底面的形状来计算,如底面为圆形时,底边周长公式为2πr,其中r为底面圆的半径;而底面为多边形时,可以根据具体情况进行计算。

4. 圆锥的全面积公式:圆锥的全面积可以通过以下公式计算:A = 底面积 + 侧面积。

其中,底面积可以根据底面的形状来计算,如底面为圆形时,底面积公式为πr^2,其中r为底面圆的半径;而底面为多边形时,可以根据具体情况进行计算。

侧面积可以根据圆锥的侧面积公式来计算。

除了以上公式,圆锥还有一些特殊情况的公式值得我们关注。

5. 圆锥的棱台体积公式:当底面形状为正多边形且顶点位于底面中心时,圆锥可以视为棱台。

圆锥的侧面积和全面积教案

圆锥的侧面积和全面积教案
课题
21.3 圆锥的侧面积和全面积
一、 教 学 目 标
1. 理解圆锥的侧面积和表面积的含义 2. 探索并掌握圆锥的侧面积和表面积的计算方法,会正确地计算圆锥的侧面积和表
面积
二、 重 点 难 点 及 其 突 破 措 施
三、 教 学 方 法 及 学 法 指 导 四、教 具
重点
1、 掌握圆锥的 侧面积和表 面积的计算 方法

学生 活动 学生观 察、思考
时间 分配 1 分钟
知识回 顾
我们上节课已学了扇形的弧长公式和扇形
的面积公式,大家还记得它们的计算公式
吗?



L n/ 360* 2 R n /180* R
面积:
向学生展 示扇形并 让学生回 答计算公 式
观察,回 3 分钟 忆,思考, 并回答问 题
S n / 360* R2 1/ 2LR
答:它的母线长是 10。
2.一个底面半径为 12,母线长为 20 的圆锥,
创设问题
求它的侧面积和全面积。
情境,引
解答:S 侧 = rl 12* 20 240
导学生思
S 全= rl r 2
考,个别
辅导,点
= 240 122

=384 答:它的侧面积是 240 ,表面积是 384 。
表面积的计算公式:.........
例子:.......
学生计算栏:...........
.......
..........
........
...........
2 分钟
开图为扇形,且扇形的半径等于圆锥的母线,
弧长等于圆锥底面圆的周.
5.如果用 r 表示圆锥的底面半径,h 表示圆锥

圆锥的侧面积和全面积

圆锥的侧面积和全面积

例题
已知Rt△ABC的斜边AB=13cm,一条直角边 AC=5cm,以直线AB为轴旋转一周得一个几何体。 求这个几何体的表面积。
解:在Rt△ABC中, AB=13cm,AC=5cm, ∴BC=12cm ∵OC· AB=BC· AC ∴ BC AC 5 12 60
r OC AB 13 13
新课导入
大家见过圆锥吗?你能举出实例吗?
圆锥是由一个底面和一个侧面围成的图形.
母线
连接圆锥顶点和底面圆周上任意一点的线段. 圆锥 有无 数条 母线.
l
高h
半径 r
圆周
圆锥的表面是由哪些面构成的?
圆面
曲面
圆锥的曲面展开图是什么形状? 如何计算圆锥的侧面积? 如果计算圆锥的全面积?
观察
圆锥的曲面(侧面)展开是扇形
BC
如图所示,圆柱的底面周长为6cm,AC是底面圆的直 2 径,高BC= 6cm,点是母线上一点且PC = 3 BC .一 只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短 距离是5cm .
结论:圆柱的侧面展开图是矩形。 矩形的一边是圆柱的高,另一边 是圆柱的底面圆的周长
l
h r
这个扇形的半径是____________ , l (母线长)
探究
n R 2 360 1 lr 2
扇形的弧长是____________ , 2πr (圆周)
S扇形
ቤተ መጻሕፍቲ ባይዱ
圆锥的侧面积S侧
= 扇形的面积S扇 = rl
l
h r
探究
圆锥的全面积S全
= 侧面(扇形)的面积 + 底面圆周的面积 = rl +
随堂练习
已知圆锥的侧面积展开图是一个半径为12 厘米、弧长为12π厘米的扇形。求这个圆锥的 侧面积、高和锥角(结果保留根号和π).

40圆锥的侧面积和全面积教案

40圆锥的侧面积和全面积教案

圆锥的侧面积和全面积教案教学目标:1. 理解圆锥的侧面积和全面积的概念。

2. 学会计算圆锥的侧面积和全面积。

3. 能够应用圆锥的侧面积和全面积解决实际问题。

教学重点:1. 圆锥的侧面积和全面积的概念。

2. 计算圆锥的侧面积和全面积的方法。

教学难点:1. 圆锥的侧面积和全面积的计算方法。

教学准备:1. 圆锥模型。

2. 直尺、圆规等绘图工具。

教学过程:一、导入(5分钟)1. 引导学生观察圆锥模型,让学生尝试描述圆锥的特征。

2. 提问:圆锥的侧面积和全面积是什么意思?二、新课讲解(15分钟)1. 讲解圆锥的侧面积的概念:圆锥的侧面积是指圆锥的侧面展开后形成的扇形的面积。

2. 讲解圆锥的全面积的概念:圆锥的全面积是指圆锥的底面积和侧面积之和。

3. 讲解计算圆锥的侧面积的方法:利用圆锥的侧面展开图,计算扇形的面积。

4. 讲解计算圆锥的全面积的方法:将底面积和侧面积相加。

三、例题解析(15分钟)1. 给出一个圆锥的侧面展开图,让学生计算圆锥的侧面积。

2. 给出一个圆锥的底面和侧面,让学生计算圆锥的全面积。

四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 解答学生提出的问题,给予及时的指导和帮助。

五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固知识点。

2. 提问学生:如何应用圆锥的侧面积和全面积解决实际问题?教学延伸:1. 引导学生进一步学习圆锥的体积计算。

2. 让学生尝试解决与圆锥侧面积和全面积相关的实际问题。

教学反思:本节课通过讲解、例题解析和课堂练习,让学生掌握了圆锥的侧面积和全面积的概念及计算方法。

在教学过程中,要注意引导学生观察实物,培养学生的空间想象能力。

通过课堂练习和教学延伸,让学生巩固所学知识,提高解决问题的能力。

六、圆锥侧面积和全面积的公式推导教学目标:1. 理解圆锥侧面积和全面积的公式推导过程。

2. 学会运用公式计算圆锥的侧面积和全面积。

教学重点:1. 圆锥侧面积和全面积的公式推导过程。

圆锥的侧面积和全面积ppt课件

圆锥的侧面积和全面积ppt课件

3
用平行于圆锥底面的平面去 截圆锥,得到的截面是圆,在 不同位置所截得的圆的半径, 与底面半径均不等。
用过圆锥的高线的平面截圆 锥,得到的截面(圆锥的轴 截面)是等腰三角形
它的底边是圆锥底面的直径 底边上的高线就是圆锥的高线
4
如果用r表示圆锥底面的半径, h表示圆锥的
高线长,Rl 表示圆锥的母线长,那么r,h,l 之间
l
6
图 23.3.6
合作学习:
(1) 将一个圆锥模型(纸制)的侧面沿它的一条母 线剪开,铺平.观察所得的平面图形是什么图形;
圆锥的侧面展开图是一个扇形
(2) 圆锥的底面周长与侧面展开图有什么关系?
圆锥的底面周长就是其侧面展开图扇形的弧长.
(3) 圆锥的母线与侧面展开图有什么关系?
圆锥的母线就是其侧面展开图扇形的半径。
10
例6、如图,圆锥的底面半径为1,母线长为3,一只蚂 蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线 AB的轴截面上另一母线AC上,问它爬行的最短路线 是多少?
将圆锥沿AB展开成扇形ABB’ 解: 将圆锥沿AAB展开成扇形ABB,解解则::点将将C圆是圆锥B锥B沿沿的AAB中B展展点开解开,成:过成扇将点扇形圆B形A作锥BABBB沿DB,A,则B展A则点C开点C,是C成B是 成垂扇足形为ABDB. , 则点C是解B:B将的圆中锥点,沿解垂A过垂解:B足足点:展将为B为将开作圆DD圆成.B.锥锥D扇沿沿形AABAA展CBB,展B垂开,开足成则成为扇点扇形DCA形. 是BABB,B则,的点则中C点是C, 线C答是中BB:23A,DBB它BA3D爬.B23Ar行l 6D3的036.最在060短Rt,路1A垂答A2CB线B0BB:足ACDB是它 B中为3A23.D,D爬23.3r行l.B63的0A3垂答D6答.垂 答最在B0B:足BBBBB:BA:足D短RBAA6DBADB它 BD为B它 BAt0它 B它 BA为路A1ADD爬D,A2爬D爬 23DD23爬A.线023B23r行lr行lB.r行lCr6行l63是36的3中0的06333的0的3230366.3.最最,在在6..00最在6.0最在0短R短3R短R.tt短RB路1路 答 t1路A12tAA2路B1A线B20B:线0BDA2线0ABDBC线 C是0B它 B是中CA中 是C中23是6D23爬 ,中2323,0,23r3l行,,3.633BA.0B的 .33ABBA.6D.AB在 最0DDA3R短D6.1t0116路620A,006A线B,0,BACA是

圆锥的侧面积和全面积上

圆锥的侧面积和全面积上
3.4.2 圆锥的侧面积和全面积
一、知识回顾 1、弧长计算公式
2、扇形面积计算公式
l nR
180
s nR2
360
或s 1 lR 2
图片欣赏
1.经历探索圆锥侧(全)面积计算公式的过程,发展学生 的实践探索能力. 2.了解圆锥的侧(全)面积计算公式后,能用公式进行计 算,训练学生的数学应用能力.
180
4
4
显然OC SO 因此马强的说法正确.
O′
A′
6.已知:在RtΔABC,∠C=90°,AB=13cm, BC=5cm. CD⊥AB于点D.求以AB为轴旋转一周所得到的几何体的全 面积.
A
旋转得到怎样的几何体?
D
C
B
分析:以AB为轴旋转一周所得到的几何体 是由公共底面的两个圆锥所组成的几何体, 因此求全面积就是求两个圆锥的侧面积.
a
h
24π cm2
A
O r
B 答:圆锥形零件的侧面积是ቤተ መጻሕፍቲ ባይዱ24cm2 .
1.根据圆锥的下面条件,求它的侧面积和全面积
(1)r=12cm, l=20cm
240π 384π
(2)h=12cm, r=5cm
65π 90π
2.一个圆锥的侧面展开图是半径为18cm,圆心角为240
度的扇形.则这个圆锥的底面半径为__1_2_c_m__
的侧面积为_1_2_0__c_m__2_.
(3)已知圆锥底面圆的半径为2cm,高为 5cm,则这个
圆锥的侧面积为_6__c_m_.2
5
2
圆锥的侧面积
S扇形
na2
360
S侧 ra
na 2
ra
360
n

圆锥的侧面积和全面积

圆锥的侧面积和全面积

A
O
C
B
Hale Waihona Puke 议一议蒙古包可以近似地看成由圆锥和圆 柱组成的.如果想在某个牧区搭建15 个底面积为33m2,高为10m(其中圆锥 形顶子的高度为2m)的蒙古包.那么 至少需要用多少m2的帆布?(结果精 确到0.1m2).
先独立思考,再与同伴交流.
如图,圆锥的底面半径为1,母线长为3,一只 蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬 到过母线AB的轴截面上另一母线AC上,问它爬 行的最短路线是多少?
A
D
B
C
回顾与思考
•你的收获和困惑有哪些?
结束寄语
下课了!
•数学使人聪明,数学使人 陶醉,数学的美陶冶着你 、我、他.
l


n 180
πR
S扇形

n 360
πR2
1 lR 2
看一看
认识圆锥:
生活中的圆锥
圆锥可以看做是一个直角三 角形绕它的一条直角边旋转 A 一周所成的图形
C
O
B
想一想P133 2
圆锥知识知多少
O
母 线
侧面 高
h
B
A r 底面半径
1A
A2
底面
做一做
圆锥的侧面积和全面积
圆锥的侧面展开图是什么图形? 是一个扇形.
例2 :已知一个圆锥的轴截面△ABC是 等边三角形,它的表面积为75 πcm2, 求这个圆锥的底面半径和母线的长。
A
B
O
C
做一做
•已知圆锥的底面直径为12cm, 母线长10cm, 求它的侧面展开图的圆心角和 表面积.
C
A OB
P88.课内练习2.
想一想

圆锥的侧面积和全面积教案

圆锥的侧面积和全面积教案

圆锥的侧面积和全面积教案教学内容:第一章:圆锥侧面积的概念和计算方法1.1 引入圆锥侧面积的概念1.2 解释圆锥侧面积的计算方法1.3 举例说明圆锥侧面积的计算步骤第二章:圆锥全面积的概念和计算方法2.1 引入圆锥全面积的概念2.2 解释圆锥全面积的计算方法2.3 举例说明圆锥全面积的计算步骤第三章:圆锥侧面积和全面积的性质3.1 介绍圆锥侧面积和全面积的性质3.2 解释圆锥侧面积和全面积之间的关系3.3 举例说明圆锥侧面积和全面积的性质应用第四章:圆锥侧面积和全面积的运用4.1 介绍圆锥侧面积和全面积的运用方法4.2 解释如何利用圆锥侧面积和全面积解决实际问题4.3 举例说明圆锥侧面积和全面积的运用实例第五章:巩固练习和拓展思考5.1 提供圆锥侧面积和全面积的相关练习题5.2 引导学生通过练习题巩固所学知识5.3 提供一些拓展思考题,引导学生深入思考圆锥侧面积和全面积的相关问题教学目标:通过本教案的学习,学生将能够:1. 理解圆锥侧面积和全面积的概念;2. 掌握圆锥侧面积和全面积的计算方法;3. 了解圆锥侧面积和全面积的性质和运用方法;4. 通过练习题巩固所学知识,并能够解决实际问题。

教学资源:1. 教学PPT或黑板;2. 圆锥模型或图片;3. 练习题和答案;4. 拓展思考题。

教学方法:1. 采用讲解法,讲解圆锥侧面积和全面积的概念和计算方法;2. 采用示例法,举例说明圆锥侧面积和全面积的计算步骤;3. 采用问答法,解答学生提出的问题;4. 采用练习法,提供练习题供学生巩固所学知识;5. 采用拓展法,提供拓展思考题供学生深入思考。

教学评价:通过学生在课堂上的参与度、练习题的正确率和拓展思考题的完成情况进行评价。

第六章:圆锥侧面积和全面积的图形直观6.1 利用圆锥模型或图片,帮助学生直观理解圆锥侧面积和全面积的构成;6.2 引导学生观察圆锥侧面积和全面积在图形上的分布和变化;6.3 举例说明如何通过图形直观地判断圆锥侧面积和全面积的大小关系。

《圆锥的侧面积和全面积》

《圆锥的侧面积和全面积》

即时训练 及时评价(3) 填空、根据下列条件求值 .
(1) (2) (3) (4)
n
a=2, r=1 a=9, r=3 n=90°,a=4 n=60°,r= 3
则n 则n 则r 则a
180° =_______ 120° =_______ 1 =_______ 18 =_______
圆锥的全面积
圆锥的全面积=圆锥的侧面积+底面积.
例2.一个圆锥形零件的高4cm,底面半径3cm,求这 个圆锥形零件的侧面积和全面积。
解: a h r 4 3 5
2 2 2 2
P
s侧 ra 3 5 π 15π(cm )
2
s全 s侧 s底 15π 9π
h A O r a
24π cm

2

5
2
圆锥的侧面积
S扇形
na 360
2
S侧 ra
2
na ra 360
n
na r 360 na 360r
公式二:
na 360r
思考:
你会计算展开图中 的圆心角的度数吗?
l
h a r
na l 180
180l 180 2r 360r n a a a
图 23.3.6
圆锥与侧面展开图之间的主要关系: 1.圆锥的母线长=扇形的半径 R
n
a=R
2.圆锥的底面周长=扇形的弧长 C=l 3.圆锥的侧面积=扇形的面积
S侧=S扇形
圆锥的侧面积 圆锥的侧面积=扇形的面积
S侧=S扇形
n
1 1 la 2ra ra 2 2
公式一:
S侧 ra

圆锥的侧面积和全面积

圆锥的侧面积和全面积
A. B. C. D.
课堂小结
1.认识了圆锥的侧面展开图,学会计算圆锥的侧面积和全面积,在认识圆锥的侧面积展开图时,应知道圆锥的底面周长就是其侧面展开图扇形的弧长。2.圆锥的母线就是其侧面展开图扇形的半径
作业:
1、复印作业一张



学生课堂
亮点
对学生或
家长建议
教学反思
学生家长签字
教务部门签章
教学方法
讲授法,练习法、启发式
情感态度价值观目标:教给学生立体图形与平面图形的思维转换,讲清扇形各元素与圆锥各元素之间的关系
教学重点
综合弧长与扇形面积的计算公式计算圆锥的侧面积
教学难点
圆锥的侧面积公式的推导与应用
教学及辅导过程
1、检查作业
二.新课展开、重难点突破
1、圆锥的基本概念
在右图的圆锥中,连结圆锥的顶点S和底面圆上任意一点的线
姓名
戴春华
学生姓名
上课时间
辅导科目
数学
年级
初三
课时
2
教材版本
冀教版
课题名称
圆锥的侧面积和全面积
教具
教学目标
知识目标:理解圆锥的侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积..
课型
新授课
能力目标:通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题
段SA、SA1……叫做圆锥的母线,连接顶点S与底
面圆的圆心O的线段叫做圆锥的高。
2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系,上图中,将圆锥的侧面沿母线l剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形的弧长等于什么?

《圆锥的侧面积和全面积》PPT课件 人教版九年级数学

《圆锥的侧面积和全面积》PPT课件 人教版九年级数学

A.6cm B.8cm C.10cm D.12cm
2.一个圆锥的侧面积是底面积的2倍,这个圆锥
的侧面展开图扇形的圆心角是( D )
A.60°
B.90° C.120° D.180°
3.已知圆锥的母线长为5,底面半径为3,则圆
锥的表面积为( B )
A.15π
B.24π
C.30π
D.39π
4.如图,粮仓的顶部是圆锥形,这个圆锥的底面圆 的周长为32 m,母线长7 m,为了防雨,需要在它 的顶部铺上油毡,所需油毡的面积至少是多少?
S底=πr2=π×4×4=16π(cm2),
B
O
C
∴S全=S侧+S底=48π(cm2).
答:圆锥的面积是48πcm2.
综合应用
6.Rt△ABC中,∠C=90°,AC=3,BC=4,把它分别沿三边 所在直线旋转一周,求所得的三个几何体的全面积.
解:AB= AC2 BC2 =5,
绕AC旋转:S全1=S侧1+S底1=πr1l1+πr12=π×4×5+π×42=36π.
形,求被剪掉的部分的面积;如果
BO
C
将剪下来的扇形围成一个圆锥,圆
锥的底面圆的半径是多少?
解:连接BC,AO,则AO⊥BC.
∵OA=
1 2
m,∠BAO=45°,
AB
OA2 OB2
2 2
m.
S扇形BAC
90 AB2 360
90
360
2 2
2
8
(m2 ).
被剪掉部分的面积为
l BC
90 180
顶点
连接圆锥顶点与底面圆心的线 段叫做圆锥的高.
连接圆锥顶点和底面圆周上任

39圆锥的侧面积和全面积教案

39圆锥的侧面积和全面积教案

圆锥的侧面积和全面积一、教学目标(一)知识与技能:1.了解圆锥母线的概念;2.理解圆锥侧面面积计算公式,理解圆锥全面积的计算方法,并会应用.(二)过程与方法:过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解诀现实生活中的一些实际问题.(三)情感态度与价值观:培养学生的观察、想象、实践能力,获得数学学习经验,懂得数学与生活的密切联系.二、教学重点、难点重点:圆锥侧面积和全面积的计算公式的探索与运用.难点:探索圆锥侧面积计算公式.三、教学过程知识回顾1.弧长计算公式:2.扇形面积计算公式:S 扇形=或S 扇形=生活中的圆锥创设情境小明想要给斗笠的侧面贴上一层油纸进行保护,你能帮他计算出所需要的油纸吗?圆锥的相关概念圆锥是由一个底面和一个侧面围成的几何体,它的底面是一个圆面,它的侧面是一个曲面.我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,连接圆锥顶点和底面圆心的线段叫做圆锥的高.母线有无数条,且都相等.圆锥的底面半径、高、母线长三者之间的关系:h 2+r 2=l 2思考180Rn l π=3602R n πlR 21圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形. 设圆圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为___,扇形的弧长为_____,因此圆锥的侧面积为_____,圆锥的全面积为___________.S 侧面=πrl =π×20×30=600π(cm 2)例3 蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12m 2,高为3.2m ,外围高1.8m 的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12m 2,高h 2=1.8m ;上部圆锥的高h 1=3.2-1.8=1.4(m ).圆柱的底面圆的半径(m )侧面积为 2π×1.954×1.8≈22.10(m 2)圆锥的母线长(m )侧面展开扇形的弧长为 2π×1.954≈12.28(m )圆锥的侧面积为×2.404×12.28≈14.76(m 2)因此,搭建20个这样的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m 2).练习1.圆锥的底面直径是80cm ,母线长90cm ,求它的侧面展开图的圆心角和圆锥的全面积.解:根据题意得,圆锥的底面周长是80πcm ,底面积是1600πcm2.因此圆锥的侧面展开图的圆心角为圆锥的侧面积为×80π×90=3600π(cm 2)圆锥的全面积为 1600π+3600π=5200π(cm 2)2.如图,圆锥形的烟囱帽的底面圆的直径是80cm ,母线长是50cm ,制作100个这样的烟囱帽至少需要多少平方米的铁皮?解:圆锥的底面周长是80πcm954.112≈=πr 404.24.1954.122≈+=l 21 1609080180=⨯ππ21侧面积是×80π×50=2000π(cm 2)因此,制作100个这样的烟囱帽至少需要铁皮100×2000π=200000π(cm 2)=20π(m 2)课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生应熟练掌握相关公式并会灵活运用. 要充分发挥空间想象力,把立体图形与展开后的平面图形各个量准确对应起来.21。

圆锥的侧面积和全面积2

圆锥的侧面积和全面积2
2
B 8 3cm2
C. 4 3cm2
D.
8 3cm
2
例4.如图,圆锥的底面半径为1,母线长为6,一只蚂蚁 要从底面圆周上一点B出发,沿圆锥侧面爬行一圈再回 到点B,问它爬行的最短路线是多少? 解:设圆锥的侧面展开图为扇形ABB’, ∠BAB’=n° 连接BB’,即为蚂蚁爬行的最短路线 B’ A 360r 360 1
n
a

6
6
解得: n=60
∴ △ABB’是等边三角形 ∴ BB’=AB=6
答:蚂蚁爬行的最短路线为6.
B
1
C
能力提升
圆锥的底面半径为10cm,母线长40cm,底 面圆周上的蚂蚁绕侧面一周的最短的长度 40 2cm 。 是_______
小结升华
1、本节课所学:“一个图形、三个关系、两 个公式”,理解关系,牢记公式;
圆锥的侧面积和全面积2
知识回顾
一个图形、三个关系、两个公式
圆锥与侧面展开图之间的主要关系: 1、圆锥的母线长=扇形的半径 (a = R) 2、圆锥的底面周长=扇形的弧长 (C = l) 3、圆锥的侧面积=扇形的面积
n
S ra
na 360r
例1.蒙古包可以近似地看成由圆锥和圆柱组 成的.如果想用毛毡搭建20个底面积为16πm2, 高为5 m,外围高2 m的蒙古包,至少需要多少 m2的毛毡? (结果精确到1 m2).
h1
r
h2
r
勇攀高峰
例3(14年湖北)如图,已知RtΔABC中, ∠ACB=90°,AC= 4,BC=3,以AB边所 在的直线为轴,将ΔABC旋转一周,则所得 几何体的表面积是( ).
168 A. 5
84 C. 5

圆锥的侧面积和全面积 教学设计

圆锥的侧面积和全面积 教学设计

24.4.2 圆锥的侧面积和全面积教学目标:【知识与技能】了解圆锥的母线、高、侧面积、全面积的概念,掌握圆锥的侧面积及全面积的计算公式,并会应用公式解决问题。

【过程与方法】通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题,进一步体会数学中的转化思想,培养学生分析问题解决问题的能力。

【情感态度与价值观】通过动画演示让学生知道圆锥的侧面展开图是扇形,圆锥的全面积是侧面面积和底面圆积的和,并理解事物之间的联系,激发学生动手的欲望和积极思考的兴趣。

教学重点:灵活应用公式计算圆锥的侧面积和全面积。

教学难点:圆锥侧面展开的扇形和底面圆之间有关元素的计算。

教法学法:1.情境及动画演示法。

2.小组合作讨论法。

教学过程:一、情境导入,初步认识元旦将近,某家商店正在制作元旦的圆锥形纸帽.如图,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)【教学说明】通过生活情境,吸引学生的注意力,在学生欣赏过程中思考数学问题,在轻松愉快的状态下开始本节课。

二、思考探究,获取新知(一)回顾旧知1.弧长计算公式2.扇形面积计算公式(二)新课讲解1、生活中的圆锥多媒体展示一组图片,了解生活中常见的圆锥图形。

2.圆锥的形成及相关概念动画展示圆锥的形成过程,让学生初步形成初步的认知。

认识圆锥各部分的名称。

如图,连接圆锥顶点和底面圆上任意点的线段叫做圆锥的母线(图中的线段l),连接顶点和底面圆心的线段叫圆锥的高(图中的h)。

问题圆锥有多少条母线?圆锥的母线有什么性质?通过这个问题使学生理解,在讨论圆锥的侧面展开图时,无论从哪里展开都可以。

【结论】圆锥有无数条母线,圆锥的母线长相等。

由具体的圆锥模型认识它的侧面展开图,把一个圆锥模型沿着母线剪开。

让学生观察圆锥的侧面展开图,学生很容易得出:圆锥的侧面展开图是一个扇形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥的侧面积和全面积
教学目标
(一)教学知识点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.
(三)情感与价值观要求
1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.
2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.
教学重点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
教学难点
经历探索圆锥侧面积计算公式.
教学方法
观察——想象——实践——总结法
教具准备
一个圆锥模型(纸做)
投影片两张
第一张:(记作§3.8A) 第二张:(记作§3.8B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]大家见过圆锥吗?你能举出实例吗?
[主]见过,如漏斗、蒙古包.
[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.
[生]圆锥的表面是由一个圆面和一个曲面围成的.
[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.
Ⅲ.新课讲解
一、探索圆锥的侧面展开图的形状
[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.
[生]圆锥的侧面展开图是扇形.
[师]能说说理由吗?
[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.
[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?
[生]是扇形.
[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.
二、探索圆锥的侧面积公式
[师]圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底
面圆的周长2πr,根据扇形面积公式可知S=1
2
·2πr·l=πrl.因此圆锥的侧面积为S
侧=πrl.
圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S全=πr2+πrl.。

相关文档
最新文档