2019八年级数学期末复习重点好题
2019-2020年八年级下学期期末考试数学试题(解析版)
2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
2019-2020学年上海八年级数学上册期末专题复习专题06 几何证明复习(考点讲解)(教师版)
专题06 几何证明【考点剖析】1.命题:判断一件事情的句子;正确的命题叫真命题;错误的命题叫假命题;一个命题是由题设和结论两部分组成.2.公理和定理:从长期的实践中总结出来的真命题叫公理;从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理.3.证明真命题的步骤:①根据题意作出图形,并在图形上标出必要的字母和符号;②根据题设和结论,结合图形写出已知和求证;③经过分析,找出由已知推出结论的途径,写出证明过程.4.平行线的判定与性质平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行;两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.平行线的性质:两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角相等。
5.全等三角形:全等三角形的判定:S.A.S; A.S.A; A.A.S; S.S.S;全等三角形的性质:全等三角形的对应角相等,对应边相等。
6.等腰三角形的判定与性质性质1:等腰三角形的两个底角相等;(简称:等边对等角)性质2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称:等腰三角形的三线合一)判定1:(定义法)有两条边相等的三角形;判定2:如果一个三角形有两个角相等,那么这个三角形是等腰三角形。
(简称:等角对等边)7.证明常见题型证明两直线平行、两直线垂直、两条线段相等、两个角相等、线段或角的和差倍半简单的问题;【典例分析】【考点】证明举例例1 (普陀2017期中5)下列命题中,真命题是()A.两条直线被第三条直线所截,同位角相等;B.两边及其中一边的对角对应相等的两个三角形全等;C.直角三角形的两个锐角互余;D.三角形的一个外角等于两个内角的和. 【答案】C【解析】A 、两条直线被第三条直线所载,同位角不一定相等,因为两直线不一定平行,故A 错;B 、边、边、角不一定能得到两个三角形全等,故B 错;C 、直角三角形的两个锐角互余,正确;D 、三角形的一个外角等于不它不相邻的两个内角和,故D 错。
2019年新人教版数学八年级上册期末试题及答案
2019年新人教版数学八年级上册期末试题及答案期末教学质量检测八年级数学试卷注意事项:1.在答题卡指定位置填写姓名、准考证号。
2.所有解答内容需在答题卡上涂写。
3.选择题需用2B铅笔将答题卡对应题号选项涂黑,如需改动,须擦净另涂。
4.填空题、解答题在答题卡对应题号用0.5毫米黑色字迹笔书写。
一、选择题(本大题共10小题,每小题3分,共30分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A。
1,2,6B。
2,2,4C。
1,2,3D。
2,3,42.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A。
直角三角形B。
锐角三角形C。
钝角三角形D。
等边三角形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A。
60°B。
70°C。
80°D。
90°插入的图未提供)4.观察下列图标,从图案看是轴对称图形的有()A。
1个B。
2个C。
3个D。
4个5.若分式的值为x=-2,则()x+2A。
x=-2B。
x=±2C。
x=2D。
x=06.计算2x/(x-2)的结果是()A。
B。
1C。
-1D。
x7.下列各运算中,正确的是()A。
3a+2a=5aB。
(-3a)²=9a²C。
a÷a=1D。
(a+2)×4=4a+88.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数是()插入的图未提供)A。
70°B。
55°C。
50°D。
40°9.如图,在四边形ABCD中,AB=AD,CB=CD,若连结AC、BD相交于点O,则图中全等三角形共有()插入的图未提供)A。
1对B。
2对C。
3对D。
4对10.已知(m-n)=8,(m+n)=2,则m+n的值为()A。
10B。
6C。
5D。
3二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:a-4b=()12.正十边形的每个内角的度数为()13.若m+n=1,mn=2,则(2/m)+(2/n)的值为()14.已知实数 $x$,$y$ 满足 $|x-4|+(y-8)^2= $,则以 $x$,$y$ 的值为两边长的等腰三角形的周长是多少?15.对于数 $a$,$b$,$c$,$d$ 规定一种运算 $\frac{ad-bc}{d^2-b^2}$,如 $\frac{1\times(-2)-(-1)\times2}{(-2)^2-1^2}=-2$。
北京市海淀区2019年八年级上学期期末考试数学试题及答案
B D E CA北 京 海 淀 区 八 年 级 第 一 学 期 期 末 练 习数 学班级 姓名 成绩一、选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是ABCD2.下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=3.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为A .40.510-⨯ B .4510-⨯C .5510-⨯D .35010-⨯4.若分式1a a+的值等于0,则a 的值为 A .1- B .1C .2-D .25.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是 A .AC =CD B .BE = CD C .∠ADE =∠AED D .∠BAE =∠CAD 6.等腰三角形的一个角是70°,它的底角的大小为A .70°B .40°C .70°或40°D .70°或55°7.已知28x x a -+可以写成一个完全平方式,则a 可为A .4B .8C .16D .16-8.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点.分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点.若点P 的坐标为(a ,b ),则 A .2a b = B .2a b = C .a b = D .a b =- 9.若3a b +=,则226a b b -+的值为 A .3 B .6C .9D .1210.某小区有一块边长为a 的正方形场地,规划修建两条宽为b 的绿化带.方案一如图甲所示,绿化带面积为S 甲;方案二如图乙所示,绿化带面积为S 乙.设()0k S a b S =>>甲乙,下列选项中正确的是b bbb a a a abb b bbb bbaa甲 乙A .012k <<B .112k <<C .312k <<D .232k <<二、填空题(本大题共24分,每小题3分)11.如图,在四边形ABCD 中,∠A =90°,∠D =40°,则∠B +∠C 为 .12.点M ()31-,关于y 轴的对称点的坐标为 .13.已知分式满足条件“只含有字母x ,且当x =1时无意义”,请写出一个这样的分式: .14.已知△ABC 中,AB =2,∠C =40°,请你添加一个适当的条件,使△ABC 的形状和大小都是确定的.你添加的条件是 .15.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O 处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是 .16.如图,在平面直角坐标系xOy 中,△DEF 可以看作是△ABC 经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC 得到△DEF 的过程: .ABCD17.如图,在△ABC 中,AB =4,AC =6,∠ABC 和∠ACB 的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则△AMN 的周长为.18.已知一张三角形纸片ABC (如图甲),其中AB =AC .将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD (如图乙).再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF (如图丙).原三角形纸片ABC 中,∠ABC 的大小为 °.甲 乙 丙三、解答题(本大题共17分,第19题8分, 第20题4分,第21题5分) 19.计算:(1)()02420183----;(2)22(1510)5x y xy xy -÷.20.如图,A ,B ,C ,D 是同一条直线上的点,AC =BD ,AE ∥DF ,∠1=∠2.求证:BE = CF .21.解方程:312(2)x x x x -=--.N O M B CA21E D FCB A四、解答题(本大题共15分,每小题5分) 22.先化简,再求值:2442()m m m m m+++÷,其中3m =.23.如图,A ,B 分别为CD ,CE 的中点,AE ⊥CD 于点A ,BD ⊥CE 于点B .求∠AEC 的度数.24.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格. 五、解答题(本大题共14分,第25、26题各7分) 25.阅读材料小明遇到这样一个问题:求计算(2)(23)(34)x x x +++所得多项式的一次项系数.小明想通过计算(2)(23)(34)x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(2)(23)x x ++所得多项式中的一次项系数.通过观察发现:E D CBA也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算(2)(23)(34)x x x +++所得多项式的一次项系数.可以先用2x +的一次项系数1,23x +的常数项3,34x +的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34x +的常数项4,相乘得到16;然后用34x +的一次项系数3,2x +的常数项2,23x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46. 参考小明思考问题的方法,解决下列问题:(1)计算(21)(32)x x ++所得多项式的一次项系数为 .(2)计算(1)(32)(43)x x x ++-所得多项式的一次项系数为 .(3)若计算22(1)(3)(21)x x x x a x ++-+-所得多项式的一次项系数为0,则a =_________. (4)若231x x -+是422x ax bx +++的一个因式,则2a b +的值为 .26.如图,CN 是等边△ABC 的外角ACM ∠内部的一条射线,点A 关于CN 的对称点为D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CN 于点E ,P . (1)依题意补全图形;(2)若ACN α∠=,求BDC ∠的大小(用含α的式子表示); (3)用等式表示线段PB ,PC 与PE 之间的数量关系,并证明.NB C MA附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)对于0,1以及真分数p ,q ,r ,若p <q <r ,我们称q 为p 和r 的中间分数.为了帮助我们找中间分数,制作了下表:(6+两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数13、12、23,有112323<<,所以12为13和23的一个中间分数,在表中还可以找到13和23的中间分数25,37,47,35.把这个表一直写下去,可以找到13和23更多的中间分数.(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的35和23的中间分数是;(2)写出分数ab和cd(a、b、c、d均为正整数,a cb d<,c d<)的一个..中间分数(用含a、b、c、d的式子表示),并证明;(3)若sm与tn(m、n、s、t均为正整数)都是917和815的中间分数,则mn的最小值为.海淀区八年级第一学期期末练习数学参考答案一、选择题(本大题共30分,每小题3分)二、填空题(本大题共24分,每小题3分) 11.230°12.(31)--,13.11x - 14.答案不唯一,如:∠A =60° (注意:如果给一边长,需小于或等于2)或AC=BC15.“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线” 16.答案不唯一,如:将△ABC 关于y 轴对称,再将三角形向上平移3个单位长度 17.1018.72三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分) 19.(1)解:原式=14319-+--------------------------------------------------------------------3分=19.----------------------------------------------------------------------------- 4分(2)解:原式=()22151105x y xy xy-⋅-------------------------------------------------------1分 =5(12)5xy x y xy-⋅--------------------------------------------------------2分 =32x y -.---------------------------------------------------------------------- 4分 20.证明:∵AC =AB +BC ,BD =BC +CD ,AC =BD , ∴AB =DC .---------------------------------------------1分 ∵AE ∥DF ,∴∠A =∠D .-------------------------------------------2分 在△ABE 和△DCF 中,,,1=2,A D AB DC ∠=∠=∠∠⎧⎪⎨⎪⎩∴△ABE ≌△DCF .---------------------------------------------------------------------3分 ∴BE =CF .------------------------------------------------------------------------------4分21.解:方程两边乘()2x x -,得()223xx x --=.-------------------------------------------------------------------------2分21ED FCBA解得32x =.------------------------------------------------------------------------4分检验:当32x =时,()20x x -≠.∴原分式方程的解为32x =.------------------------------------------------------------5分四、解答题(本大题共15分,每小题5分) 22.解:原式=22442m m m m m +++÷----------------------------------------------------------------1分=22442m m m mm +++⋅=()2222m m mm ++⋅--------------------------------------------------------------------2分=22m m +.--------------------------------------------------------------------------3分当3m =时,原式=15.------------------------------------------------------------------5分注:直接代入求值正确给2分.23.解:连接DE .----------------------------------------------1分∵A ,B 分别为CD ,CE 的中点,AE ⊥CD 于点A ,BD ⊥CE 于点B ,∴CD =CE =DE , ∴△CDE 为等边三角形.----------------------------3分∴∠C =60°.∴∠AEC =90°12-∠C =30°.----------------------5分24.解:设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为()60x +元.--------------------------------------------------------------------------------------------1分由题意,得48003600260xx =+.-----------------------------------------------------------3分解得120x =.-----------------------------------------------------------------4分经检验,120x =是原方程的解,且符合题意.答:每套《水浒传》连环画的价格为120元.--------------------------------------------5分五、解答题(本大题共14分,第25、26题各7分)25.(1)7.--------------------------------------------------------------------------------------------1分(2)7-.----------------------------------------------------------------------------------------3分 (3)3-.----------------------------------------------------------------------------------------5分 (4)15-.--------------------------------------------------------------------------------------7分ED CB AFP E DNB C MA 26.(1)P EDN B C MA-------------------------------------------------1分(2)解:∵点A 与点D 关于CN 对称, ∴CN 是AD 的垂直平分线, ∴CA =CD .∵ACN α∠=,∴∠ACD =22ACN α∠=.-------------------------------------------------------2分 ∵等边△ABC ,∴CA =CB =CD ,∠ACB =60°.------------------------------------------------3分 ∴∠BCD =∠ACB +∠ACD =60°+2α.∴∠BDC =∠DBC =12(180°-∠BCD )=60°-α.-------------------4分(3)结论:PB =PC +2PE .------------------------------------------------------------------5分 本题证法不唯一,如:证明:在PB 上截取PF 使PF =PC ,连接CF . ∵CA =CD ,∠ACD =2α∴∠CDA =∠CAD =90°-α. ∵∠BDC =60°-α,∴∠PDE =∠CDA -∠BDC =30°.------------------------------------------6分 ∴PD =2PE .∵∠CPF =∠DPE =90°-∠PDE =60°.∴△CPF 是等边三角形.∴∠CPF =∠CFP =60°.∴∠BFC =∠DPC =120°. ∴在△BFC 和△DPC 中,,=,,CFB CPD CBF CDP CB CD ∠=∠∠∠=⎧⎪⎨⎪⎩∴△BFC ≌△DPC . ∴BF =PD =2PE .∴PB = PF +BF =PC +2PE .----------------------------------------------------7分附加题:(本题最高10分,可计入总分,但全卷总分不超过100分) (1)①27;------------------------------------------------------------------------------------1分②58.------------------------------------------------------------------------------------3分(2)本题结论不唯一,证法不唯一,如:结论:a cb d++.--------------------------------------------------------------------------5分证明:∵a、b、c、d均为正整数,a cb d<,c d<,∴()()()201c ab ac a b da c a bc ad d bbb d b b b d b bdd-+-++--===>++++,()()()201a cd a c c b da c c ad bcb ddb d d d b d bd db-+-++--===<++++.∴a a c cb b d d+<<+.-----------------------------------------------------------8分(3)1504.------------------------------------------------------------------------------------10分。
2019-2020人教版八年级数学上学期期末单元复习第12章全等三角形解析版
第12章全等三角形一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.AC=CA C.∠B=∠D D.BC=DC4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.38.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.59.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.2812.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点二.填空题(共4小题)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F°.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE =3.则PF=.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.三.解答题(共5小题)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.参考答案与试题解析一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两个图形能够完全重合,故本选项正确.B、圆内两条相交的线段不能完全重合,故本选项错误;C、两个正方形的边长不相等,不能完全重合,故本选项错误;D、两只眼睛下面的嘴巴不能完全重合,故本选项错误;故选:A.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、全等图形是指形状相同、大小相等的两个图形,故本选项错误;B、全等三角形是指能够完全重合的两个三角形,故本选项错误;C、等边三角形的形状相同、但是大小不一定相等,所以不一定都是全等三角形,故本选项错误;D、全等图形的周长、面积相等,故本选项正确;故选:D.3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.AC=CA C.∠B=∠D D.BC=DC【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.【解答】解:∵△ABC≌△CDA,∴∠1=∠2,AC=CA,∠B=∠D,BC=AD,故只有选项D,BC=DC错误.故选:D.4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°【分析】直接利用全等三角形的性质得出AB=AD,∠B=∠ADE,进而利用已知得出答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠B=∠ADB,∴∠BDA=∠ADE,∵∠EDC=70°,∴∠BDA=∠ADE=×(180°﹣70°)=55°.故选:B.5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 【分析】根据全等三角形的判定方法即可一一判断.【解答】解:A、SSA无法判断三角形全等,故本选项符合题意;B、根据ASA即可判断△ACO≌△BDO,得OC=OD,OA=OB,再用SAS可得三角形全等,故本选项不符合题意;C、根据AAS即可判断三角形全等,故本选项不符合题意;D、根据AAS即可判断三角形全等,故本选项不符合题意;故选:A.6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:A.7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3【分析】证明△ABC≌△EFD可得DE=AC=10,根据AD=AE﹣DE可求解.【解答】解:∵AB∥EF,∴∠A=∠E.又AB=EF,∠B=∠F,∴△ABC≌△EFD(ASA).∴AC=DE=10.∴AD=AE﹣DE=10﹣7=3.故选:D.8.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.5【分析】证明△ABE≌△ECD得到CE值,则BE可求.【解答】解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.9.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm【分析】根据垂直的定义得到∠C=∠ADE=90°,利用AAS定理证明△ACE≌△ADE,根据全等三角形的性质计算即可.【解答】解:∵AC⊥BC,ED⊥AB,∴∠C=∠ADE=90°,在△ACE和△ADE中,,∴△ACE≌△ADE(AAS),∴AD=AC=3cm,∴BD=AB﹣AD=4cm,故选:B.10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS【分析】根据全等三角形的判断方法解答.【解答】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.28【分析】根据角平分线的性质得出DE=CD=2,根据三角形的面积公式求出即可.【解答】解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.12.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点【分析】根据角平分线的性质解答即可.【解答】解:∵三角形角平分线上的点到角两边的距离相等,∴亭的位置应选在三角形三条角平分线的交点上.故选:A.二.填空题(共4小题)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE= 5 cm.【分析】由△ABD≌△ACE可得AD=AE,AC=AB,因为BE=AE﹣AB,即可AE的长度.【解答】解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F=35 °.【分析】利用三角形内角和定理可得∠ACB,再根据全等三角形的性质可得∠F=∠ACB =35°.【解答】解:∵∠A=80°,∠B=65°,∴∠ACB=180°﹣80°﹣65°=35°,∵△ABC≌△DEF,∴∠F=∠ACB=35°,故答案为:=35.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE =3.则PF= 3 .【分析】根据角平分线的性质直接写出结论即可.【解答】解:∵点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,∴PE=PF,∵PE=3,∴PF=PE=3,故答案为:3.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69 cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.三.解答题(共5小题)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明△ACD≌△CAB,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,AC=CA,∴△ACD≌△CAB,∴∠ACD=∠CAB,∴AB∥CD.18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.【分析】首先根据△ACO≌△BDO得到CO=OD,AO=OB,进而得到OE=OF,再证明△COE ≌△DOF,即可得到结论.【解答】解:∵△ACO≌△BDO,∴CO=OD,AO=OB,∵AE=BF,∴OE=OF,∴△COE≌△DOF,∴CE=DF.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.【分析】根据垂直的定义可得∠BDC=∠CEB=90°,根据等腰三角形的性质可得∠ABC =∠ACB,再有公共边BC,利用AAS可得△BCD≌△CBE,据此可得BD=CE.【解答】证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCD和△CBE中,∠BDC=∠CEB,∠DBC=∠ECB,BC=CB,∴△BCD≌△CBE(AAS),∴BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【分析】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【解答】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.【分析】(1)由角边角可证明△ABC和△DEF全等;(2)证明△BFC和△ECF全等,可得∠BFC=∠ECF,继而可得BF∥EC.【解答】证:(1)∵AB∥DE,∴∠A=∠D∵AF=CD,∴AF+FC=CD+FC即AC=DF∵∠AFE=∠BCD,∴∠DFE=∠ACB在△ABC和△DEF中,∴△ABC≌△DEF(ASA)(2)∵△ABC≌△DEF∴BC=EF在△BCF和△EFC中,∴△BCF≌△EFC(SAS)∴∠BFC=∠ECF∴BF∥EC。
人教版八年级上册数学期末考试复习:第11章《三角形》解答题专题复习
第11章《三角形》解答题精选1.(2019秋•花都区期末)如图,在四边形ABCD 中,∠C +∠D =210°(1)∠DAB +∠CBA = 度;(2)若∠DAB 的角平分线与∠CBA 的角平分线相交于点E ,求∠E 的度数.2.(2019秋•南海区期末)阅读下面的材料,并解决问题.(1)已知在△ABC 中,∠A =60°,图1﹣3的△ABC 的内角平分线或外角平分线交于点O ,请直接求出下列角度的度数.如图1,∠O = ;如图2,∠O = ;如图3,∠O = ;如图4,∠ABC ,∠ACB 的三等分线交于点O 1,O 2,连接O 1O 2,则∠BO 2O 1= .(2)如图5,点O 是△ABC 两条内角平分线的交点,求证:∠O =90°+12∠A . (3)如图6,△ABC 中,∠ABC 的三等分线分别与∠ACB 的平分线交于点O 1,O 2,若∠1=115°,∠2=135°,求∠A 的度数.3.(2019秋•普宁市期末)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.4.(2019秋•东莞市期末)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =10°,求∠C 的度数.5.(2020春•东湖区期末)(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的27,求这个多边形的边数.6.(2019秋•越秀区期末)如图所示,在△ABC 中,D 是BC 边上一点∠1=∠2,∠3=∠4,∠BAC =69°,求∠DAC 的度数.7.(2019秋•揭阳期末)探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图①,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.8.(2019秋•江城区期末)如图,Rt △ABC 中,∠C =90°,∠B =3∠A ,求∠B 的度数.9.(2019春•龙门县期末)如图,在四边形ABCD 中,AD ∥BC ,连接BD ,点E 在BC 边上,点F 在DC 边上,且∠1=∠2.(1)求证:EF ∥BD ;(2)若DB 平分∠ABC ,∠A =130°,求∠2的度数.10.(2019春•番禺区期末)(1)如图1,已知AB ∥CD ,求证:∠EGF =∠AEG +∠CFG .(2)如图2,已知AB ∥CD ,∠AEF 与∠CFE 的平分线交于点G .猜想∠G 的度数,并证明你的猜想.(3)如图3,已知AB ∥CD ,EG 平分∠AEH ,EH 平分∠GEF ,FH 平分∠CFG ,FG 平分∠HFE ,∠G =95°,求∠H 的度数.11.(2019春•南海区期末)如图1,在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 与CE 交于点F .(1)求∠BFC 的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.12.(2018秋•澄海区期末)如图,已知AD,AE是△ABC的高和角平分线,∠B=44°,∠C=76°,求∠DAE的度数.13.(2018秋•越秀区期末)如图,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.14.(2018秋•揭西县期末)CE是△ABC的一个外角∠ACD的平分线,且EF∥BC交AB于点F,∠A=60°,∠CEF=50°,求∠B的度数.15.(2018秋•普宁市期末)已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB 的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.16.(2017春•石狮市期末)如图,在△ABC中,点D在BC边上,点E在AC边上,连接AD,DE,∠B=60°(1)若∠3=60°,试说明∠1=∠2;(2)∠C=40°,∠1=50°,且∠3=∠4,求∠2的度数.17.(2019春•潮南区期末)如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.18.(2018秋•大埔县期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠A=42°.(1)求∠BOC的度数;(2)把(1)中∠A=42°这个条件去掉,试探索∠BOC和∠A之间有怎样的数量关系.19.(2019春•南海区期末)已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.20.(2018秋•禅城区期末)叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)21.(2018春•福田区期末)完成下列推理说明.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,∠CDG=∠B,∠1+∠FEA =180°,试说明:∠BFE=∠ADF.理由:因为∠CDG=∠B(已知)所以DG∥AB()所以=∠BAD()因为∠1+∠FEA=180°(已知)所以+∠FEA=180°(等量代换)所以AD∥EF()所以∠BFE=()22.(2018春•海珠区期末)已知点C(﹣10,10),直线CE∥x轴交y轴于点B,点A是x轴的负半轴上的动点,作AD⊥AC交线段BO于点D(点D不与点O、B重合),MD⊥AD交CE于点M,∠EMD,∠OAD的角平分线MN,AN交于点N(1)直接写出OB的长度;(2)求出∠MNA的度数;(3)若NH⊥x轴于点H,求∠ANH的取值范围.23.(2017秋•潮安区期末)如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证△ACE是直角三角形.24.(2017秋•白云区期末)如图,在△ABC中,AD⊥BC,垂足为D,∠1=∠B,∠C=67°,求∠BAC的度数.25.(2018春•澄海区期末)(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图①,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;①如图①,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.26.(2018春•白云区期末)已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.27.(2018春•越秀区期末)如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.28.(2018春•东莞市期末)如图,AC、BD相交于点O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC 的延长线上.(1)求证:CD∥AB;(2)若∠D=38°,求∠ACE的度数.29.(2018春•茂名期末)已知:△ABC,∠A、∠B、∠C之和为多少?为什么?解;∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠(已作)AB∥CD()∴∠B=()而∠ACB+∠ACD+∠DCE=180°∴∠ACB++=180°()30.(2018春•香洲区期末)如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.①求证EG⊥AF;①求∠F的度数.【提示:三角形内角和等于180度】第11章《三角形》解答题精选参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=12∠DAB,∠EBA=12∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°−12(∠DAB+∠CBA)=180°−12(360°﹣∠C﹣∠D)=12(∠C+∠D),∵∠C+∠D=210°,∴∠E=12(∠C+∠D)=105°.2.【解答】解;(1)如图1,∵BO平分∠ABC,CO平分∠ACB∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠BAC)=12(180°﹣60°)=60°∴∠O=180°﹣(∠OBC+∠OCB)=120°;如图2,∵BO平分∠ABC,CO平分∠ACD∴∠OBC=12∠ABC,∠OCD=12∠ACD∵∠ACD=∠ABC+∠A∴∠OCD=12(∠ABC+∠A)∵∠OCD=∠OBC+∠O ∴∠O=∠OCD﹣∠OBC=12∠ABC+12∠A−12∠ABC=12∠A =30°如图3,∵BO 平分∠EBC ,CO 平分∠BCD∴∠OBC =12∠EBC ,∠OCB =12∠BCD∴∠OBC +∠OCB=12(∠EBC +∠BCD )=12(∠A +∠ACB +∠BCD )=12(∠A +180°)=12(60°+180°)=120°∴∠O =180°﹣(∠OBC +∠OCB )=60°如图4,∵∠ABC ,∠ACB 的三等分线交于点O 1,O 2∴∠O 2BC =23∠ABC ,∠O 2CB =23∠ACB ,O 1B 平分∠O 2BC ,O 1C 平分∠O 2CB ,O 2O 1平分BO 2C ∴∠O 2BC +∠O 2CB=23(∠ABC +∠ACB ) =23(180°﹣∠BAC )=23(180°﹣60°) =80°∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=100°∴∠BO 2O 1=12∠BO 2C =50°故答案为:120°,30°,60°,50°;(2)证明:∵OB 平分∠ABC ,OC 平分∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠O =180°﹣(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠A )=90°+12∠A . (3)∵∠O 2BO 1=∠2﹣∠1=20°∴∠ABC =3∠O 2BO 1=60°,∠O 1BC =∠O 2BO 1=20°∴∠BCO 2=180°﹣20°﹣135°=25°∴∠ACB =2∠BCO 2=50°∴∠A =180°﹣∠ABC ﹣∠ACB =70°或由题意,设∠ABO 2=∠O 2BO 1=∠O 1BC =α,∠ACO 2=∠BCO 2=β, ∴2α+β=180°﹣115°=65°,α+β=180°﹣135°=45°∴α=20°,β=25°∴∠ABC +∠ACB =3α+2β=60°+50°=110°,∴∠A =70°.3.【解答】解:(1)∵BP 、CP 分别平分∠ABC 和∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB ), =180°−12(∠ABC +∠ACB ),=180°−12(180°﹣∠A ), =180°﹣90°+12∠A , =90°+32°=122°,故答案为:122°;(2)∵CE 和BE 分别是∠ACB 和∠ABD 的角平分线,∴∠1=12∠ACB ,∠2=12∠ABD ,又∵∠ABD 是△ABC 的一外角,∴∠ABD =∠A +∠ACB ,∴∠2=12(∠A +∠ABC )=12∠A +∠1,∵∠2是△BEC 的一外角,∴∠BEC =∠2﹣∠1=12∠A +∠1﹣∠1=12∠A =α2;(3)∠QBC =12(∠A +∠ACB ),∠QCB =12(∠A +∠ABC ), ∠BQC =180°﹣∠QBC ﹣∠QCB ,=180°−12(∠A +∠ACB )−12(∠A +∠ABC ),=180°−12∠A −12(∠A +∠ABC +∠ACB ),结论∠BQC =90°−12∠A . 4.【解答】解:∵AD 是高,∠B =70°,∴∠BAD =20°,∴∠BAE =20°+10°=30°,∵AE 是角平分线,∴∠BAC =60°,∴∠C =180°﹣70°﹣60°=50°.5.【解答】解:(1)设这个多边形的每个内角是x °,每个外角是y °, 则得到一个方程组{α=4α+30α+α=180 解得{α=150α=30, 而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n ,依题意得:27(n ﹣2)180°=360°,解得n =9,答:这个多边形的边数为9.6.【解答】解:设∠1=∠2=x °,则∠3=∠4=2x °,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.7.【解答】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=90°+α2,∴∠CDE=45°+x−90°+α2=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12 x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.8.【解答】解:∵∠B=3∠A,∴∠A=13∠B,∵∠C=90°,∴∠A+∠B=90°,∴13∠B+∠B=90°,解得∠B=67.5°.9.【解答】(1)证明:如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=12∠ABC=25°.∴∠2=∠3=25°.10.【解答】证明:(1)如图1,过点G作GH∥AB,∴∠EGH=∠AEG.∵AB∥CD,∴GH∥CD.∴∠FGH=∠CFG.∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG;(2)如图2所示,猜想:∠G=90°;证明:由(1)中的结论得:∠EGF=∠AEG+∠CFG,∵EG、FG分别平分∠AEF和∠CEF,∴∠AEF=2∠AEG,∠CEF=2∠CFG,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2∠AEG+2∠CFG=180°,∴∠AEG+∠CFG=90°,∴∠G=90°;(3)解:如图3,∵EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∴∠AEG=∠GEH=∠HEF=13αααα,∠CFH=∠HFG=∠EFG=13αααα,由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,∴∠G=13∠AEF+23∠CFE=95°,∵AB∥CD,∴∠AEF+∠CFE=180°,∴13(∠AEF+∠CFE)+13αCFE=95°,∴∠CFE=105°,∴∠AEF=75°,∴∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.11.【解答】解:(1)∵BD、CE分别平分∠ABC、∠ACB∴∠CBD=12∠CBA,∠BCE=12∠ACB,∵∠CBA +∠BCA =180°﹣80°=100°,∴∠BFC =180°−12(∠CBA +∠ACB )=130°.(2)∵EG 、DG 分别平分∠AEF 、∠ADF∴∠GEF =12∠AEF ,∠GDF =12∠ADF ,∵∠AEF +∠ADF =360°﹣80°﹣130°=150°,∴∠GEF +∠GDF =12×150°=75°,∴∠EGD =360°﹣(∠GEF +∠GDF )﹣∠EFD =360°﹣75°﹣130°=155°.12.【解答】解:∵∠B =44°,∠C =76°,∴∠BAC =180°﹣∠B ﹣∠C =60°,∵AE 是角平分线,∴∠EAC =12∠BAC =30°.∵AD 是高,∠C =76°,∴∠DAC =90°﹣∠C =14°,∴∠DAE =∠EAC ﹣∠DAC =30°﹣14°=16°.13.【解答】解:(1)∵六边形ABCDEF 的内角都相等,∴∠BAF =∠B =∠C =∠CDE =∠E =∠F =(6−2)×180°6=120°, ∵∠F AD =60°,∴∠F +∠F AD =180°,∴EF ∥AD ,∴∠E +∠ADE =180°,∴∠ADE =60°;(2)∵∠BAD =∠F AB ﹣∠F AD =60°,∴∠BAD +∠B =180°,∴AD ∥BC ,∴EF ∥BC .14.【解答】解:∵EF ∥BC ,∴∠CEF =∠ECD =50°,∵CE 平分∠ACD ,∴∠ACE =∠ECD ,∴∠ACD =∠ACE +∠ECD =100°,∴∠ACB =180°﹣∠ACD =180°﹣100°=80°,∴∠B =180°﹣(∠A +∠ACB )=180°﹣60°﹣80°=40°.15.【解答】解:(1)证明:∵∠CDQ 是△CBD 的一个外角(三角形外角的定义),∴∠CDQ =∠α+∠C (三角形的一个外角等于和它不相邻的两个内角的和)∵PQ ∥MN (已知),∴∠CDQ =∠β(两直线平行,同位角相等).∴∠β=∠α+∠C (等量代换).∵∠C =45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C ,(2)证明:∵∠CFN 是△ACF 的一个外角(三角形外角的定义),∴∠CFN =∠β+∠C (三角形的一个外角等于和它不相邻的两个内角的和),∵PQ ∥MN (已知),∴∠CFN =∠α(两直线平行,同位角相等)∴∠α=∠β+∠C (等量代换).∵∠C =45°(已知),∴∠α=∠β+45°(等量代换).16.【解答】解:(1)∠B =60°,∠3=60°,∴△ABD 中,∠1=180°﹣∠B ﹣∠ADB =120°﹣∠ADB ,又∵∠2=180°﹣∠3﹣∠ADB =120°﹣∠ADB ,∴∠1=∠2;(2)∵∠C =40°,∠B =60°,∴∠BAC =80°,又∵∠1=50°,∴∠DAE=30°,又∵∠3=∠4,∴∠4=75°,∴∠2=∠4﹣∠C=75°﹣40°=35°.17.【解答】(1)解:∵AD∥BC,∠A=70°,∴∠ABC=180°﹣∠A=110°,∵BE平分∠ABC,∴∠ABE=12∠ABC=55°;(2)证明:DF∥BE.∵AB∥CD,∴∠A+∠ADC=180°,∠2=∠AFD,∵AD∥BC,∴∠A+∠ABC=180°,∴∠ADC=∠ABC,∵∠1=∠2=12∠ADC,∠ABE=12∠ABC∴∠2=∠ABE,∴∠AFD=∠ABE,∴DF∥BE.18.【解答】解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°﹣∠A=138°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12×138°=69°,∴∠BOC=180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC=90°+12∠A,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12(180°﹣∠A),∴∠BOC=180°﹣(∠1+∠2)=180−12(180°−αα)=90°+12αα.19.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=12∠DAC=12×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.20.【解答】已知:△ABC中,求证:∠A+∠B+∠C=180°.证明:过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.21.【解答】解:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵∠1+∠FEA=180°(已知),∴∠BAD+∠FEA=180°(等量代换),∴AD∥EF(同旁内角互补,两直线平行),∴∠BFE=∠ADF(两直线平行,同位角相等),故答案为:同位角相等,两直线平行,∠1,两直线平行,内错角相等,∠BAD,同旁内角互补,两直线平行,∠ADF,两直线平行,同位角相等.22.【解答】解:(1)∵C(﹣10,10),CE∥x轴,∴B(0,10),∴OB=10.(2)连接AM.∵AD⊥DM,∴∠DAM+∠DMA=90°,∵EC∥AH,∴∠EMA+∠HAM=180°,∴∠EMD+∠HAD=90°,∵MN平分∠EMD,AN平分∠DAH,∴∠EMN+∠NAH=45°,∴∠NMA+∠NAM=135°,∴∠MNA=180°﹣135°=45°.(3)由题意:0°<∠DAO<45°,∵AN平分∠DAO,∴0°<∠NAH<22.5°,∵NH⊥AH,∴∠AHN=90°,∴∠ANH=90°﹣∠NAH,∴67.5°<∠ANH<90°.23.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∴∠ACB+∠BAC=90°,∠CED+∠DCE=90°.∵∠ACB=∠CED,∴∠BAC=∠DCE,∴∠ACB+∠DCE=90°,∴∠ACE=180°﹣(∠ACB+∠DCE)=90°.∴△ACE是直角三角形.24.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠1=∠B=45°,又∵∠C=67°,∴∠BAC=180°﹣∠B﹣∠C=68°.25.【解答】(1)证明:如图①,过E作EF∥AD,∵AD∥BC,∴EF∥BC,∴∠DAE=∠AEF,∠CBE=∠BEF,∴∠AEB=∠DAE+∠CBE;(2)①证明:∵AD∥BC,∴∠DAC=∠ACB.∵AE平分∠DAC,∴∠EAC=12∠DAC=12∠ACB,∵∠ABC=∠BAC,∠ABC+∠BAC+∠ACB=180°,∴∠BAC+∠EAC=90°,∴∠ABE+∠AEB=90°;①解:如图(3),由①知∠BAE=90°,∴∠F AE=90°.∵∠F=65°,∴∠APC=90°+60°=155°.∴∠P AC+∠ACP=25°.∵AE平分∠DAC,CF平分∠ACD,∴∠DAC+∠ACD=2(∠P AC+∠ACP)=50°,∴∠D=180°﹣50°=130°.∵AD∥BC,∴∠BCD=180°﹣∠D=180°﹣130°=50°.26.【解答】证明:方法1:∵∠1=∠2,∴AB∥CD,∴∠ABC+∠DCB=180°,∵∠3=∠4,∴AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC=∠ADC.方法2:∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,∴ABCD是平行四边形,∴∠ABC=∠ADC.27.【解答】解:(1)AB∥CD,理由是:分别过点E、F作EM∥AB,FN∥AB,∵EM∥AB,FN∥AB,∴EM∥FN∥AB,∴∠1+∠A=180°,∠3+∠4=180°,∵∠A+∠E+∠F+∠C=540°,∴∠2+∠C=540°﹣180°﹣180°=180°,∴FN∥CD,∵FN∥AB,∴AB∥CD;(2)设∠P AQ=x,∠PCD=y,∵∠P AB=3∠P AQ,∠PCD=3∠PCQ,∴∠P AB=3x,∠BAQ=2x,∠PCD=3y,∠QCD=2y,过P作PG∥AB,过Q作QH∥AB,∵AB∥CD,∴AB∥CD∥PG∥GH,∴∠AQH=∠BAQ=2x,∠QCD=∠CQH=2y,∴∠AQC=2x+2y=2(x+y),同理可得:∠APC=3x+3y=3(x+y),∴αααααααα=23,即∠AQC=23∠APC.28.【解答】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠DBC=∠D,∴∠ABD=∠D,∴CD∥AB,(2)∵∠D=38°,∴∠ABD=∠D=38°,∵BD平分∠ABC,∴∠ABC=2∠ABD=76°,∴∠ABC=∠A=76°,∵CD∥AB,∴∠ACD=∠A=76°,∠ABC=∠DCE=76°,∴∠ACE=∠ACD+∠DCE=76°+76°=152°29.【解答】解;∠A+∠B+∠C=180°.理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠A(已作)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)而∠ACB+∠ACD+∠DCE=180°∴∠ACB+∠A+∠B=180°(等量代换)故答案为:A,内错角相等,两直线平行,∠DCE,两直线平行,同位角相等,∠A,∠B,等量代换.30.【解答】解:(1)∵AB⊥BC,∴∠EAB+∠AEB=90°,∵AE⊥ED,∴∠CED+∠AEB=90°,∴∠EAB=∠CED.(2)①∵AF平分∠BAE,∴∠EAG=12∠EAB,∵EH平分∠CED,∴∠HED=12∠CED,∵∠EAB=∠CED,∴∠HED=∠EAG,∴∠HED+∠AEG=90°,∴∠EAG+∠AEG=90°,∴∠EGA=90°,∴EG⊥AF.①作FM∥CD.∵AB⊥BC,CD⊥BC,∴AB∥CD,∴FM∥AB,∴∠DFM=∠CDF=12∠CDE,∠AFM=∠F AB=12∠EAB,∵∠CDE+∠CED=90°,∴∠CDE+∠EAB=90°,∴∠DF A=∠DFM+∠AFM=12∠CDE+12∠EAB=12(∠CDE+∠EAB)=45°.。
浙江省数学八年级上学期期末复习专题(7) 勾股定理的简单应用
浙江省数学八年级上学期期末复习专题(7)勾股定理的简单应用姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·广西模拟) 如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A . 9B . 10C . 4D . 22. (2分)如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是()A . 12米B . 13C . 14米D . 15米3. (2分)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A . 3mB . 5mC . 7mD . 9m4. (2分) (2016九上·简阳期末) 如图①,某超市从一楼到二楼有一自动扶梯,图②是侧面示意图.已知自动扶梯AB的坡度为1∶2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ , C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN ,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A . 10.8米B . 8.9米C . 8.0米D . 5.8米5. (2分)如图,有一个棱长为1m且封闭的正方体纸盒,一只昆虫从顶点A爬到顶点B,那么这只昆虫沿表面爬行的最短路程是()A . 3mB . (+1)mC . mD . m6. (2分)已知菱形的一个角为60°,边长为6,则菱形的面积是()A . 36B . 18C . 18D . 247. (2分) (2020八下·哈尔滨月考) 在平行四边形中,,,的垂直平分线交于点,则的周长是()A .B .C .D .8. (2分) (2018八上·仙桃期末) 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点 , 若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为()A . 6B . 8C . 10D . 129. (2分)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A .B .C .D .10. (2分) (2019八下·三原期末) 如图,在中,,,,延长到点E,使,交于点F,在上取一点G,使,连接 .有以下结论:① 平分;② ;③ 是等边三角形;④,则正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分) (2019八上·南山期中) 直角三角形的两直角边分别为5cm和12cm,则斜边上的高为cm.12. (1分)如图所示,在一块长为8m,宽为5m的长方形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2 m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是m.13. (1分) (2019八下·宜城期末) 《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为.14. (1分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.这种不爱惜花草的行为仅仅使他们少走了米.15. (1分)(2021·包头) 已知抛物线与x轴交于A , B两点(点A在点B的左侧),与y 轴交于点C ,点在抛物线上,E是该抛物线对称轴上一动点.当的值最小时,的面积为.16. (1分) (2020八上·盐湖期末) 如图在中,,,,分别以为直径作半圆,如图阴影部分面积记为、,则.17. (1分) (2020八下·抚顺期末) 如图,点是边长为的菱形对角线上的一个动点,点分别是边上的中点,则的最小值是.18. (1分) (2021·浙江模拟) 如图1,这是一个装有货物的长方体形状的木箱沿着坡面装进汽车货箱的立体示意图,图2是它的平面示意图.已知汽车货箱高度,货箱底面距地面的高度,坡面与地面的夹角,木箱的长为2m,高为1.6m.宽小于汽车货箱的宽度.已知,木箱底部顶点C与坡面底部点重合,则木箱底部悬空部分的长为m,木箱上部顶点到汽车货箱顶部的距离为m.三、解答题 (共8题;共81分)19. (5分) (2019八上·靖远月考) 如图所示的一块地ABCD,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,求这块地的面积.20. (5分) (2019八上·高州期中) 如图,强大的台风使得一根旗杆在离地面3m处折断倒下,旗杆顶部落在离旗杆底部4m处,旗杆折断之前有多高?21. (5分) (2020八下·新乡期中) 如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.22. (15分) (2020八上·桐城期末) 如图,在中,,的垂直平分线交于,交于.(1)若,求的度数;(2)连接,若,的周长是,求的长.23. (10分) (2018八下·瑶海期中) 一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?24. (15分) (2018九上·黔西期中) 在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)25. (15分) (2021八上·丹阳期末) 如图,在中,边的垂直平分线与边的垂直平分线交于点这两条垂直平分线分别交于点 .(1)若,求的度数;(2)已知的周长,分别连接,若的周长为,求的长.26. (11分) (2019九上·武汉月考) 已知四边形ABCD和四边形CEFG都是正方形,且AB>CE(1)如图1,连接BG、DE,求证:BG=DE(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD① 求∠BDE的度数② 若正方形ABCD的边长是,请直接写出正方形CEFG的边长参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共81分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
冀教版八年级下册数学 期末复习专题练 专题6.四边形(提升) 习题课件
期末复习专题练 3.【2020·河北邢台模拟】证明:平行四边形的对角线
互相平分. 已知:如图,四边形ABCD是平行四边形,对角线AC、 BD相交于点O. 求证:OA=OC,OB=OD. 证明:∵四边形ABCD是平行四边形, ∴… ∴∠ABO=∠CDO,∠BAO=∠DCO.
期末复习专题练
∴当AE=CF时,四边形AEFC是平行四边形,即t=2t -6,解得t=6. 综上可得,当t=2或t=6时,以A,C,E,F为顶点的 四边形是平行四边形.
【答案】2或6
期末复习专题练
15.(10分)【2019·河北唐山丰南区二模】关于n边形,甲、 乙、丙三位同学有以下三种说法:
甲:五边形的内角和为520°; 乙:正六边形每个内角为130°; 丙:七边形共有对角线14条. 判断三种说法是否正确,并对其中你认为不对的说法用计
期末复习专题练
6.如图,在△ABC中,∠BAC=90°,AB=6,AC= 8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F, M为EF的中点,则PM的最小值为( )
A.5 B.2.5 C.4.8 D.2.4
期末复习专题练
【点拨】连接AP,如图. ∵∠BAC=90°,AB=6,AC=8, ∴BC= 62+82 =10. ∵PE⊥AB,PF⊥AC, ∴四边形AFPE是矩形, ∴EF=AP,EF与AP互相平分. ∵M是EF的中点,
期末复习专题练
由乙的作法可得∠ADN=∠MDN=∠DAM=∠NAM =45°,则AD=AN=DM. 在△MDA和△NAD中, ∠MDA=∠NAD, DA=AD, ∠DAM=∠ADN, ∴△MDA≌△NAD, ∴DM=AN.
期末复习专题练
2019-2020学年人教版上册八年级期末(代数部分)常考解答题专题复习(含答案解析)
2019-2020学年人教版上册八年级期末(代数部分)常考解答题专题复习因式分解、整式化简求值、乘法公式几何背景、分式方程、分式化简求值一、解答题1.把下列多项式分解因式:(1)a 2x 2-a 2y 2 (2)4x 2-8xy+4y 22.分解因式:(1)mx²-6mx +9m (2)a²(x -y)+b²(y -x) (3)(x -1)(x -3)+13.把下面各式分解因式:(1)ax 3-9ax ; (2)x 2+2x(x -3y)+(x -3y)2.4.因式分解:(1)am −an +ap (2)2a(b +c)−3(b +c)(3)4x 4−4x 3+x 2 (4)x 4−165.分解因式:(1)2a(x −y)+6(y −x) ; (2)a 3−4ab 2 .6.因式分解:(1)(a 2+1)2 - 4a 2 (2)2x 2(x-y)+50y 2(y-x)7.先化简,再求值:(m +2﹣ 5m−2 )÷ m−33m 2−6m ,其中m 满足m 2+3m ﹣1=0.8.先化简: (3x+1−x +1)+x 2−4x+4x+1 ,然后从 −1≤x ≤2 中选一个合适的整数作为x 的值代入求值。
9.先化简( 3a+1 -a +1)÷a 2−4a+4a+1 ,并从0,-1,2中选一个合适的数作为a 的值代入求值. 10.先化简再求值:化简m −2m 2−1÷(m 2−m m 2−2m+1−2m−1) ,并0,-1,1,2四个数中,取一个合适的数作为m 的值代入求值. 11.先化简,再求值: (1−1a+1)÷a 2−a a+1 ,其中 a =12 . 12.解分式方程: 1−x x−2=12−x −213.解方程: 1x−2=1−x 2−x −3 .14.解方程: 1x−2+3=1−x 2−x .15.解方程:(1)1x−3=1+x x−3(2)3x+2+4x−2=16x 2−4 .16.解方程:(1)5x−2+1=0 (2)2x 2−1+1=x x−117.解方程(1)3x =4x−2(2)23+x3x−1=19x−318.解方程:31−x =xx−1−5.19.已知(x2+px+8)(x2-3x+q)的展开式中不含x2,x3项,求p、q的值.20.已知m−n=−3,mn=4.(1)求(3−m)(3+n)的值;(2)求m4+n4的值.21.已知:多项式A=b3﹣2ab(1)请将A进行因式分解:(2)若A=0且a≠0,b≠0,求(a−1)2+b2−12b2的值.22.已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.23.先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.24.已知M是含字母x的单项式,要使多项式4x2+M+1是某一个多项式的平方,求M的表达式.25.先化简再求值:4(m+1)2﹣(2m+5)(2m﹣5),其中m=﹣3.26.先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.27.先化简,再求值:(2a+b)(﹣b+2a)﹣(2a﹣3b)2﹣5b(3a﹣2b),其中a=﹣12,b= 13.28.先化简,再求值:x(x﹣1)+2x(x+1)﹣(3x﹣1)(2x﹣5),其中x=2.29.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:30.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4-b4的值.参考答案及解析一、解答题1.【答案】(1)解:原式=a2(x2-y2)=a2(x+y)(x-y)(2)解:原式=4(x2-2xy+y2)=4(x-y)2【解析】【分析】(1)对式子先利用提公因式法,再利用公式法进行因式分解得到答案即可;(2)将式子提出公因式4,再将括号内的式子利用完全平方公式进行因式分解即可。
2019—2020学年 北师大版八年级数学上册 期末培优拔高冲刺复习卷(含答案)
2019—2020 学年 北师大版八年级数学上册 期末培优拔高冲刺复习卷 一、选择题1. 设 0<k <2,关于 x 的一次函数 y =kx +2(1-x ),当 1≤x ≤2 时的最大 值是( )A. 2k -2B. k -1C. kD. k +12. 小亮解方程组,的解为 1,由于不小心,滴上了两滴墨水,刚x yx 6x 5y 1 y ,好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限四象限D. 第3.如图所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3 等于()31 (第 3 题图) (第 42题图) A .90° D .180°B .120°C .150°4. 甲、乙两车从 A 地匀速驶向 B 地,甲车比乙车早出发 2 h ,并且甲车图 中休息了 0.5 h 后仍以原速度驶向 B 地,图 4 所示是甲、乙两车行驶的路 程 y (km )与行驶的时间 x (h )之间的函数图象.下列说法:①m=1, a=40;②甲车的速度是 40 km/h ,乙车的速度是 80 km/h ;③当甲车距 离 A 地 260 km 时,甲车所用的时间为 7 h ;④当两车相距 20 km 时, 则乙车行驶了 3 h 或 4 h. 其中正确的个数是()A .1 个B .2 个C .3 个D .4 个5. 若一次函数 y =k x +b 与 y =k x +b ,满足 b <b ,且已知 没有k k1 21 1 12 2 2 1 2 意义,则能大致表示这两个函数图象的是()AB C D(第 6 题图)6. 如图,在长方形纸片 ABCD 中,AB=5 cm ,BC=10 cm ,CD 上有一点 E , ED=2 cm ,AD 上有一点 P ,PD=3 cm ,过点 P 作 PF ⊥AD ,交 BC 于点 F , 将纸片折叠,使点 P 与点 E 重合,折痕与 PF 交于点 Q ,则 PQ 的长是( ) A.cm 13B. 3 cmC. 2 cmD.4 cm 7 2二、填空题:7.已知正比例函数 y=kx (k ≠0)的图象经过点(1,﹣2),则正比例函数 的表达式为.8.若 在两个连续整数 , 之间,即 < < ,则 . 7 b 7 b aba a 9.若一组数据 2,4,x ,6,8的平均数是 6,则这组数据的极差为 方差为,.10.若点 P 的坐标为(a +1,– +2),则点 P 在第_________象限. 26 11. 如图,点 D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则 ∠1 的度数是_______________.(第11 题图)(第14 题图)12.若m,n 为实数,且|2m+n-1|+ =0,则(m+n)的值为2019m-2n-8____________.13.在Rt△ABC 中,∠C=90°,AB= ,AC+BC=6,则△ABC 的面积25为.14.如图,直线y=x+1 分别与x 轴、y 轴相交于点A,B,以点A 为圆心,AB 长为半径画弧交x 轴于点A ,再过点A 作x 轴的垂线交直线y=x+11 1于点B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A ,…,按此作1 1 2法进行下去,则点A 的坐标是.8三、解答题15.(每小题6 分,共12 分)(1) 计算:(﹣)+ ×3 ;(2)解方程组:230,12 x y232233x y11.A16. 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是(﹣3,2)、B C(0,4)、(0,2),(1)画出△ABC 关于点 成中心对称的△ ;C A B C 1 1ABC A A (2)平移△ :若点 的对应点 的坐标为(0,﹣4),画出平移后 2对应的△A B C ; 2 2 2A B C A B C 关于某一点成中心对称,则对称中心的坐标(3)△ 和△ 1 1 2 2 2为.O ABC 内,∠BOC =150°,将△BOC C 绕点 顺时针旋转 17. 如图,在等边△ 后,得△ADC OD,连接 . (1)△COD 是 三角形.OB OC OA (2)若 =5, =3,求 的长. 18. 食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健 康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输 . 为提高质量,做进一步研究,某饮料加工厂需生产 A ,B 两种饮料共 100 瓶,需加入同种添加剂 270 克,其中 A 饮料每瓶添加 2 克,B 饮料每瓶 需加添加剂 3 克,饮料加工厂生产了 A ,B 两种饮料各多少瓶?19.甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?20.某中学举行“中国梦校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分100分)如图所示:(1)根据图示填写下表;平均数中位数众数(分)(分)(分)初中部高中部8585100(2)结合两队和中位数,分析哪个队的决赛成绩较好;成绩的平均数(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.100959085807570O21.在平面直角坐标系xOy中,A,B两点分别在轴,轴的正半轴上,且x yOB=OA=3.(1)求点A,B的坐标;(2)已知点 C (-2,2),求△BOC 的面积;(3)若 P 是第一象限角平分线上一点,且 S = ,求点 P 的坐标.33△ABP 2 y x x 22.已知:如图 1,在平面直角坐标系中,一次函数 =+3 交 轴于点 A y B C A y C y ,交 轴于点 ,点 是点 关于 轴对称的点,过点 作 轴平行 CD AB D P CD 的射线 ,交直线 与点 ,点 是射线 上的一个动点. A B (1)求点 , 的坐标.(2)如图 2,将△ACP 沿着 翻折,当点 的对应点 ′落在直线 上AP C C AB P 时,求点 的坐标.OP AD Q D (3)若直线 与直线 有交点,不妨设交点为 (不与点 重合), CQ P S S 连接 ,是否存在点 ,使得 △CPQ =2 △DPQ ,若存在,请求出对应的 Q 点 坐标;若不存在,请说明理由.l23.如图,直线:x y A B y与轴,轴分別交于点,,在轴上有一1y x22C M A x点(0,4),动点从点出发以毎秒1个単位长度的速度沿轴向左t运动,设运动的时间为秒.A A B(1)求点的坐标;(2)请从,两题中任选一题作答.At B.求△COM ABM为等腰三的面积S与时间之间的函数表达式;.当△t角形时,求的值.参考答案一、选择题1. 设0<k<2,关于x 的一次函数y=kx+2(1-x),当1≤x≤2 时的最大值是(C )A. 2k-2B. k-1C. kD. k+12. 小亮解方程组,的解为1,由于不小心,滴上了两滴墨水,刚x y x6x 5y 1y ,好遮住了•和*处的两个数,则点(•,*)所在的象限是( B )D. 第A. 第一象限 B. 第二象限 C. 第三象限四象限3.如图所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3 等于( D )31(第3 题图)(第4 题2图)B.120°C.150°A.90°D.180°4. 甲、乙两车从 A 地匀速驶向 B 地,甲车比乙车早出发 2 h ,并且甲车图 中休息了 0.5 h 后仍以原速度驶向 B 地,图 4 所示是甲、乙两车行驶的路 程 y (km )与行驶的时间 x (h )之间的函数图象.下列说法:①m=1, a=40;②甲车的速度是 40 km/h ,乙车的速度是 80 km/h ;③当甲车距 离 A 地 260 km 时,甲车所用的时间为 7 h ;④当两车相距 20 km 时, 则乙车行驶了 3 h 或 4 h. 其中正确的个数是( C ) A .1 个B .2 个C .3 个D .4 个5. 若一次函数 y =k x +b 与 y =k x +b ,满足 b <b ,且已知 没有k k1 21 1 12 2 2 1 2 意义,则能大致表示这两个函数图象的是( D)AB C D(第 6 题图)6.如图,在长方形纸片 ABCD 中,AB=5 cm ,BC=10 cm ,CD 上有一点 E , ED=2 cm ,AD 上有一点 P ,PD=3 cm ,过点 P 作 PF ⊥AD ,交 BC 于点 F , 将纸片折叠,使点 P 与点 E 重合,折痕与 PF 交于点 Q ,则 PQ 的长是( A ) A.cm 13B. 3 cmC. 2 cmD.4 cm 7 2二、填空题:7.已知正比例函数 y=kx (k ≠0)的图象经过点(1,﹣2),则正比例函数 的表达式为.8.若 在两个连续整数 , 之间,即 < < ,则 . 7 b 7 b aba a 9.若一组数据 2,4,x ,6,8的平均数是 6,则这组数据的极差为 方差为,.10.若点P 的坐标为(a +1,+2),则点P 在第_________象限.2 611. 如图,点D,B,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1 的度数是_______________.(第11 题图)(第14 题图)12.若m,n 为实数,且|2m+n-1|+ =0,则(m+n)的值为2019m-2n-8____________.13.在Rt△ABC 中,∠C=90°,AB= ,AC+BC=6,则△ABC 的面积25为.14.如图,直线y=x+1 分别与x 轴、y 轴相交于点A,B,以点A 为圆心,AB 长为半径画弧交x 轴于点A ,再过点A 作x 轴的垂线交直线y=x+1 于1 1点B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A ,…,按此作法进1 1 2行下去,则点A 的坐标是.8二、7. y=﹣2x 8. 5 9. 8 8 10. 四11. 30°12. -113. 4 14.(15,0)三、解答题15.(每小题6 分,共12 分)(1) 计算:(﹣)+ ×3 ;(2)解方程组:230,12 x y232233x y11.解: (1) 原式=2+3﹣ + =5. 2 6 2 6 (2)方程组2 3 0,① x y 3x y 11,② ②×3+①,得 11x=33,解得 x=3.把 x=3 代入②,得 y=﹣2.则原方程组的 解是3, xy 2.16.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2)、B C (0,4)、 (0,2),(1)画出△ABC 关于点 成中心对称的△ C A B C;1 1ABC A A (2)平移△ :若点 的对应点 的坐标为(0,﹣4),画出平移后 2 对应的△A B C ;2 2 2A B C A B C 关于某一点成中心对称,则对称中心的坐标为(3)△ 和△ 1 1 2 2 2( ,﹣1) .【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换. 【专题】13:作图题;558:平移、旋转与对称.A B C 【分析】(1)分别作出点 、 关于点 的对称点,再顺次连接可得; A A (2)由点 的对称点 的位置得出平移方向和距离,据此作出另外两个 2点的对称点,顺次连接可得;A AB B (3)连接 、 ,交点即为所求. 1 2 1 2A B C 【解答】解:(1)如图所示,△ 即为所求; 1 1(2)如图所示,△A B C 即为所求; 2 2 2P (3)如图所示,点 即为对称中心,其坐标为( ,﹣1), 故答案为:( ,﹣1).O ABC BOC BOC C 绕点 顺时针旋转后, 17.如图, 在等边△ 内,∠ =150°,将△ 得△ADC OD,连接 . (1)△COD 是 等边 三角形.OB OC OA (2)若 =5, =3,求 的长. 【考点】KD :全等三角形的判定与性质;KK :等边三角形的性质;K Q : 勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、 旋转与对称;67:推理能力.CO CD AD BO ACB DCO 【分析】(1)由旋转的性质可得 = , = ,∠ =∠ = 60°,可证△COD 是等边三角形;(2)由等边三角形的性质可得 = =3,∠CDO =60°,可得∠ADO OD OC OA =90°,由勾股定理可求 的长.【解答】解:(1)∵将△BOC C ADC ,绕点 顺时针旋转后,得△BOC ADC ,∴△≌△ CO CD AD BO ACB DCO BOC ADC =60°,∠ =∠ =150°, ∴ = , = =5,∠ =∠∴△COD 是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,OD OC ∴ = =3,∠CDO =60°,ADO ADC ODC =90°,∴∠ = ﹣∠ AO AD OD ∴ = + 22=9+25=34, 2 ∴AO =. 18.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无 害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共 100 瓶,需 加入同种添加剂 270 克,其中 A 饮料每瓶添加 2 克,B 饮料每瓶需加添加剂 3 克,饮料加工厂生产了 A ,B 两种 饮料各多少瓶?解:设 A 种饮料生产了 x 瓶,B 种饮料生产了 y 瓶.x y100,x 30,根据题意,得方程组解得2x 3y 270.y 70.答:A 种饮料生产了 30 瓶,B 种饮料生产了 70 瓶.19. 甲、乙两人沿同一路线登山,图中线段OC ,折线 OAB 分别是甲、乙两人登山的路程 y (米)与登山时间 x (分) 之间的函数图象(如图所示).请根据图象所提供的信息,解答下列问题: (1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x 的取值范围; (2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?.解 :(1)设甲登山的路程 y 与登山时间 x 之间的函数表达式为 y=kx.∵点 C (30,600)在函数 y=kx 的图象上,∴30k=600,解得 k=20.∴y=20x (0≤x ≤30). (2)设乙在 AB 段登山的路程 y 与登山时间 x 之间的函数表达式为 y=ax+b (8≤x ≤20).8a b 120,20a b 600.a 4 0,将点 A (8,120),B (20,600)代入,得 解得所以 y=40x ﹣200. b 200.y 20x ,x 1 0, y 200.联立方程,得 解得y 40x 200. 故乙出发后 10 分钟追上甲,此时乙所走的路程是 200 米.20.某中学举行“中国梦校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出 5 名选手组成初中代表队 和高中代表队参加学校决赛. 两个队各选出的 5 名选手的决赛成绩(满分 100 分)如图 10 所示: (1)根据图示填写下表;众数(分)初中部 高中部8585100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.100 95 90 85 80 75 70O图 101解:(1)初中部决赛成绩的平均数为 (75+80+85+85+100)=85(分),众数 85 分,高中部决赛成绩的5中位数 80 分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的 初中部成绩好些.1 1 (3)因为 s = [(75-85) +(80-85) +(85-85) +(85-85) +(100-85) ]=70, s = [(70-85)2 2 2 2 2 2 2 5 5初 高 +(100-85) +(100-85) +(75-85) +(80-85) ]=160,所以 s < s . 2 2 2 2 22 2 初高所以初中代表队选手的成绩较为稳定。
2019年秋季湘教版八年级上册数学期末复习:数形结合专项题含解析
湘教版2019年秋季八年级上册数学期末复习:数形结合专项题一、选择题。
1.如图所示的不等式的解集是()A. a>2B. a<2C. a≥2D. a≤22.如图,已知∠1=∠2,AC=AD,从下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E中添加一个条件,能使△ABC≌△AED的有()A. 1个B. 2 个C. 3个D. 4个3.如图,数轴上A,B两点表示的数分别为-1,-,点B关于点A的对称点为点C,则点C所表示的数是()A. 1-B. -1C. 2-D. -24.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是( )A. B. C. D.5.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A. |a|>4B. c-b>0C. ac>0D. a+c>06.如图,△ABC≌△BDE,若AB=12,ED=5,则CD的长为()A. 5B. 6C. 7D. 87.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 48.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点F的射线OF就是∠AOB 的平分线, 你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是( )A. SASB. ASAC. AASD. SSS9.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A. 4B. 3C. 2D. 1二、填空题。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
2019年12月18日 多边形及其内角和-每日一题上学期八年级数学人教版(期末复习)
12月18日 多边形及其内角和中考频度:★★★☆☆ 难易程度:★★☆☆☆一个多边形的每个外角都等于72°,则这个多边形的边数为A .5B .6C .7D .8【参考答案】A【试题解析】∵多边形的外角和等于360°,且这个每个外角都等于72°,∴它的边数为360725÷︒︒=,故选A .【解题必备】1.规律总结:(1)从n 边形的一个顶点出发可以引(n -3)条对角线,将n 边形分成(n -2)个三角形.(2)n 边形共有(3)2n n -条对角线. 2.外角和定理的应用:(1)已知外角的度数求正多边形的边数;(2)已知正多边形的边数求外角的度数.1.已知一个多边形的每个内角都相等.若这个多边形的内角和为540°,则这个多边形的每一个外角等于 A .60° B .72° C .90° D .108°2.用边长相等的下列两种正多边形,不能进行平面镶嵌的是A .等边三角形和正六边形B .正方形和正八边形C .正五边形和正十边形D .正六边形和正十二边形3.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形 A .10个 B .9个 C .8个 D .7个4.若从多边形的某一顶点出发只能画两条对角线,则它是A .三角形B .四边形C .五边形D .六边形5.有下列说法:①由许多条线段连结而成的图形叫做多边形;②多边形的边数是不小于4的自然数;③从一个多边形(边数为n)的同一个顶点出发,分别连结这个顶点和其余与之不相邻的各顶点,可以把这个多边形分割成(n-2)个三角形;④在平面内,由5条线段首尾顺次相接组成的封闭图形叫做五边形.其中正确的说法有A.1个B.2个C.3个D.4个6.一个多边形的边数由原来的3增加到n时3n>(,且n为正整数),它的外角和A.增加(2)180n-⨯︒B.减小(2)180n-⨯︒C.增加(1)180n-⨯︒D.没有改变7.一个多边形的内角和与外角和相等,则这个多边形的边数为__________.8.如果一个多边形的边数恰好是从—个顶点引出的对角线条数的2倍,则此多边形的边数为__________.9.如果铺满地面,那么用正方形和等边三角形,正六边形三种组合的比例应为__________.10.小明从P点出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是__________.11.已知一个多边形的内角和与一个外角的差为1560°,求这个多边形的边数和这个外角的度数.12.已知:如图,AB∥CD,求图形中的x的值.1.【答案】B【解析】设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个多边形的每一个外角等于:360725︒=︒,故选B.2.【答案】D【解析】A、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺;B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺,;C、正五形的每个内角是108°,正十边形的每个内角是144°,∵2×108°+144°=360°,能密铺,;D、正六边形的每个内角是120°和正十二边形的每个内角是150°,120m+150n=360°,m=3-54n,显然n取任何正整数时,m不能得正整数,故不能铺满.故选D.3.【答案】C【解析】从一个十边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个十边形分割成10-2=8个三角形.故选C.4.【答案】C【解析】设多边形有n条边,则n-3=2,解得n=5.故多边形的边数为5,即它是五边形.故选C.5.【答案】B【解析】(1)因为“多边形的定义是:由3条及3条以上的线段首尾顺次连接形成的封闭图形叫多边形”,所以①中说法错误;(2)因为“多边形中边数最少的是三角形,只有3条边”,所以②中说法错误;(3)因为“从n边形的一个顶点出发引出的所有对角线刚好把多边形分成(n-2)个三角形”,所以③中说法正确;(4)因为“五边形的定义是:在平面内,由五条线段首尾顺次连接形成的封闭图形叫做五边形”,所以④中说法正确.综上所述,上述四种说法中正确的有2个.故选B.6.【答案】D【解析】∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.7.【答案】4【解析】设多边形的边数为n,根据题意(n-2)·180°=360°,解得n=4.故答案为:4.8.【答案】6【解析】设此多边形有n条边,根据题意得,n=2(n-3),解得n=6.故答案为:6.9.【答案】2∶1∶1【解析】∵正方形、等边三角形和正六边形的内角的度数分别是90,60,120,∴正方形、等边三角形和正六边形三种组合的比例应为2∶1∶1,故答案为:2∶1∶1.10.【答案】30°【解析】由题意,得120÷10=12,图形是十二边形,α=360°÷12=30°,故答案为:30°.11.【解析】设这个内角度数为x,根据题意,得(n-2)×180°-(180-x)=1560°,解得:x=1560°-180°n+540°=2100°-180°n,由于0<x<180°,即0<2100°-180°n<180°,解得:22101133n<<,所以n=11,将n=11代入x=2100°-180°n中得:x=120°,所以这个外角为180°-120°=60°,故多该多边形的边数是11,这个外角的度数为60°.12.【解析】∵AB∥CD,∠C=60°,∴∠B=180°-60°=120°,∴(5-2)×180°=x+150°+125°+60°+120°,∴x=85°.。
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)1.如图,在四边形ABCD中,AB=BC=3,CD,DA=5,∠B=90°,求∠BCD的度数.2.如图,已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,CD =6m,AD=8m,BC=24m,AB=26m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?3.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?4.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB =90°,AC+AB=10,BC=3,求AC的长.6.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?7.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.8.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.9.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.10.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.11.已知某校有一块四边形空地ABCD如图,现计划在该空地上种草皮,经测量∠A=90°,AB=3m,BC =12m,CD=13m,DA=4m.若种每平方米草皮需100元,问需投入多少元?12.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)13.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,,;这个三角形的面积为.14.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.15.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.16.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?17.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?18.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E 的距离相等,则收购站E应建在离A点多远处?19.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,求四边形ABCD的面积.20.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.21.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.22.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C 处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)参考答案与试题解析一.解答题(共23小题)1.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.2.【答案】见试题解答内容【解答】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD•AC•BCAD•CD,10×248×6=96.所以需费用96×200=19200(元).3.【答案】见试题解答内容【解答】解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米.4.【答案】见试题解答内容【解答】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x,∴AB3.5.【答案】见试题解答内容【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.6.【答案】见试题解答内容【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD3×45×12=6+30=36.答:这块钢板的面积等于36.7.【答案】见试题解答内容【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15,DB=9,∴CD12;(2)在Rt△ACD中,∵AC=20,CD=12,∴AD16,则AB=AD+DB=16+9=25.8.【答案】见试题解答内容【解答】解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC13.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BEAB10=5.在Rt△CAE中,CE12.∴S四边形ABCD=S△DAC+S△ABC5×1210×12=30+60=90.9.【答案】见试题解答内容【解答】(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.10.【答案】见试题解答内容【解答】解:(1)证明:连接AD∵AB=AC,∠A=90°,D为BC中点∴ADBD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.11.【答案】见试题解答内容【解答】解:∵∠A=90°,AB=3m,DA=4m,∴DB5(m),∵BC=12m,CD=13m,∴BD2+BC2=DC2,∴△DBC是直角三角形,∴S△ABD+S△DBC3×45×12=36(m2),∴需投入总资金为:100×36=3600(元).12.【答案】见试题解答内容【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD(米),∴BD=AB﹣AD=12(米),答:船向岸边移动了(12)米.13.【答案】见试题解答内容【解答】解:(1)面积为10的正方形的边长为,∵,∴如图1所示的四边形即为所求;(2)∵,,∴如图2所示的三角形即为所求这个三角形的面积2×2=2;故答案为:2.14.【答案】见试题解答内容【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE4.8(cm)∴CE3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.15.【答案】见试题解答内容【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.16.【答案】见试题解答内容【解答】解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.17.【答案】见试题解答内容【解答】解:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC5(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC5×123×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.18.【答案】见试题解答内容【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.19.【答案】见试题解答内容【解答】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABCAC×CDAB×BC5×124×3=30﹣6=24.故四边形ABCD的面积为24cm2.20.【答案】见试题解答内容【解答】解:(1)如图①所示:(2)如图②③所示.21.【答案】见试题解答内容【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).22.【答案】见试题解答内容【解答】解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒时,所以速度为72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.23.【答案】见试题解答内容【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。
江苏省数学八年级下学期期末复习专题13 矩形的性质与判定
江苏省数学八年级下学期期末复习专题13 矩形的性质与判定姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·霞山模拟) 下列判断错误的是()A . 两组对边分别相等的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 两条对角线垂直且平分的四边形是正方形D . 四条边都相等的四边形是菱形2. (2分) (2020八下·牡丹江期末) 下列四个命题中,真命题是()A . 对角线互相垂直的四边形是菱形B . 对角线互相平分且垂直的四边形是矩形C . 顺次连接矩形四边中点得到的四边形是菱形D . 对角线互相垂直相等的四边形是正方形3. (2分) (2018九上·茂名期中) 矩形具有而菱形不具有的性质是()A . 四个角都是直角B . 两组对边分别平行C . 对角线互相平分D . 两组对角分别相等4. (2分) (2019七下·卧龙期末) 如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB 边上的点E处,AD是折痕,则△BDE的周长为()A . 6B . 8C . 12D . 145. (2分) (2019七上·扶绥期中) 如果a,b互为相反数,c,d互为倒数, =1,则代数式的值是()A . -3B . -5C . -3或-5D . -2或-56. (2分)下列性质中正方形具有而矩形不具有的是()A . 对边相等B . 对角线相等C . 四个角都是直角D . 对角线互相垂直7. (2分)已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是()A . 矩形B . 菱形C . 等腰梯形D . 正方形8. (2分) (2021八下·古丈期末) 下列说法中错误的是()A . 四个角相等的四边形是矩形B . 四条边相等的四边形是正方形C . 对角线相等的菱形是正方形D . 对角线垂直的矩形是正方形9. (2分) (2020九上·五华期末) 下列判断错误的是()A . 有两组邻边相等的四边形是菱形B . 有一角为直角的平行四边形是矩形C . 对角线互相垂直且相等的平行四边形是正方形D . 矩形的对角线互相平分且相等10. (2分) (2021八下·增城期中) 如图,在矩形ABCD中,AD=10,AB=6,点E为BC上的一点,ED平分∠AEC,则BE的长为()A . 10B . 8C . 6D . 4二、填空题 (共6题;共6分)11. (1分) (2017九上·姜堰开学考) 矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2 .12. (1分)(2018·阜宁模拟) 要使平行四边形ABCD是矩形,还需添加的条件是(写出一种即可).13. (1分) (2020八下·曲阳期末) 如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为.14. (1分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是.15. (1分) (2020八下·许昌期末) 如图,在中,,,,为边上(不与、重合的动点过点分别作于点,于点,则线段的最小值是.16. (1分) (2020八下·枣阳期末) 如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值.三、解答题 (共8题;共65分)17. (5分)如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.18. (5分) (2020九上·湖里月考) 已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD是矩形.19. (8分) (2020七下·双阳期末) 图①、图②均为5×5的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长为1.线段AB的端点均在格点上,完成下列画图(要求:仅用无刻度的直尺,且保留必要的画图痕迹).(1)在图①中画出一个以AB为对角线的平行四边形,使这个平行四边形的另两个顶点均在格点上,且面积为6.(2)在图②中画出一个以AB为对角线的矩形,使这个矩形的另两个顶点均在格点上,且面积为4.20. (10分) (2018九上·天台月考) 如图,矩形中,为上一点,于.(1)与相似吗?请说明理由;(2)若,求的长.21. (10分)(2019·梧州模拟) 已知:点D是△ABC边BC上的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F.(1)若∠B=∠C,BF=CE,求证:△BFD≌△CED.(2)若∠B+∠C=90°,求证:四边形AEDF是矩形.22. (10分)(2019·九江模拟) 如图(1)是一款手机支架,忽略支管的粗细,得到它的简化结构图如图(2)所示.已知支架底部支架CD平行于水平面,EF⊥OE ,GF⊥EF ,支架可绕点O旋转,OE=20cm , EF=20 cm .如图(3)若将支架上部绕O点逆时针旋转,当点G落在直线CD上时,测量得∠EOG=65°.(1)求FG的长度(结果精确到0.1);(2)将支架由图(3)转到图(4)的位置,若此时F、O两点所在的直线恰好于CD垂直,点F的运动路线的长度称为点F的路径长,求点F的路径长.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,1.73)23. (10分) (2017八下·鄞州期中) 如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.24. (7分) (2020七下·西湖期末) 将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A=30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共65分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)
人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。
2019北京丰台初二(上)期末八年级数学含答案解析含答案与试题解析及评分标准
2019北京丰台初二(上)期末数学一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中符合题意的选项只有一个1. 实数9的平方根是A. 3B. ±3C. ±√3D. 812.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象,下列图腾中,不是对称图形的是3. 计算[−b2a]3的结果是A. −b 32a3 B. −b36a3C. −b38a3D. b38a34.下列计算正确的是A. √(−2)2 =-2B. √(−2)×(−3) =√−2×√−3C. √3 + √2= √5D. √6÷√3 =√25. 下列说法错误的是A.任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小是12B. 一个转盘被被分成8块全等的扇形区域,其中2块是红色,6块是蓝色,用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是14C. 一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同,从这个盒子中随意摸出一个球,摸到白球的可能性大小是25D. 100件同种产品中,有3件次品,质检员从中随机取出一件进行检测,他取出次品的可能性大小是31006. 下列以a,b,c,为边的三角形,不是直角三角形的是A. a=1,b=1,c=√2B. a=1,b=√3,c=2C. a=3,b=4,c=5D. a=2,b=2,c=37. 某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加,现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团的可能性大小是A. 15B. 25C. 14D. 3208. 如图,△ABC 中点D 在AB 边上,∠CAD=30°,∠CDB=50°.给出下列三组条件(每组条件中的线段的长度已知):① AD,DB ② AC,DB ③ CD,CB 能使△ABC 唯一确定的条件的序号为 A. ①② B. ①③ C. ②③ D. ①②③ 二、填空题(本题共16分,每小题2分)9. 写出一个含有字母m,且m ≠2的分式,这个分式可以是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BD′的中点,线段 CF 的最大值为
.
5. 已知,正数 a,b,c 满足:a+b+c=5,y= a2 4 + b2 9 + c2 25 ,则 y 的最小值为
.
6. 已知 AP x2 1, BP (9 x)2 4 ,则 AP+BP 的最小值为
.
八年级期末好题
点题数学
7. 如图,在△ABC 中,∠BAC=30°,AB=AC,AD 是 BC 边上的中线, ACE 1 BAC ,CE 交 AB 于点 E,交
(3)如图 6,点 D(m,n)是对角线 AC(不含两端点)上一点,DE⊥OD 交直线 BC 于点 E(a,b).
○1 直接写出 m,n 之间满足的数量关系是
;
○2 探究 b 与 AD 之间的数量关系式,并证明.
点题数学
(如图 5)
(如图 6)
八年级期末好题
3. 在平面直角坐标系中,已知:正方形 OABC 的面积为 16,点 A,C 在坐标轴的正半轴上. (1)如图 7,点 P 在 AB 上,点 N 在 x 轴上,OM⊥PN 于 M,AP=1,OM=OA,求点 N 的坐标?
④S△AED= 1 2 ; ⑤S△EBF= 3 .
48
12
2
AD 于点 F,若 BC=2,EF 的长为
.
8. 如图所示,在正方形 ABCD 的对角线上取点 E,使得∠BAE=15°,连结 AE,CE.延长 CE 到 F,连结 BF,使得 BC =BF.
若 AB=1,则下列结论:
①AE=CE; ②F 到 BC 的距离为 2 ; 2
其中正确的是
.
③BE+EC=EF;
(如图 2)
八年级期末好题
(3)如图 3,求证:CE= 2 HD;
(4)如图 4,求证:CF= 2 BG;
点题数学
(如图 3)
(如图 4)
八年级期末好题
2. 在平面直角坐标系中,已知:正方形 OABC 的面积为 16,点 A,C 在坐标轴的正半轴上.
(1)直接写出点 B 的坐标
;
(2)如图 5,点 P 在 AB 上,点 N 在 x 轴上,OM⊥PN 于 M,AP=1,OM=OA,求点 N 的坐标?
八年级期末好题
点题数学
八年级点题培优期末好题
(八年级点题培优第 17 讲)
1. 已知 E 是正方形 BC 边上的一点,F 是 CD 边上一点,∠EAF=45°,AE,AF 分别交 BD 于 G,H 两点.
(1)如图 1,求证:AE= 2 AH; 2 BH=BE+AB;
(如图 1)
(2)如图 2,求证:AF= 2 AG; 2 DG=DF+AD;
点题数学
(2)如图 8,点 D 是对角线 AC 上一点,AD= 2 ,DE⊥OD 交直线 BC 于点 E.
○1 求直线 DE 的直线解析式; ○2 连接 BD,在 y 轴上找一点 P,使△PDE 的面积等于△DBE 的面积,求点 P 点题数学
4. 如图,已知△ABC 中,∠ACB=90°,BC=6,AC=12,点 D 在 AC 上,且 AD=8,将线段 AD 绕点 A 旋转至 AD′,F 为