制药化工原理:第一章第三节流体流动现象
化工原理各章节知识点总结
第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动流场中各点流体的速度u 、压强p不随时间而变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原那么的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性稳定性是指系统对外界扰动的反响。
定态性是指有关运动参数随时间的变化情况。
边界层流动流体受固体壁面阻滞而造成速度梯度的区域。
边界层别离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。
化工原理(上)主要知识点
化工原理〔上〕各章主要知识点三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的根本方程一、密度1. 气体密度:RTpM V m ==ρ2. 液体均相混合物密度:nma a a ρρρρn22111+++=〔m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度〕3. 气体混合物密度:n n mρϕρϕρϕρ+++= 2211〔m ρ—混合气体的密度,ϕ—各组分体积分数〕4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体〔液体〕;假设有显著的改变那么称为可压缩流体〔气体〕。
二、.压力表示方法1、常见压力单位及其换算关系:mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压〔以绝对真空为基准〕、表压〔真空度〕〔以当地大气压为基准,由压力表或真空表测出〕 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: 〔1〕从各方向作用于某点上的静压力相等;〔2〕静压力的方向垂直于任一通过该点的作用平面;〔3〕在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的上下而变化。
2、流体静力学方程〔适用于重力场中静止的、连续的不可压缩流体〕)(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρ p z gp=ρ〔容器内盛液体,上部与大气相通,g p ρ/—静压头,“头〞—液位高度,p z —位压头 或位头〕上式说明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低那么压力愈大。
四、流体静力学方程的应用 1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。
测量液体:)()(12021z z g gR p p -+-=-ρρρ测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的根本方程一、根本概念1、体积流量〔流量s V 〕:流体单位时间内流过管路任意流量截面〔管路横截面〕的体积。
第一章-流体流动-第三节-流体流动中的守恒原理
西北大学化工原理课件
ΣFx = qm (u2 x − u1x ) ΣFy = qm (u2 y − u1 y ) ΣFz = qm (u2 z − u1z )
式中qm为流体的质量流量,kg/s;ΣFx、ΣFy、ΣFz 为作用于控制体内流体上的外力之和在三个坐标轴上 的分量。
西北大学化工原理课件
动量守恒定理的应用举例 (1) 弯管受力 (2)流量分配
1 2 p1 1 2 p2 z1 g + u1 + + he = z2 g + u2 + + Σh f ρ ρ 2 2
g z ——位能
u2 2 p
动能 静压能
总机械能
ρ
Σhf ——能量损失 he——外加能量 单位——J/kg
西北大学化工原理课件
用柏努利方程解决问题的步骤: 条件:对不可压缩的定态流动且与外界没有能量交换
西北大学化工原理课件
第三节
流体流动中的守恒原理
流体流动规律的一个重要方面是流速、压强等 运动参数在流动过程中的变化规律。流体流动应当 服从一般的守恒原理:质量守恒、能量守恒和动量 守恒。从这些守恒原理可以得到有关运动参数的变 化规律。
西北大学化工原理课件
一、 质量守恒
1、流量 单位时间内流体流过管道任一截面的物质量 体积流量 单位时间内流经管道任意截面的流体体积。 qV—单位(m3/s或m3/h)—因次[L3/T] 质量流量 单位时间内流经管道任意截面的流体质量。 qm—单位(kg/s或kg/h)—因次[M/T] 二者关系: q m=q vρ
℘ u + =C ρ 2
2
西北大学化工原理课件
2、沿流线的机械能守恒 柏努利方程也适合于做定态流动时同一流线的 流体,因为定态流动时流线和轨线重合。 3、理想流体管流的机械能守恒
化工原理—第一章流体流动
化工原理—第一章流体流动流体流动是化工工程中的重要内容之一,是指在一定的条件下,流体沿特定的路径进行移动的现象。
流体流动在化工工程中有着广泛的应用,例如在管道输送、搅拌、混合、分离等过程中都会涉及到流体的流动。
流体流动的研究内容主要包括流体的运动规律、流体的运动特性以及流体流动对设备和工艺的影响等方面。
在化工原理中,主要关注的是流体的运动规律和运动特性,以便更好地了解流体的性质和行为。
在理解流体流动性质前,首先需要了解流体分子的间隙结构。
一般来说,液体的分子之间距离较小,存在着较强的分子间吸引力,因此液体的分子有较强的凝聚力,可以形成一定的表面张力。
而气体的分子之间距离较大,分子间的相互作用力比较弱,因此气体的分子呈现无规则的运动状态。
流体流动有两种基本形式,即连续流动和非连续流动。
连续流动是指流体在管道或通道内以连续的形式流动,比较常见的有层流和湍流两种形式。
层流是指流体在管道中以层层相叠的方式流动,流速和流向都比较均匀,流线呈现平行或近似平行的形式。
层流特点是流动稳定,流速变化不大,并且流体分子之间相互滑动。
而湍流是指流体在管道中以旋转、交换和混合的方式流动,流速和流向变化较大,流线呈现随机分布的形式。
湍流特点是流动动荡,能量损失较大,并且流体分子之间会发生相互的碰撞。
流体流动的运动规律受到多种因素的影响,其中包括流体的黏度、密度、流速、管道尺寸、摩擦力等。
黏度是流体流动中的一个重要参数,它反映了流体内部分子之间相互作用的强度。
密度是流体流动中的另一个重要参数,它反映了单位体积内流体分子的数量。
流速是指流体单位时间内通过其中一横截面的体积。
流体流动对设备和工艺的影响也十分重要。
例如在管道输送过程中,流体的流速和流体动能的传递与损失会影响到输送效果和能耗;在搅拌过程中,流体的流动对传质和传热起着重要作用;在分离过程中,流体的流动会影响到分离设备的设计和操作。
因此,对流体流动的研究和掌握对于化工工程的设计和操作都具有重要意义。
化工原理(第一章第三节)
• 三、流动类型
• 1.层流 层流 • 流体质点作直线运动,即流体分层运动, 流体质点作直线运动,即流体分层运动,层 次分明,彼此互不混杂。 次分明,彼此互不混杂。 在总体上沿管道向前运动, 在总体上沿管道向前运动,同时还在各个方 向作随机的脉动。 向作随机的脉动。
• 2.湍流 湍流 •
• 四、影响流型的因素
• 二、粘度 • 衡量流体粘性大小的物理量叫粘度。 衡量流体粘性大小的物理量叫粘度。 • 粘度的物理意义是促使流体流动产生单位速 度梯度时剪应力的大小。 度梯度时剪应力的大小 。 粘度总是与速度梯度相 联系,只有在运动时才显现出来。 联系,只有在运动时才显现出来。 • 粘度是流体物理性质之一, 粘度是流体物理性质之一 , 其值一般由实验 测定。液体的粘度随温度升高而减小, 测定 。 液体的粘度随温度升高而减小 , 气体的粘 度则随温度升高而增大。 度则随温度升高而增大 。 压力对液体粘度的影响 很小,可忽略不计,气体的粘度, 很小 , 可忽略不计 , 气体的粘度 , 除非在极高或 极低的压力下,可以认为与压力无关。 极低的压力下,可以认为与压力无关。 • 粘度的单位, SI制中为 制中为: .s, 粘度的单位,在SI制中为:Pa .s,常用单位 还有: (P)、厘泊(cP) 它们之间的换算是: (cP), 还有:泊(P)、厘泊(cP),它们之间的换算是: • 1 Pa .s = 10 P = 1000 cP
1. 连续性方程
u1 d2 2 u2 =( d1 )
2. 柏努利方程
p2 1 2 p1 1 2 u2 +Wf u1 +We = gZ2 + ρ + gZ1 + ρ + 2 2 当能量用液柱高度表示时,上式可改写成 当能量用液柱高度表示时, p2 1 2 p1 1 2 u2 +hf u1 +he = Z2 + Z1 + + + ρg ρg 2g 2g 当能量用压力表示时, 当能量用压力表示时,柏氏方程可改写成
化工原理第一章 流体流动
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
107963-制药化工原理-第五章传热-第10讲 孟娜
强为350mmHg,则真空度为 395mmHg
。
测得另一容器内的表压强为1360 mmHg,则其绝对
压强为2105 mmHg
三、流体静力学基本方程式
➢ 推导:
在静止液体中,液柱所受的向上和向
下的力达到平衡,即:
p2 A p1A A(Z1 Z2 )g
化简
p2 p1 g(Z1 Z2 )
如图1-3所示,若液柱的上底面为液面, 图图11--32以流液体面静为力基学准基的本流方体
流体及特点 ▪ (一)流体:气体和液体几乎没有抵抗变形的能力
不但整体会产生运动,其内部质点也会产生相对运动,具有 流动性,故把气体和液体统称为流体。 (二)特点:1、流动性
2、无固定形状 (三)分类:1、液体:不可压缩性流体
2、气体:可压缩性流体
流体的体积随压力温度发生变 化,
如气体
一、流体的密度
(二)流速
1.平均流速:单位时间内流体在流动方向上流 过的距离称为平均流速,以u表 示,单位为 m2 • s1 。
u VS A
A——与流动方向相垂直的管道截面积, m2 。
流速沿径向变化的,管中心的流速是最大的,靠近壁面处最小,所以通常 取整个管截面的平均流速作为流体在管内的流速
2.质量流速:单位时间内流体流过管道单位截 面积的质量称为质量流速G,单 位: kg • m2 • s1 。
小结
▲ 密度具有点特性,液体的密度基本上不随压强而变 化,随温度略有改变;气体的密度随温度和压强而 变。混合液体和混合液体的密度可由公式估算。
▲ 与位能基准一样,静压强也有基准。工程上常用绝 对压强和表压两种基准。在计算中,应注意用统一 的压强基准。
▲ 压强具有点特性。流体静力学就是研究重力场 中,静止流体内部静压强的分布规律。
化工原理第一章(流体的流动现象)
ρ(
∂v ∂v ∂v ∂v ∂p ∂ ∂v 2 r ∂ ∂v ∂w ∂ ∂u ∂v + u + v + w ) = k y − + µ(2 − ∇v) + µ( + ) + µ( + ) ∂t ∂x ∂y ∂z ∂y ∂y ∂y 3 ∂z ∂z ∂y ∂x ∂y ∂x
2012-4-18
湍 流 的 实 验 现 象
2012-4-18
(3)流体内部质点的运动方式(层流与湍流的区别) )流体内部质点的运动方式(层流与湍流的区别) ①流体在管内作层流流动 层流流动时,其质点沿管轴作有规 有规 层流流动 互不碰撞,互不混合 则的平行运动,各质点互不碰撞 互不混合 的平行运动 互不碰撞 互不混合。 ②流体在管内作湍流流动 湍流流动时,其质点作不规则的杂 湍流流动 不规则的杂 乱运动,并互相碰撞混合 互相碰撞混合,产生大大小小的旋涡 旋涡。 乱运动 互相碰撞混合 旋涡 管道截面上某被考察的质点在沿管轴向 轴向运动的同时 轴向 ,还有径向 径向运动(附加的脉动 脉动)。 径向 脉动
du F = µA dy
式中:F——内摩擦力,N; du/dy——法向速度梯度 法向速度梯度,即在与流体流动方向相垂直的 法向速度梯度 y方向流体速度的变化率,1/s; µ——比例系数,称为流体的粘度或动力粘度 粘度或动力粘度,Pa·s。 粘度或动力粘度
2012-4-18
【剪应力 剪应力】 剪应力 【定义 定义】单位面积上的内摩擦力称为剪应力 剪应力,以τ表 定义 剪应力 示,单位为Pa。
ρ(
2012-4-18
著名的“纳维-斯托克斯方程”,把流体的速度、压力、密 度和粘滞性全部联系起来,概括了流体运动的全部规律;只 是由于它比欧拉方程多了一个二阶导数项,因而是非线性的 ,除了在一些特殊条件下的情况外,很难求出方程的精确解 。分析这个方程的性态,“仿佛是在迷宫里行走,而迷宫墙 的隔板随你每走一步而更换位置”。计算机之父冯·诺意曼( Neumann,Joha von 1903~1957)说:“这些方程的特性…… 在所有有关的方面同时变化,既改变它的次,又改变它的阶 。因此数学上的艰辛可想而知了。 有一个传说,量子力学家海森伯在临终前的病榻上向上帝提 有一个传说 了两个问题:上帝啊!你为何赐予我们相对论 相对论?为何赐予我 相对论 们湍流 湍流?海森伯说:“我相信上帝也只能回答第一个问题” 湍流 。
化工原理 第三讲流体动力学(第一章)
④ 列出两截面间的柏努利方程,求出未知量。
例题
用泵将水槽中水打到高位槽。 真空表读数31925Pa,管路 阻力∑hf0-2=23u2,管路阻力 ∑hf0-1=4u2 。 问题 (1)管内流速?
2 2
10m
(2)泵所做的功?
截面选择原则
基准一致,压力基准,位头基准。 通大气的面,压力为大气压。P(表)=0 大截面的流速可忽略不计。u=0 选取适当截面,与流向垂直,条件充分。
流体流动系统里应包含的能量
1. 位能: 指流体因处于地球重力场中而具有的能量,mgz,J。 2. 动能:
m u2 指流体因流动而具有的能量, 2
,J。
3. 压力能: 设截面1—1′的压力为p,为了把流体推进去,必 须对流体作功,因此流体带着与此功相当的能量进入 1—1′截面,这部分能量称为压力能,pV, J。 4. 内能: 指贮存于物质内部的能量,U ,J。 5. 热能:单位质量流体流过换热器时获得或放出的能量。用qe 表示,J/kg 或 Qe,J。 6. 外功:单位质量流体通过泵或其它输送机械所获得的能量, 或流体对外界所作的功。用we表示,J/kg或 We,J 。
u1 2.2m / s
1 2 P2 1 2 Z0 g u0 we Z 2 g u2 h f 0 2 2 2
we Z 2 g h f 02 11 9.81 23 u12 we 221J / kg
补充习题:α = 60°,高H = 100mm的圆锥形漏斗,下面有 一个截面积为f0 = 0.5cm2的小孔,设水经小孔流 出的流量系数C = 0.62,试求水经小孔流完所需 要的时间。
第三节 流体流动的守恒原理 三、机械能守恒—柏努利(Bernoulli)方程式
化工原理第一章主要内容
化⼯原理第⼀章主要内容第⼀章流体流动流体:⽓体和液体统称流体。
流体的特点:具有流动性;其形状随容器形状⽽变化;受外⼒作⽤时内部产⽣相对运动。
质点:⼤量分⼦构成的集团。
第⼀节流体静⽌的基本⽅程静⽌流体的规律:流体在重⼒作⽤下内部压⼒的变化规律。
⼀、流体的密度ρ1. 定义:单位体积的流体所具有的质量,kg/m 3。
2. 影响ρ的主要因素液体:ρ=f(t),不可压缩流体⽓体:ρ=f(t ,p),可压缩流体3.⽓体密度的计算4.混合物的密度5.与密度相关的⼏个物理量⽐容υ⽐重(相对密度) d ⼆、压⼒p 的表⽰⽅法定义:垂直作⽤于流体单位⾯积上的⼒ 1atm=760mmHg=1.013×105Pa=1.033kgf/cm 2 =10.33mH2O 1at=735.6mmHg=9.807×105Pa =1kgf/cm 2 =10mH20 表压 = 绝对压⼒ - ⼤⽓压⼒真空度 = ⼤⽓压⼒ - 绝对压⼒三、流体静⼒学⽅程特点:各向相等性;内法线⽅向性;在重⼒场中,同⼀⽔平⾯上各点的静压⼒相等,但其值随着点的位置⾼低变化。
1、⽅程的推导 2、⽅程的讨论液体内部压强 P 随 P 0 和 h ⽽改变的; P ∝h ,静⽌的连通的同⼀种液体内同⼀⽔平⾯上各点的压强相等;当P 0改变时,液体内部的压⼒也随之发⽣相同的改变;⽅程成⽴条件为静⽌的、单⼀的、连续的不可压缩流体;h=(P-P 0)/ρg ,液柱⾼可表⽰压差,需指明何种液体。
3、静⼒学⽅程的应⽤ (1)压⼒与压差的测量 U 型管压差计微差压差计(2)液位的测定(3)液封⾼度的计算 m Vρ=(),f t p ρ=4.220M =ρ000T p p T ρρ=PM RT ρ=12121n m n a a a ρρρρ=+++1122......m n nρρ?ρ?ρ?=+++mm PM RTρ=1/νρ=41/,gh p p ρ+=0()12A C P P gR ρρ-=-() gz21A B A gR P P ρρρ+-=-第⼆节流体流动的基本⽅程⼀、基本概念(⼀)流量与流速1.流量:单位时间流过管道任⼀截⾯的流体量。
化工原理第一章3.4节
Logo
(一)、光滑管 )、光滑管 柏拉修斯式: 柏拉修斯式:
λ = 0.316 Re 0.25 , Re = 8 × 10 3 ~ 10 5
0.32 λ = 0.0056 + 0.5 Re , Re = 3 × 10 3 ~ 3 × 10 6 顾琉珍公式: 顾琉珍公式:
尼-卡公式: 1 卡公式:
Logo
层流时此段长度与管层之比约等于0.05Re 湍流时进口段长度大约等于40~50d。
层流边界层 湍流边界层
缓冲层
层流底层
层流边界层与湍流边界层
Logo
二、边界层分离(产生大量漩涡) 边界层分离(产生大量漩涡) 摩擦阻力(表面阻力) 形体阻力(弯曲、扩大或缩小、边界层分离)
式中 uρ = mu / V 量梯度。 µ 剪应力即动量通量= ρ 与单位体积动量的梯度之积 负号表示动量传递的方向是速度减小的方向 运动粘度 v = µ ,单位 m2/s ,cm2/s
µ d (uρ ) τ =− ⋅ ρ dy
d (uρ ) 是单位体积的动量, dy 以单位体积流体计的动
ρ
Logo
二、范宁公式与摩擦因素 范宁公式推导:P2 -P1 - FW =0 πd 2 πd 2 P2 -P1 = (P2 -P1 )( ) = ∆Pf 4 4
FW=
τ w (πdl )
带入上式,则
∆Pf = (4l )τ w d
τ w l ρu 2 ∆Pf = 8( 2 )( )( ) ρu d 2
第三节 流体流动现象 1-9 粘度
一、牛顿粘性定律
流体层——无数极薄的圆筒,一层套一层,每一层上质点 流速相等 du du τ =µ dy , dy——速度梯度 ∆ 流体的粘性只有在它运动时才显现出 粘性总是与速度梯度相联系
化工原理第一章流体流动知识点总结
第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
855化工原理-参考书目和考试大纲
研究生入学考试《化工原理》参考书及考试大纲参考书:1. 杨同舟,于殿宇主编,食品工程原理中国农业出版社,2011年2月第2版;2. 王志祥主编,制药化工原理,化学工业出版社,2014年9月第2版考试大纲:第0章引论0-1 化工原理的研究内容(了解)0-2 物料衡算和能量衡算(掌握)第一章流体流动第一节流体静力学原理(熟悉)1-1 流体密度和压力1-2 流体静力学基本方程式(掌握)第二节管内流体流动的基本规律(掌握)1-3 管内流动的连续性方程1-4 柏努利方程第三节流体流动现象(熟悉)1-5 流体的黏度1-6 流体流动型态1-7 流体在圆管内速度分布第四节流体流动的阻力(熟悉)1-8 管内流体流动的直管阻力1-9 管内流体流动的局部阻力第五节管路计算(掌握)1-10简单管路1-11 复杂管路第六节流量测定(了解)1-12 测速管和流量计第二章流体输送第一节离心泵(掌握)2-1离心泵的结构原理2-2 离心泵的性能2-3 离心泵的安装高度和工作点2-4 离心泵的类型和选用第二节其它类型泵(了解)2-5 往复泵2-6 旋转泵第三节风机(了解)2-7 通风机和鼓风机第三章粉碎与混合第一节粉碎(了解)3-1 粉碎的基本概念3-2 粉碎设备第二节筛分(熟悉)3-3 筛分和筛析3-4 筛分设备第三节混合(掌握)3-5 混合的基本理论3-6 液体的搅拌混合3-7乳化3-8 浆体的混合及塑性固体的捏合3-9 固体的混合第四章沉降与过滤第一节重力沉降(熟悉)4-1 颗粒在流体中的运动4-2 悬浮液的重力沉降4-3 气溶胶的重力沉降第二节过滤(掌握)4-4 过滤的基本概念4-5 过滤的基本理论4-6 过滤设备第三节离心分离(掌握)4-7 离心分离原理4-8 过滤式离心机4-9 沉降式离心机4-10 分离式离心机4-11 旋风分离器第五章传热第一节概述(理解)第二节热传导(掌握)第三节对流传热(掌握)第四节传热计算(掌握)第五节换热器(理解)第六章蒸发第一节蒸发概述(了解)6-1 食品物料蒸发6-2 蒸发的操作方法第二节蒸发器(熟悉)6-3 蒸发器6-4 蒸发的辅助设备第三节单效蒸发(掌握)6-5 蒸发器的换热误差6-6 单效蒸发的计算第四节多效蒸发(了解)6-7 多效蒸发流程和温差分配6-8 多效蒸发的计算第七章干燥第一节干燥的基本原理(掌握)7-1 干燥的目的和方法7-2 湿物料中的水分7-3 干燥静力学7-4干燥动力学第二节干燥设备(熟悉)7-5 对流干燥设备7-6其它干燥设备第三节喷雾干燥(熟悉)7-7 喷雾干燥原理及应用7-8 喷雾干燥设备第八章萃取第一节液-液萃取(熟悉)10-1 液-液萃取的基本原理10-2 液-液萃取过程第二节浸取(了解)10-3 浸取的基本原理10-4 浸取流程和设备10-5 多级逆流浸取级数的计算第三节超临界流体萃取(熟悉)10-6 超临界流体萃取的基本原理10-7 超临界流体萃取在食品、药品工业中的应用第九章膜分离第一节膜及膜分离器(熟悉)11-1 分离膜11-2 膜分离器第二节反渗透和超滤(熟悉)11-3 反渗透的基本原理11-4 反渗透的实际过程11-5 超滤和微孔过滤11-6 超滤和反渗透在食品工业中的应用第三节电渗析(了解)11-7 电渗析的基本原理和概念11-8 电渗析装置系统计算题主要在第一、二和第五章。
化工原理知识点总结复习重点(完美版)
第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π/4d 2G V S =uA=π/4d 2u● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
化工原理之一 流体流动
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。
化工原理课件 第一章第三节
如图所示,设有上、下两块面积很大且相距 很近的平行平板,板间充满某种静止液体。 若将下板固定,而对上板施加一个恒定的外 力,上板就以恒定速度u沿x方向运动。 若u较小,则两板间的液体就会分成无数平行 的薄层而运动,粘附在上板底面下的一薄层流体 以速度u随上板运动, 其下各层液体的速度 依次降低,紧贴在下 板表面的一层液体, 因粘附在静止的下板 上, 其速度为零,两平 板间流速呈线性变化。
随着流体的向前流动,流速受影响的区域逐 渐扩大,即在垂直于流体流动方向上产生了速度 梯度。 流动边界层:存在着较大速度梯度的流体层区 域,即流速降为主体流速的99% 以内的区域。
边界层厚度:边界层外缘与壁面间的垂直距离。
流体在平板上流动时的边界层: 如图1-26所示, 由于边界层的形成,把沿壁面 的流动分为两个区域:边界层区和主流区。
二、流体的粘度 (动力粘度)
1.粘度的物理意义
流体流动时在与流动方向垂直的方向上产 生单位速度梯度所需的剪应力。 粘度总是与速度梯度相联系,流体只有在运 动时才显现出来。分析静止流体的规律时就不用 考虑粘度这个因素。 粘度的物理本质:分子间的引力和分子的运动与 碰撞。
讨论 :
μ=f(p,T) T位时间通过单位截面积流体的质量;
μu/d 与流体内的黏滞力成正比。
u /( u / d )
2
du
Re
Re 数实际上反映了流体流动中惯性力与
黏滞力的比。标志着流体流动的湍动程度。 当惯性力较大时, Re 数较大;
当黏滞力较大时, Re 数较小;
一、层流时的速度分布 实验和理论分析都已证明,层流时的速度分 布为抛物线形状,如图1- 23所示。以下进行理论 推导。
物理单位制:
化工原理各章节知识点总结
化工原理各章节知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)第一章?流体流动质点?含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定?假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法?选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法?在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动?流场中各点流体的速度u?、压强p?不随时间而变化。
轨线与流线?轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体?系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别?理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质?分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能?流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别?流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义?流体流动中的位能、压强能、动能之和保持不变。
平均流速?流体的平均流速是以体积流量相同为原则的。
动能校正因子?实际动能之平均值与平均速度之动能的比值。
均匀分布?同一横截面上流体速度相同。
均匀流段?各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,?故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别?是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性?稳定性是指系统对外界扰动的反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层流流动时,流体质点沿管轴做有规则的平行运动。 湍流流动时,流体质点在沿流动方向 运动的同时,还做随
机的脉动。
2020/11/10
管道截面上任一点的时均速度为:
ui
1
u d 2
1 i
湍流流动是一个时均流动上叠加了一个随机的脉动量 。
例如,湍流流动中空间某一点的瞬时速度可表示为:
体的粘性愈大,其值愈大,称为粘性系数或动力粘度,简
称粘度。
2020/11/10
2、流体的粘度
1)物理意义
du
dy
促使流体流动产生单位速度梯度的剪应力。 粘度总是与速度梯度相联系,只有在运动时才显现出来
2)粘度与温度、压强的关系
a) 液体的粘度随温度升高而减小,压强变化时,液体
的粘度基本不变。
2020/11/10
2020/11/10
二、流动类型与雷诺准数
1、雷诺实验(p25页)
滞流或层流
2020/11/10
湍流或紊流
2020/11/10
2、雷诺数Re
雷诺数的因次 :
Re du
Re
du
m
m s1 kg m3 N s m2
流速u、管内径d、 流体粘度μ和密度ρ 也都能引起流动状 态的改变。
第一章 流体流动
第三节 流体流动现象
一、牛顿粘性定律与流体的 粘度
二、流动类型与雷诺准数 三、滞流与湍流的比较
2020/11/10
一、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。
——流体阻力产生的依据
2020/11/10
2020/11/10
3、滞流和湍流的平均速度
通过管截面的平均速度就是体积流量与管截面积之比
1)层流时的平均速度
流体的体积流量为:
dVs 2urdr (a)
滞流时,管截面上
速度分布为:
u
um ax 1
r2 R2
dr
2020/11/10
dVs
umax
2r
1
r2 R2
dr
积分此式可得
Vs
2umax rr0R
kg m1 s1 (N m2) s
kg (m s2 ) N
N N
N0
Re是一个没有单位,没有因次的纯数 。 在计算Re时,一定要注意各个物理量的单位必须统一。 雷诺准数可以判断流型
2020/11/10
流体在圆形直管内流动时:
当Re 2000时,流体的流动类型属于滞流 ; 当Re 4000时,流体的流动类型属于湍流; 2000<Re <4000时, 可能是滞流,也可能是湍流,与外
r R
n
dr
积分上式得:
Vs
n
2n2
12n
1
R
2
umax
um
Vs
R2
当r R,u 0时 c p R2
4l
u p R r2 4l
r 0时,u umax
代入上式得: umax
p
4l
R2
u
um ax 1
r2 R2
——滞流流动时圆管内速度分布式
2020/11/10
2)圆管内湍流流动的速度分布
1
u
umax
1
r R
n
——湍流流动时圆管内速度分布式
4×10-4<Re<1.1×105时,n=6; 1×10-5<Re<3.2×106时,n=7; Re>3.2×106时,n=10 。
uz uz uz uy uy uy ux ux ux
湍流的特征是出现速度的脉动。
2020/11/10
2、流体在圆管内的速度分布
速度分布:流体在管内流动时截面上各点速度随该点与 管中心的距离的变化关系。
1)圆管内层流流动的速度分布
作用于流体单元左端的总压力为:P1 r 2 p1
2020/11/10
Re du
0.05 2 999.7 1;4000,所以水在管内的流动状态为湍流动。
2)保持层流流动的最大Re为2000,即 Re du 2000
u Re 20001.306103 0.05m s1
d
0.05 999.7
2020/11/10
三、层流与湍流的比较
界条件有关。——过渡区
2020/11/10
例:10ºC的水在内径为50mm的管内流动,流速为2m/s,
试计算:1)Re的数值,并判断水在管内的流动状态;
2)水在管内保持层流流动的最大流速。
解:1)从附录2查得10ºC时,
ρ=999.7kg/m3,μ=1.306×10-3Pa.s, 管径d=0.05m,流速u=2m/s,
作用于流体单元右端的总压力为: P2 r 2 p2
作用于流体单元四周的剪应力为: F 2rl
du du
dy
dr
F 2rl du
dr
r 2
p1
r 2
p2
2rl
du dr
0
du p rdr
dr 2l
2020/11/10
du p r dr p r 2 c
2l
2l 2
r
1
r2 R2
dr
2umax
r2 2
r4 4R2
R 0
R2umax / 2
um
Vs A
R
2umax
R2
/
2
umax 2
层流时平均速度等于管中心处最大速度的一半 。
2020/11/10
2)湍流时的平均速度
1
u
umax
1
r R
n
代入
dVs
u
2r
dr得:
1
dVs
2umax
r
1
1Pa s 1000CP 10P
4) 混合物的粘度
对常压气体混合物:
1
m
yiui M i 2
1
yi M i 2
对于分子不缔合的液体混合物 :
lg m xi lgui
2020/11/10
5)运动粘度
v
单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
1St 100cSt 104 m2 / s
b)气体的粘度随温度升高而增大,随压强增加而增加的 很少。 3)粘度的单位
在SI制中:
du /
dy
N / m2 (m / s)
N.S m2
m
在物理单位制中,
Pa.S
du /
dy
dyn / cm2 cm s
dyn.s cm2
g P(泊)
cm.s
cm
2020/11/10
SI单位制和物理单位制粘度单位的换算关系为:
F u S
F u S
y
y
对于特定流体,两相邻流体层之间产生的内摩擦力与两流
体层间的速度差成正比,与流体层间的垂直距离成反比。
剪应力:单位面积上的内摩擦力,以τ表示。
F u
S y
适用于u与y成直线关系
2020/11/10
du
dy
——牛顿粘性定律
式中:
du :速度梯度 dy
:比例系数,它的值随流体的不同而不同,流