红外谱图的解析

合集下载

(完整word版)如何解析红外光谱图解读

(完整word版)如何解析红外光谱图解读

如何解析红外光谱图一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中::化合价为4价的原子个数(主要是C原子),n4:化合价为3价的原子个数(主要是N原子),n3n:化合价为1价的原子个数(主要是H,X原子)1(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。

红外光谱谱图解析完整版

红外光谱谱图解析完整版
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1

红外光谱谱图解析

红外光谱谱图解析
2019/10/29
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
作判断有无甲基存在的依据。 烯烃的C—H弯曲振动在1000~800 cm-1范围,可以借以鉴别各种取代类
型的烯烃。 芳烃的C—H弯曲振动主要是900~650 cm-1处的面外弯曲振动,对确定
苯的取代类型很有帮助。
2019/10/29
②C—O伸缩振动 这类振动产生的吸收带常常是该区中的最强峰。 醇的C—O在1260~1000 cm-1;酚的C—O1350~1200 cm-1; 醚的C—O在1250~1100 cm-1;饱和醚常在1125 cm-1出现; 芳香醚多靠近1250 cm-1。

(cm1)
104
(m)
可知,2.5~15.4μm波长范围对应于4000cm-
1~650cm-1。大多数有机化合物及许多无机化合物的化学键振动均
落在这一区域 。
2019/10/29
3、分子中基团的基本振动形式 basic vibration of the group in molecular
正庚烷
正十二 烷
正二十八 烷
1500 1400 1300cm-1 1500 1400 1300 cm-1 1500 1400 1300cm-1
2019/10/29
2019/10/29

红外光谱解析

红外光谱解析

generally absorbs only weakly. Hence, trained observer would not
interpret a strong peak at 1670 cm-1 to be a C=C double bond, nor would they interpret a weak absorption at this frequency to be due to a carbonyl group.
3
How to approach the analysis of a spectrum?
When analyzing the spectrum of an unknown, concentrate your first effort on determining the presence (or absence) of a few major functional groups. The C=O, OH, NH, CO, C=C, CC, CN, and NO2 peaks are the most conspicuous and give immediate structural information if they are present. Do not try to make a detailed analysis of the CH absorptions near 3000 cm-1; almost all compounds have these absorptions. Do not worry about subtleties of the exact environment in which the functional group is found. Following is a major checklist of the important gross features. 1. Is a carbonyl group present?

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外谱图解析步骤

红外谱图解析步骤

红外谱图解析分析步骤应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。

对一张已经拿到手的红外谱图:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=1+n4+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H原子),举个例子:比如苯:C6H6,不饱和度=1+6+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。

(2)分析3300~2800cm-1区域C-H伸缩振动吸收以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。

(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm-1烯1680~1640 cm-1芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对)。

(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。

如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。

解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不详细说了。

红外谱图分析确实是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

红外(IR)谱图解析基础知识

红外(IR)谱图解析基础知识

红外谱图解析基础知识(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动基团频率和特征吸收峰与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种。

饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。

红外谱图的解析经验

红外谱图的解析经验

红外谱图的解析经验首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。

对一张已经拿到手的红外谱图:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),我以前本科上谱学导论时老师给过公式,但字母都被我改了:F、T、O分别是英文4,31的首字母,这样我记起来就不会忘了:)。

举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^ -1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm^-1烯1680~1640 cm^-1芳环1600,1580,1500,1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm^-1的三个峰,说明醛基的存在。

解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不唠叨了。

这是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm^-1)C-H弯曲振动(1465-1340cm^-1)一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。

红外谱图解析综述

红外谱图解析综述


as13501290cm-1 s11651120cm-1 (强)
亚砜
10701030cm-1 (强)
(6)P=O:(图15A峰3,4) P=O 13001140cm-1 (接近单键区)
9
红外谱图解析综述
4. X-Y键伸缩振动和X-H键变形振动区(1650650cm-1) X,Y为除了H以外的其它原子,主要包括C-O,Si-O,C-C,C-N,
有机酸OH和CH伸缩振动偶合引起的一系列多重峰(32002500cm-1) (图8C峰1,图16C峰1)
O-H的伸缩振动可作为判断醇,酚,酸的重要依据。 (2)C-H的伸缩振动频率
饱和的 C-H在3000cm-1以下(30002700cm-1) 不饱和的 C-H在3000cm-1以上(33003000cm-1)
1C峰 CH CH3
CH3
3)。叔丁基 1D峰
C
CCC HHH 333
sCH3裂分成1395(m),1365(s)(图
3)。以此可判断化合物的支化情况。
D:-CH2-n的面外摇摆峰,n4时出现720cm-1吸收峰。可判断是 否是长链化合物。(图1A、B峰4,图7C峰6、D峰5,图9C峰4、D峰
5)
12
O R-C-OH
O R -C -H
1740 1730 1700缔合1760游离
O R-C-OM
O R -C-N H 2
1650(酰胺谱带I) 16001500和1400
O= =O
1667
8
红外谱图解析综述
如果C=O基与双键,苯环共轭。C=O基的伸缩振动频率比上述相应位置 要低,强度增加。在解析光谱时必须注意。(图8A峰2,B峰4,C峰2,D峰 1酮羰基,峰2羧酸盐羰基,图9A峰2,B峰3,C峰2,D峰3,图10A峰2,B峰1,C 峰2,D峰1,图11A峰3,B峰3,C峰2酰胺谱带Ⅰ,图16B峰3,C峰2)

怎样正确解析红外光谱谱图?

怎样正确解析红外光谱谱图?

C=C
芳环中C=C

—C=O

—NO2

—NO2 S=O

1680—1620 1600,1580 1500,1450 1850—1600
1600—1500 1300—1250 1220—1040
伸缩 伸缩
伸缩
反对称伸缩 对称伸缩 伸缩m,来自 vss s s
苯环的骨架振动
其他吸收带干扰少,是判断羰 基(酮类、酸类、酯类、酸酐 等)的特征频率,位置变动大
根据特征吸收的位置,判断可能存在的特征官能团
图谱解析训练1
图谱解析训练2
图谱解析训练3
图谱解析训练4
—CH3

—CH2 —CH2
吸收频 率
(cm-1 )
3650— 3580 3400— 3200 3500— 3300 3400— 3100 2600— 2500
3300附近 3010— 3040 3030附近
2960±5 2870±10 2930±5 2850±10
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
区,判断官能团的种类,最后查看指纹区,判断其精细结构,确 定结构式
注意:在解析过程中,要把注意力集中到主要基团的相关峰上,避免孤 立解析。
分子的不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的 “对”数。如:乙烯变成饱和烷烃需要两个氢原子,不饱和 度为1。
计算: 若分子中仅含一,二,三,四价元素(H,O,N, C),则可按下式进行不饱和度的计算:
各种官能团的吸收频率范围
从第一区域到第四区域,4000cm-1到400cm-1各种官能团的特征吸收频 率范围。
区 域
基团
—OH(游离)

红外谱图详细解析

红外谱图详细解析

红外谱图解析各官能团的特征吸收是解析谱图的基础(1)首先依据谱图推出化合物碳架类型33002800C H (2)分析3300 ~ 2800 cm 1区域C-H 伸缩振动吸收以3000 cm-1为界:高于3000 cm为不饱和碳C H 伸缩振动吸收3000cm-1C-H可能为烯, 炔, 芳香化合物低于3000 cm-1 一般为饱和C-H 伸缩振动吸收(3) 若在稍高于3000 cm-1有吸收,则应在频区2250 ~ 1450 cm-1分析不饱和碳碳键的伸缩振动吸收特征峰炔2200 ~ 2100 cm-1烯1680 ~ 1640 cm-1芳环1600,1580,1500,1450 cm-1烯或芳香化合物则应解析指纹区1000 ~ 650 cm-1频区以确定取代基个数和位置(4) 碳骨架类型确定后, 再依据其他官能团,如C O, O H, C N 等特征吸收来判定C=O,O-H,C-N化合物的官能团(5) 解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在如2820,2720 和1750~1700 cm 1的三个峰说明醛基的存在例3 C7H8O1) 不饱和度:(7⨯2+2-8)÷2=4 可能含有苯环2) 3000 cm-1 以上,以及1600,1500 cm-1 表明含有苯环(-C6H5)770,700 cm-1 表明苯环取代为单取代3) 分子式为C7H8O,除去苯环(-C6H5),取代基为CH3O,(?)苯甲醚(?) 苯甲醇(?)3300 cm-1(⨯),1250,1040 cm-1(∨) 芳香脂肪醚C-O的吸收表明此化合物为苯甲醚例4:1)不:12)3000,O H;酸930,O H,O-H O-H,CH3CH2COOH3) 1700, C=O4) 1230,C-O。

红外光谱的解析

红外光谱的解析

红外光谱解析步骤
准备工作 确定未知物的不饱和度
官能团分析
图谱解析
准备工作
1、了解样品的来源、外观和制样方法。 2、注意样品的纯度以及样品的元素分析及 其它物理常数的测定结果。
确定未知物的不饱和度
不饱和度是表示有机分子中碳原子的不 饱和程度。计算不饱和度UN的经验公式 为: UN=1+n4+(n3-n1)/2 式中n4、n3、n1分别为分子中所含的四价 (C、Si)、三价(N、P)和一价(H、F、 Cl、Br、I)元素原子的数目。 二价原子 如S、O等不参加计算。
注: 与标准谱图核对,主要是对指纹区谱带 的核对。在对照标准谱时,红外光谱的测试 条件最好与标准谱图一致。
红外谱图解析实例
某化合物的分子式C6H14,红外谱图如下, 试推测该化合物的结构。
解答
从谱图看,谱峰少,峰形尖锐,谱图相对简单,可能化合 物为对称结构。 从分子式可看出该化合物为烃类,不饱和度的计算: UN=(6×2+2-14)/2=0 表明该化合物为饱和烃类。由于1380cm-1的吸收峰为一单 峰,表明无偕二甲基存在。775cm-1 的峰表明亚甲基基团是独 立存在的。因此结构式应为:
Analysis: C8H8O
解答
IUPAC Name: acetophenone
Analysis: C3H10NO
解答
IUPAC Name: N-methylacetamide (N-methylethanamide)
Analysis: C4H8O2
C8H16O2
C7H6O2
某化合物的分子式C6H14,红外谱图如下,试推测该化合 物的结构。
图谱解析
图谱的解析一般程序是先官能团区, 后指纹区;先强峰后弱峰;先否定后肯定。 首先在官能团区搜寻特征伸缩振动, 再根据指纹区的吸收情况,进一步确认该 基团的存在以及与其它基团的结合方式。 最后再结合其它分析资料,综合判断分析 结果,提出最可能的结构式,然后用已知 样品或标准图谱对照,核对判断的结果是 否正确。

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。

红外图谱分析方法大全

红外图谱分析方法大全

红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。

公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。

F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。

(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。

(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。

(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。

解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。

二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。

2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外谱图的解析经验
(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2
(2) 分析3300-2800区域C-H伸缩振动吸收;以3000 为界:高于3000为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000一般为饱和C-H伸缩振动吸收;
(3)若在稍高于3000有吸收,则应在 2250-1450频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200-2100,烯 1680-1640,芳环 1600,1580,1500,1450,若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650的频区 ,以确定取代基个数和位置(顺反,邻、间、对);
(4)碳骨架类型确定后,再依据其他官能团,如 C=O,O-H,C-N 等特征吸收来判定化合物的官能团;
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700的三个峰,说明醛基的存在。

1、烷烃:C-H伸缩振动(3000-2850) C-H弯曲振动(1465-1340),一般饱和烃C-H伸缩均在3000以下,接近3000的频率吸收。

2、烯烃:烯烃C-H伸缩(3100-3010) C=C伸缩(1675-1640) 烯烃C-H面外弯曲振动(1000-675)。

3、炔烃:伸缩振动(2250-2100) 炔烃C-H伸缩振动(3300附近)。

4、芳烃:3100-3000, 芳环上C-H伸缩振动 1600-1450, C=C 骨架振动 880-680C-H。

芳香化合物重要特征:一般在1600,1580,1500和1450,可能出现强度不等的4个峰。

880-680,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。

5、醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,
O-H 自由羟基O-H的伸缩振动:3650-3600,为尖锐的吸收峰, 分子间
氢键O-H伸缩振动:3500-3200,为宽的吸收峰;C-O 伸缩振动: 1300-1000, O-H 面外弯曲: 769-659
6、醚: 特征吸收: 1300-1000的伸缩振动,
脂肪醚: 1150-1060一个强的吸收峰芳香醚,两个C-O伸缩振动吸收:1270-1230(为Ar-O伸缩) 1050-1000(为R-O伸缩)
7、醛和酮: 醛的主要特征吸收: 1750-1700(C=O伸缩) 2820,2720(醛基C-H伸缩)。

脂肪酮: 1715,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低。

8、羧酸:羧酸二聚体: 3300-2500宽,强的O-H伸缩吸收 ;1720-1706,C=O 吸收 ;1320-1210,C-O伸缩 ;920成键的O-H键的面外弯曲振动。

9、酯: 饱和脂肪族酯(除甲酸酯外)的C=O 吸收谱带: 1750-1735区域;饱和酯C-C(=O)-O谱带:1210-1163区域,为强吸收。

10、胺:3500-3100,N-H 伸缩振动吸收1350-1000,C-N 伸缩振动吸收,N-H变形振动相当于CH2 ,的剪式振动方式,其吸收带在: 1640-1560,面外弯曲振动在900-650。

11、腈:腈类的光谱特征:三键伸缩振动区域,有弱到中等的吸收脂肪族腈2260-2240芳香族腈 2240-2222
12、酰胺: 3500-3100,N-H伸缩振动;1680-1630, C=O伸缩振动;1655-1590,N-H弯曲振动;1420-1400,C-N伸缩
13、有机卤化物: C-X 伸缩脂肪族 C-F,1400-730 ;C-Cl,850-550;C-Br,690-515;C-I ,600-500。

红外识谱图口诀
红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,
2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,
长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。

1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;
间二取代出三峰,700、780,880处孤立氢。

醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,
伯仲叔醇位不同。

1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,
环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,
920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。

1600兔耳峰,常
为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,
叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,仲胺盐、叔胺盐,2700上下可分辨,亚胺盐更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

钝盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐。

1100是硫酸根,1380硝酸盐,1450碳酸根,一千左右看磷酸。

硅酸盐,一峰宽,1000真壮观。

勤学苦练多实践,红外识谱不算难。

相关文档
最新文档