Monte Carlo(蒙特卡洛方法)
蒙特卡洛方法
蒙特卡洛方法1、蒙特卡洛方法的由来蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。
由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。
蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。
如今MC 方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。
2、蒙特卡洛方法的核心—随机数蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。
因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。
在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。
由该分布抽取的简单子样ξ1,ξ2ξ3 ……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。
真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。
真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。
实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。
蒙特卡罗(monte carlo)方法计算圆周率
蒙特卡罗(monte carlo)方法计算圆周率蒙特卡罗方法是一种基于随机取样的统计方法,可以用来估计圆周率。
该方法的原理是通过在一个正方形内随机生成大量的点,然后判断这些点是否落在一个半径为r的圆内。
利用这些结果,我们可以得出一个近似的圆周率值。
首先,我们假设一个半径为r的圆嵌套在一个边长为2r的正方形内。
根据圆的面积公式,圆的面积为πr²,而正方形的面积为(2r)² = 4r²。
我们可以使用一个算法,生成一个在正方形内的大量随机点。
通过计算这些点与圆心的距离,我们可以判断它们是否在圆的边界内。
假设生成的随机点总数为N,而落在圆内的点数为M。
根据概率论的知识,我们可以得出以下关系:圆的面积与正方形的面积之比等于落在圆内的点数与生成的总点数之比。
即πr² / 4r² = M / N。
通过简化得到π = 4M / N。
因此,我们可以通过生成足够多的随机点,并计算落在圆内的点数与总点数之比,来估计圆周率的值。
下面是一个简单的Python代码示例,演示如何使用蒙特卡罗方法计算圆周率:```pythonimport randomdef estimate_pi(n):points_inside_circle = 0points_inside_square = 0for _ in range(n):x = random.uniform(-1, 1)y = random.uniform(-1, 1)distance = x**2 + y**2if distance <= 1:points_inside_circle += 1points_inside_square += 1pi_estimate = 4 * points_inside_circle / points_inside_squarereturn pi_estimaten = int(input("请输入生成的随机点数:"))pi = estimate_pi(n)print("估计的圆周率值为:", pi)```通过运行以上代码,您可以输入随机点的数量,并得到一个近似的圆周率值。
蒙特卡洛算法
取8个随机数
R1 0.0078, R2 0.9325,R3 0.1080,R4 0.0063
用蒙 特卡 洛计 算定 积分
R5 0.5490, R6 0.8556,R7 0.9771,R8 0.2783 Iˆ 0.9187
1.9
大大改善了结果!
理论依据 贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生的 次数, p 是每次试验中 A 发生的概率,则
0 有
nA lim P p 0 n n
或
nA lim P p 1 n n
1 1 1 0 0.25 2 2 2
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1) =
1 1 1 1 0 2 2 3 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
1 1 1 1 = 0 2 2 6 12 1 1 1 2 0.33 E1 = 6 12
生成一个满足均匀分布的 m n 随机矩阵,矩
阵的每个元素都在 (0,1) 之间。 注:rand(n)=rand(n,n)
randn(m,n)
生成一个满足正态 m n 的随机矩阵
randperm(m)
生成一个由 1:m 组成的随机排列
perms(1:n)
生成由 1:n 组成的全排列,共 n! 个,称为 “群“
分析:这是一个概率问题,可以通过理论计算
得到相应的概率和期望值.但这样只能给出作战 行动的最终静态结果,而显示不出作战行动的动 态过程.
蒙特卡罗(Monte Carlo)方法简介
蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。
一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。
Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。
Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。
蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。
蒙特·卡罗方法(MonteCarlomethod)
蒙特·卡罗⽅法(MonteCarlomethod)蒙特·卡罗⽅法(Monte Carlo method),也称统计模拟⽅法,是⼆⼗世纪四⼗年代中期由于科学技术的发展和电⼦计算机的发明,⽽被提出的⼀种以概率统计理论为指导的⼀类⾮常重要的数值计算⽅法。
是指使⽤随机数(或更常见的伪随机数)来解决很多计算问题的⽅法。
与它对应的是确定性算法。
这个⽅法的发展始于20世纪40年代,和原⼦弹制造的曼哈顿计划密切相关,当时的⼏个⼤⽜,包括乌拉姆、冯.诺依曼、费⽶、费曼、Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中⼦连锁反应的时候,开始使⽤统计模拟的⽅法,并在最早的计算机上进⾏编程实现。
现代的统计模拟⽅法最早由数学家乌拉姆提出,被Metropolis命名为蒙特卡罗⽅法,蒙特卡罗是著名的赌场,赌博总是和统计密切关联的,所以这个命名风趣⽽贴切,很快被⼤家⼴泛接受。
被不过据说费⽶之前就已经在实验中使⽤了,但是没有发表。
说起蒙特卡罗⽅法的源头,可以追溯到18世纪,布丰当年⽤于计算π的著名的投针实验就是蒙特卡罗模拟实验。
统计采样的⽅法其实数学家们很早就知道,但是在计算机出现以前,随机数⽣成的成本很⾼,所以该⽅法也没有实⽤价值。
随着计算机技术在⼆⼗世纪后半叶的迅猛发展,随机模拟技术很快进⼊实⽤阶段。
(类⽐深度学习,感叹~)对那些⽤确定算法不可⾏或不可能解决的问题,蒙特卡罗⽅法常常为⼈们带来希望。
蒙特卡罗基本思想:利⽤⼤量采样的⽅法来求解⼀些难以直接计算得到的积分。
例如,假想你有⼀袋⾖⼦,把⾖⼦均匀地朝这个图形上撒,然后数这个图形之中有多少颗⾖⼦,这个⾖⼦的数⽬就是图形的⾯积。
当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。
借助计算机程序可以⽣成⼤量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的⽐例和坐标点⽣成范围的⾯积就可以求出图形⾯积。
插片法的名词解释
插片法的名词解释插片法(Monte Carlo Method),又称蒙特卡罗方法,是一种以随机数为基础的数值计算方法。
这种方法不依赖于具体的方程式或解析解,而是通过随机抽样和概率统计的原理,利用计算机模拟大量随机事件的结果,从而获得近似解或概率分布,广泛应用于物理、统计学、工程、金融等领域。
1. 插片法的起源与发展插片法最早由美国科学家斯坦尼斯拉夫·乌拉姆和尼古拉斯·梅特罗波利斯于1940年代末提出。
当时他们在洛斯阿拉莫斯国家实验室从事核武器研究,面临一个名为“蒙特卡罗”的核物理问题,无法通过传统方法求解。
于是乌拉姆和梅特罗波利斯灵机一动,借鉴赌场的随机抽样方法,提出了插片法。
插片法的应用得到了成功,此后逐渐发展为一种强大的数值计算工具,为科学研究和工程设计带来了革命性的变化。
2. 插片法的基本原理插片法的基本思想是通过随机抽样,将复杂的问题转化为统计问题,通过统计量来描述问题的性质,并用该统计量的概率分布逼近原问题的解。
具体而言,插片法包括以下基本步骤:(1)建立数学模型:将原始问题转化为数学模型,明确需要计算的目标量。
(2)生成随机数:利用随机数产生器生成符合一定概率分布的随机数序列。
(3)进行随机抽样:根据已知的概率分布,以随机抽样的方式获得样本。
(4)计算统计量:根据样本计算所需的统计量,如平均值、方差等。
(5)重复以上步骤:进行多次随机抽样和统计量计算,得到一系列统计量。
(6)分析结果:通过对统计量的分析,得到问题的近似解、概率分布或其他需要的信息。
3. 插片法的应用领域插片法广泛应用于各个领域,例如:(1)物理学:用于模拟粒子物理实验、分析核反应、研究量子力学等。
(2)统计学:用于估计未知参数、构建置信区间、进行假设检验等。
(3)工程学:用于分析复杂系统的可靠性、优化设计参数、模拟随机事件等。
(4)金融学:用于进行金融衍生品定价、风险分析、投资决策等。
(5)计算机科学:用于优化算法设计、解决复杂计算问题、模拟系统行为等。
Monte-Carlo(蒙特卡洛方法)解析
常用的线性同余生成器
Modulus m 2^31-1
=2147483647
2147483399 2147483563
Multiplier a 16807
在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P(A) 的估计,即 pˆ fn ( A) 。
然后取 ˆ
2l afn ( A)
作为
的估计。根据大数定律,当 n 时,
pˆ
fn ( A) a.s.
p.
从而有ˆ 2l P 。这样可以用随机试验的方法求得 的估计。历史上 afn ( A)
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
例 1 :设 X ~ U (a,b) ,则其分布函数为
0
F
(
x)
x b
a a
1,
xa a xb
xb
F -1( y) a (b a) y , 0 y 1
生成 U (0,1) 随机数 U,则 a (b - a)U 是来自
算法实现
许多程序语言中都自带生成随机数的方法, 如 c 中的 random() 函数, Matlab中的rand()函数等。 但这些生成器生成的随机数效果很不一样, 比如 c 中的函数生成的随机数性质就比较差, 如果用 c , 最好自己再编一个程序。Matlab 中的 rand() 函数, 经过了很多优化。可以产生性质很好的随 机数, 可以直接利用。
U (a,b) 的随机数。
例 2:
设 X ~ exp( ) 服从指数分布,则 X 的分布函数为:
Monte Carlo(蒙特卡洛方法)解析
于是有: l p P( X sin ) 2 0
l sin 2
0
2 2l dxd a a
2l ap
若我们独立重复地作 n 次投针试验,记 n ( A) 为 A 发生的次数。 fn ( A) 为 A
U(0,1)随机数的生成
乘同余法:
xi 1 axi
mod m
ui 1 xi 1 / m 其中 xi , a, m 均为整数, x0 可以任意选取。
x0称为种子,a 是乘因子,m是模数
一个简单的例子
当 x0 1 时,得到序列: 1,6,3,7,9,10,5,8,4,2,1,6,3......
1 确定行为的模拟
例:曲线下的面积
本节以曲线下的面 积为例说明蒙特卡罗 模拟在确定行为建模 中的应用.
下面的算法给出了用蒙特卡罗方法求曲线下面积 的计算机模拟的计算格式.
在给定区间上曲线y=cosx下面积的真值是2.注意到即使对 于产生的相当多的点数,误差也是可观的.对单变量函数,一般 说来,蒙特卡罗方法无法与在数值分析中学到的积分方法相比, 没有误差界以及难以求出函数的上界M也是它的缺点.然而,蒙 特卡罗方法可以推广到多变量函数,在那里它变得更加实用.
ˆ f n ( A) 。 在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P( A) 的估计,即 p
ˆ 然后取 2l a.s. ˆ fn ( A) 作为 的估计。根据大数定律,当 n 时, p p. af n ( A) 2l P 。这样可以用随机试验的方法求得 的估计。历史上 af n ( A)
蒙特卡罗(Monte Carlo method)方法知识详解
蒙特卡罗(Monte Carlo method)方法知识详解蒙特卡罗方法(英语:Monte Carlo method),也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
20世纪40年代,在冯·诺伊曼,斯塔尼斯拉夫·乌拉姆和尼古拉斯·梅特罗波利斯在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡罗方法。
因为乌拉姆的叔叔经常在摩纳哥的蒙特卡洛赌场输钱得名,而蒙特卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
蒙特卡罗方法在金融工程学、宏观经济学、生物医学、计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)机器学习等领域应用广泛。
一、蒙特卡罗方法的基本思想通常蒙特卡罗方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程。
例如在核物理研究中,分析中子在反应堆中的传输过程。
中子与原子核作用受到量子力学规律的制约,人们只能知道它们相互作用发生的概率,却无法准确获得中子与原子核作用时的位置以及裂变产生的新中子的行进速率和方向。
科学家依据其概率进行随机抽样得到裂变位置、速度和方向,这样模拟大量中子的行为后,经过统计就能获得中子传输的范围,作为反应堆设计的依据。
另一种类型是所求解问题可以转化为某种随机分布的特征数,比如随机事件出现的概率,或者随机变量的期望值。
通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解。
这种方法多用于求解复杂的多维积分问题。
假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡罗方法基于这样的思想:假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
高维数值积分的蒙特卡罗方法
高维数值积分的蒙特卡罗方法
蒙特卡罗(Monte Carlo)方法是一种用于在概率学和计算机科学中解决各种高维数值
积分问题的算法。
它通过采样随机变量,从而使积分更加容易计算,而不是像多项式积分一样利用复杂
的数学算法。
蒙特卡罗方法是基于概率和概率抽样的,其基本原理围绕统计概率的抽样和累积建立,它把一个积分问题转换成一组随机变量的期望值求取问题。
它的基本原理是:要利用概率统计计算一个复杂的函数的积分,首先要设定一个合理
的概率分布函数,用随机变量抽样来表示要求积分的函数,把抽样点分布在积分函数的曲
线上,然后计算抽样点与概率分布函数的乘积,获得概率密度函数,并利用预设的抽样点
数和函数值,有可能求出积分函数的实际值。
蒙特卡洛方法的使用非常广泛,包括用于求解量子力学问题,模拟耦合力学的系统的
稳定性和性质,以及估计电子态演化路径等,它也被用于在统计物理学和金融世界采用模
拟过程生成行为模型,以研究和改善我们的直觉力。
蒙特卡罗方法在求解高维数值积分时特别有用,因为许多重要的科学计算都需要花费
大量的计算时间去解决高维数值积分问题,而采用蒙特卡洛方法可以有效地减少计算时间,提高效率。
最重要的是,它可以算出几乎任何复杂的函数的积分,包括一些不能用一般积
分算法解决的函数,这使得它在计算科学领域变得越来越流行。
蒙特卡洛介绍
蒙特卡洛简介
蒙特卡洛(Monte Carlo)方法是一种统计技术,主要用于估算复杂系统的各种数值解。
其基本思想是通过随机抽样来模拟或估算一个过程,从而得到期望的统计结果。
以下是对蒙特卡洛方法的简要介绍:
历史背景:
蒙特卡洛方法得名于摩纳哥的蒙特卡洛赌场。
这个方法是在二战期间,由于需要解决核反应的随机扩散问题,由科学家们(如尤里·乌兰贝克、尼古拉·梅特罗波洛斯和约翰·冯·诺伊曼)在洛斯阿拉莫斯实验室中首次提出并使用的。
工作原理:
1. 随机抽样:根据某个分布(通常是均匀分布)生成大量随机样本。
2. 评估函数:对每个随机样本评估一个函数或模型。
3. 分析结果:基于评估的结果,计算所需的统计量(如均值、方差等)。
应用领域:
1. 金融:用于估算金融衍生品的价格和风险。
2. 物理:模拟复杂的物理过程,如核反应。
3. 工程:进行可靠性分析和风险评估。
4. 计算生物学:模拟生物分子的动力学。
5. 优化:搜索复杂的解空间以找到最优解。
优点:
1. 灵活性:可以应用于各种复杂的数学问题和模型。
2. 并行性:由于每个样本的评估是独立的,所以蒙特卡洛模拟非常适合并行计算。
缺点:
1. 收敛速度:需要大量的样本才能得到精确的估计。
2. 计算成本:可能需要大量的计算资源。
结论:
蒙特卡洛方法是一种强大而灵活的工具,它为解决许多复杂的数学和工程问题提供了手段。
尽管它有一些局限性,但在很多情况下,它都是最好的或唯一可行的解决方案。
一文详解蒙特卡洛(MonteCarlo)法及其应用
⼀⽂详解蒙特卡洛(MonteCarlo)法及其应⽤概述蒙特卡罗⽅法是⼀种计算⽅法。
原理是通过⼤量随机样本,去了解⼀个系统,进⽽得到所要计算的值。
它⾮常强⼤和灵活,⼜相当简单易懂,很容易实现。
对于许多问题来说,它往往是最简单的计算⽅法,有时甚⾄是唯⼀可⾏的⽅法。
它诞⽣于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率。
π的计算第⼀个例⼦是,如何⽤蒙特卡罗⽅法计算圆周率π。
正⽅形内部有⼀个相切的圆,它们的⾯积之⽐是π/4。
现在,在这个正⽅形内部,随机产⽣10000个点(即10000个坐标对 (x, y)),计算它们与中⼼点的距离,从⽽判断是否落在圆的内部。
如果这些点均匀分布,那么圆内的点应该占到所有点的π/4,因此将这个⽐值乘以4,就是π的值。
通过R语⾔脚本随机模拟30000个点,π的估算值与真实值相差0.07%。
⽆意识统计学家法则(Law of the unconscious statistician)这是本⽂后续会⽤到的⼀个定理。
作为⼀个预备知识,我们⾸先来介绍⼀下它。
先来看⼀下维基百科上给出的解释。
In probability theory and statistics, the law of the unconscious statistician (sometimes abbreviated LOTUS) is a theorem used to calculate the 期望值 of a function of a 随机变量 when one knows the probability distribution of but one does not explicitly know the distribution of . The form of the law can depend on the form in which one states the probability distribution of the 随机变量 .If it is a discrete distribution and one knows its PMF function (but not ), then the 期望值 of iswhere the sum is over all possible values of .If it is a continuous distribution and one knows its PDF function (but not ), then the 期望值 of isLOTUS到底表达了⼀件什么事呢?它的意思是:已知随机变量的概率分布,但不知道的分布,此时⽤LOTUS公式能计算出函数的数学期望。
蒙特卡洛方法的基本概念与应用
蒙特卡洛方法的基本概念与应用蒙特卡洛方法(Monte Carlo method)是一种基于随机取样的计算方法,通过大量的随机实验来近似计算数学问题。
它的基本思想是通过生成随机数来模拟实验过程,然后利用实验结果进行统计分析,从而得到所求解的数值。
一、蒙特卡洛方法的基本原理蒙特卡洛方法的基本原理是基于概率统计的思想,通过随机实验来获取近似计算结果。
其基本步骤如下:1. 建立数学模型:首先要确定问题的数学模型,即问题的数学表达式或方程。
2. 生成随机变量:通过随机数生成器生成服从特定分布的随机变量,这些随机变量将作为模型中的变量进行计算。
3. 执行实验模拟:根据模型和生成的随机变量,进行大量实验模拟并记录每次实验的结果。
4. 统计分析:对实验结果进行统计分析,如计算平均值、方差等。
5. 得出结论:利用统计分析的结果进行推断,得到问题的近似解。
二、蒙特卡洛方法的应用领域蒙特卡洛方法广泛应用于科学、工程、金融等领域,以解决大量变量和复杂概率分布下的问题。
以下是蒙特卡洛方法的一些应用场景:1. 金融领域:用于期权定价、风险度量和投资组合优化等问题。
例如,通过大量模拟实验可以计算期权的风险价值,从而评估期权的风险敞口。
2. 物理学领域:用于模拟粒子的轨迹、计算物理量等。
例如,在高能物理实验中,经常用蒙特卡洛方法来模拟粒子在探测器中的传输和相互作用过程。
3. 工程领域:用于模拟流体力学、应力分析等问题。
例如,在航空航天领域中,可以利用蒙特卡洛方法来计算飞机飞行过程中的结构应力。
4. 生物学领域:用于基因分析、蛋白质折叠等。
例如,在分子生物学中,可以通过蒙特卡洛方法来模拟蛋白质分子的折叠过程,以探索其结构和功能。
5. 计算机科学领域:用于算法优化、机器学习等问题。
例如,在优化算法中,可以利用蒙特卡洛方法来评估算法的性能,并选择最佳参数配置。
三、蒙特卡洛方法的优缺点蒙特卡洛方法具有以下优点:1. 灵活性:适用于各种复杂的问题,不受问题形式和维度的限制。
计算材料学概述 之 蒙特卡洛方法.详解
随机数产生的办法
关于随机数的几点注意
注1 由于均匀分布的随机数的产生总是采用某个确定 的模型进行的,从理论上讲,总会有周期现象出现的。 初值确定后,所有随机数也随之确定,并不满足真正 随机数的要求。因此通常把由数学方法产生的随机数 成为伪随机数。 但其周期又相当长,在实际应用中几乎不可能出 现。因此,这种由计算机产生的伪随机数可以当作真 正的随机数来处理。 注2 应对所产生的伪随机数作各种统计检验,如独 立性检验,分布检验,功率谱检验等等。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规 则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机 地”投掷N个点,若有M个点落于“图形”内,则该“图形” 的面积近似为M/N。
用该方法计算π的基本思路是: 1 、根据圆面积的公式: s=πR^2 ,当R=1时,
11
面积的计算
辛普逊方法
蒙特-卡洛方法
在长方形中均匀投N0组(x,y) 如 y<f(x), 则 N=N+1
I = ΣSn
f (x)
Hale Waihona Puke I =(N/N0)×S0f (x)
S0
S
x x
MC 的优点 MC与传统数学方法相比,具有直观性强,简便易行的优点,该方
法能处理一些其他方法无法解决的负责问题,并且容易在计算机 上实现,在很大程度上可以代替许多大型、难以实现的复杂实验 和社会行为。无污染、无危险、能摆脱实验误差。
Monte Carlo方法之随机数的产生
许多计算机系统都有随机数生成函数 F90: call random_seed
call random_number(a) 2、ISEED=RTC()
蒙特卡罗(MonteCarlo)方法算积分
蒙特卡罗(MonteCarlo)方法算积分❝蒙特卡罗(Monte Carlo)是摩纳哥最著名的一区,以豪华的赌场闻名于世,用它作为名字大概是因为随机性,就像赌博场里面的扔骰子的过程。
最早的「蒙特卡罗方法」是为了解决一些难求解的积分问题。
❞•「问题」•「蒙特卡洛方法」如果可以选择在的概率分布函数,则有:若在之间是均匀分布时,即,那么:这就是之前讲解的平均值法(点击跳转),另外随机投点法(点击跳转)也是「蒙特卡洛方法」. 一般均匀分布并不是好选择,因为如果在有不少点使得,那么这些点对的近似计算贡献很小,所以应尽可能少用这些点. 此时就需要采用「重要采样方法」选择合适的,从而提高精度,这部分内容我们后续会详细阐述,这次我们先分析「随机投点法」和「平均值法」的随机误差.•「误差分析」(1)「随机投点法」令且,则 iid . 由中心极限定理知:从而所以因此的随机误差为:.(2)「平均值法」由中心极限定理知:其中因此的随机误差为:,但其渐近方差更小.类似的,计算高维定积分的蒙特卡罗方法的随机误差也为,所以蒙特卡罗方法计算积分和维数关系不大,但数值积分则存在「维数诅咒」问题,这也是蒙特卡罗方法的「优势」.•「高维积分算例」「以下为Python代码」import numpy as npfrom scipy import integrate## (x1)^2(x2)^2(x3)^2 在 [0,1] 的积分a1,b1 = 0,1a2,b2 = 0,1a3,b3 = 0,1# 三重积分计算def f(x1,x2,x3):return x1**2 * x2**2 * x3**2I_exact, Error = integrate.tplquad(f,a1,b1,a2,b2,a3,b3)# 平均值法N = 10000x1_sample = a1 + (b1-a1)*np.random.rand(N)x2_sample = a2 + (b2-a2)*np.random.rand(N)x3_sample = a3 + (b3-a3)*np.random.rand(N)np.random.seed(1)h_x = f(x1_sample,x2_sample,x3_sample)I_approx_stat = (b3-a3)*(b2-a2)*(b1-a1)/N*np.sum(h_x)# 数值积分M = 200h1 = (b1-a1)/(M-1)h2 = (b2-a2)/(M-1)h3 = (b3-a3)/(M-1)x1 = np.linspace(a1,b1,M)x2 = np.linspace(a2,b2,M)x3 = np.linspace(a3,b3,M)x1_mesh, x2_mesh, x3_mesh = np.meshgrid(x1,x2,x3)I_approx_rec = np.sum( f(x1_mesh, x2_mesh, x3_mesh)*h1*h 2*h3 )print( '多重积分值:', I_exact )print( '\n平均值法结果:', I_approx_stat )print( '\n数值积分结果:', I_approx_rec )❝多重积分值:0.037037037037037035平均值法结果:0.03737256369148107数值积分结果:0.03788231093787493(大家可尝试画出:不同数量采样点对应的结果和真实值之间的关系图)❞。
monte+carlo(蒙特卡洛方法)解析
蒙特卡洛方法是一种基于随机抽样的数值计算方法,广泛应用于金融学、物理学、工程学和计算机科学等领域。
它的原理是通过随机抽样来估计数学模型的结果,通过大量重复实验来逼近真实值。
在本文中,我们将探讨蒙特卡洛方法的原理、应用和局限,并共享个人对这一方法的理解和观点。
1. 蒙特卡洛方法的原理蒙特卡洛方法的核心思想是利用随机数来处理问题。
它通过生成大量的随机数,利用这些随机数的统计特性来近似求解问题。
在金融衍生品定价中,我们可以使用蒙特卡洛方法来模拟股票价格的随机漫步,从而估计期权合约的价格。
通过不断模拟股票价格的变化,并计算期权合约的价值,最终得到一个接近真实值的结果。
2. 蒙特卡洛方法的应用蒙特卡洛方法在金融领域被广泛应用于期权定价、风险管理和投资组合优化等问题。
在物理学中,蒙特卡洛方法可以用于模拟粒子的运动,求解无法用解析方法求解的复杂系统。
在工程学和计算机科学中,蒙特卡洛方法可以用于求解概率分布、优化问题和模拟系统行为。
3. 蒙特卡洛方法的局限虽然蒙特卡洛方法有着广泛的应用,但也存在一些局限性。
蒙特卡洛方法通常需要大量的随机抽样,计算成本较高。
随机性导致了结果的不确定性,需要进行大量的实验才能得到可靠的结果。
蒙特卡洛方法在高维问题和高精度要求下计算效率低下,需要借助其他数值方法进行辅助。
4. 个人观点和理解个人认为蒙特卡洛方法是一种非常强大的数值计算方法,能够解决复杂问题和高维问题。
它的随机性使得结果更加贴近真实情况,有利于处理实际情况中的不确定性和风险。
但是在实际应用中,需要注意随机抽样的方法和计算成本,并且需要结合其他数值方法进行验证和辅助,以确保结果的准确性和可靠性。
总结回顾蒙特卡洛方法是一种基于随机抽样的数值计算方法,通过大量重复实验来逼近真实值。
它在金融学、物理学、工程学和计算机科学等领域有着广泛的应用。
然而,蒙特卡洛方法也存在一些局限性,需要结合其他数值方法来弥补其不足。
个人认为蒙特卡洛方法是一种强大的数值计算方法,能够处理复杂和高维问题,但在实际应用中需要注意其随机性和计算成本。
lse蒙特卡罗方法
lse蒙特卡罗方法
蒙特卡罗方法(Monte Carlo method)是一种基于随机数统计
的计算方法。
它以概率和统计理论为基础,利用随机抽样和模拟来解决问题,通过模拟大量的随机样本,以概率统计的方法来推断问题的解或结果。
在蒙特卡罗方法中,通过随机生成一组符合特定分布的随机数,来模拟潜在的不确定因素和可能的组合情况,从而进行数值计算和分析。
蒙特卡罗方法可以解决各种复杂的问题,如求解高维积分、求解微分方程、模拟粒子运动、优化问题等。
在金融领域中,蒙特卡罗方法常用于金融衍生品定价、风险管理、投资组合优化等问题的求解。
它可以通过模拟资产价格的随机变化来计算金融衍生品的价值和风险指标,以及评估不同投资策略的收益和风险。
蒙特卡罗方法的优点是可以处理复杂的问题,适用于不同类型的模型和函数。
然而,由于需要进行大量的随机模拟和计算,蒙特卡罗方法通常耗时较长,并且计算结果的精确度受到模拟次数和随机数生成的随机性的影响。
总之,蒙特卡罗方法是一种基于随机数统计的计算方法,可以通过模拟和统计的方式解决复杂的问题。
它在金融、物理、工程、生物等领域都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(n 1) U P(n)
则令 X取值
xn.
例1:
离散型随机变量X有如下分布律: X 0 1 2 P(x) 0.3 0.3 0.4 设 U1 ,U 2 ,,U 是 (0,1)上均匀分布的随机数,令 N
0, 0 U i 0.3 xi 1, 0.3 U i 0.6 2, 0.6 U i
ˆ f n ( A) 。 在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P( A) 的估计,即 p
ˆ 然后取 2l a.s. ˆ fn ( A) 作为 的估计。根据大数定律,当 n 时, p p. af n ( A) 2l P 。这样可以用随机试验的方法求得 的估计。历史上 af成器的周期 长度是 10,而后两个生成器的周期长度只有 它的一半。我们自然希望生成器的周期越长 越好,这样我们得到的分布就更接近于真实 的均匀分布。
在给定 m 的情况下,生成器的周期与 a 和 初值 x0 (种子)选择有关。
线性同余生成器(混合同余法) (Linear Congruential Generator )
证明: 由 F 1 (U ) 的定义和均匀分布的分布函数可得: P ( X x) P ( F 1 (U ) x) P (U F ( x )) F ( x )
由定理 1 ,要产生来自 F ( x) 的随机数,只要先 产生来自U (0,1) 随机数 u ,然后计算 F 1 (u ) 即 可。具体步骤如下:
一般形式: xi 1 (axi c) mod m ui 1 xi 1 / m
1. c是非负整数.通过适当选取参数c可以改善 随机数的统计性质(独立性,均匀性).
2. 线性同余器可以达到的最长周期为 m 1 ,我们 可以通过适当的选择 m 和 a ,使无论选取怎样的 初值 x0 都可以达到最大周期(一般选取 m 为质数)
U(0,1)随机数的生成
乘同余法:
xi 1 axi
mod m
ui 1 xi 1 / m 其中 xi , a, m 均为整数, x0 可以任意选取。
x0称为种子,a 是乘因子,m是模数
一个简单的例子
当 x0 1 时,得到序列: 1,6,3,7,9,10,5,8,4,2,1,6,3......
l 于是针与平行线相交的充要条件为 X 2 sin , l 即相交 A { : X 2 sin }.
于是有: l p P( X sin ) 2 0
l sin 2
0
2 2l dxd a a
2l ap
若我们独立重复地作 n 次投针试验,记 n ( A) 为 A 发生的次数。 fn ( A) 为 A
蒙特卡罗模拟是一种随机模型.
1.抛100次硬币得到51个正面,并且接下来的10 次(即使不太可能刚巧10次)全为正面的情况是可 能出现的,这样,用110次的结果进行估计实际 上比用100次要差.
2.同样抛100次的结果也不近相同。
做任何的蒙特卡罗模拟,都要用到随机数.
要记住,对于根据模拟结果的预测寄予太多的 信任是有危险的,特别是在模拟中包含的假设没有 清楚表明的时候.还有,由于用了大量的数据和庞 大的计算,再加上非专业人员理解模拟模型和计算 机输出相对容易,所以常会导致对模拟结果的过分 相信.
从U(0,1)到其它概率分布的随机数
1.离散型随机数的模拟
2.连续型随机数的模拟
3.正态随机数的模拟
1.离散型随机数的模拟
设随机变量 X 的分布律为 令
P{X xi } pi
n i 1
(i 1,2,)
(n 1, 2 ,)
P(0) 0, P(n) pi ,
将 {P(n)} 作为区间(0,1)的分点.若随机变量 U ~ U (0,1) ,有
1. 生成 g ( x) 的样本 X ; 2. 生成U~U (0,1), 且U与X 独立; 3. 如果 U f ( X ) / cg ( X ) ,则取Y=X,返回步骤1, 否则舍去X,返回步骤1.
所以在某些情况下,对对象的行为进行直接观测
或重复试验可能是不可行的。
在对象的行为不能做分析性的解释,或数据无法直 接收集的情况下,建模者可以用某种方式间接地模拟 其行为,试验所研究的供选择的各种方案,以估计它 们怎样影响对象的行为,然后收集数据来确定哪种方 案是最好的. 例如,为了得到一艘拟建造的潜艇受到的阻力, 造一个原型是不可行的,我们可以按比例建一个模型, 去模拟实际的潜艇的行为. 这里将研究另外一种形式的模拟——蒙特卡罗 (MonteCarlo)模拟,一般是借助于计算机完成的.
则 x1 , x2 ,, x N 是具有X分布律的随机数.
2.连续型随机数的模拟
a.逆变换方法(常用) (Inverse Transform Method) b.舍取方法 (Acceptance-Rejection Method)
定理: 设随机变量Y的分布函数F(y)是连续函数, 而U是在(0,1)上均匀分布的随机变量, 令 X F 1 (U ) , 则Y与X有相同的分布.
1 确定行为的模拟
例:曲线下的面积
本节以曲线下的面 积为例说明蒙特卡罗 模拟在确定行为建模 中的应用.
下面的算法给出了用蒙特卡罗方法求曲线下面积 的计算机模拟的计算格式.
在给定区间上曲线y=cosx下面积的真值是2.注意到即使对 于产生的相当多的点数,误差也是可观的.对单变量函数,一般 说来,蒙特卡罗方法无法与在数值分析中学到的积分方法相比, 没有误差界以及难以求出函数的上界M也是它的缺点.然而,蒙 特卡罗方法可以推广到多变量函数,在那里它变得更加实用.
ˆ 从而有
有如下的试验结果。
试验者
时间(年)
针长 投针次数 相交次数
π的估计值
Wolf
Smith
1850
1855
0.80
0.60
5000
3204
2532
1218
3.15956
3.15665
Fox
Lazzarini
1884
1925
0.75
0.83
1030
3408
489
1808
3.15951
3.14159292
二.随机数的生成
1.蒙特卡罗模拟的关键是生成优良的随机数。 2.在计算机实现中,我们是通过确定性的算法生成 随机数,所以这样生成的序列在本质上不是随机 的,只是很好的模仿了随机数的性质(如可以通过 统计检验)。我们通常称之为伪随机数(pseudorandom numbers)。 3.在模拟中,我们需要产生各种概率分布的随机数, 而大多数概率分布的随机数产生均基于均匀分布 U(0,1)的随机数。
能为那些要到达特定楼层的乘客提供最好的服务。 然而这种做法可能是难以接受的,因为在收集统计 数据时要再三惊扰乘客,并且电梯运行模式的不断变 化也会使乘客感到迷惑.
与此有关的另一个问题是大城市交通控制系统可 供选择的运行模式的检验,为了做试验而不停地改变 单行道的交通方向和配置交通信号将是不现实的.
常用的线性同余生成器
Modulus m 2^31-1 =2147483647 Multiplier a 16807 39373 742938285 950706376 1226874159 40692 40014 Reference Lewis, Goodman, and Miller L’Ecuyer Fishman and Moore Fishman and Moore Fishman and Moore L’Ecuyer L’Ecuyer
例 2: 设 X ~ exp( ) 服从指数分布,则 X 的分布函数为: F ( x) 1 e x / , x 0 通过计算得 F ( y ) log(1 y ) ,则: X log(1 U )
1
服从指数分布(其中 U 服从均匀分布)
又因为 1-U 和 U 有着同样的分布,所以也可以取: X log(U )
Monte Carlo Simulation Methods (蒙特卡罗模拟方法)
一. 概述与思想 二. 随机数的生成. 三. 实例---港口模型 四. 作业
一 概述与思想
引例:电梯系统. 我们可以提出若干供选择的电梯运行模式,如设定 停偶数层、奇数层的电梯或直达电梯.理论上,对每种
供选择的模式都能够做若干次试验,以确定哪一种模式
xi 1 6xi mod11, ui+1 xi 1 /11 (a 6, m 11 )
如果令 a 3, x0 1 ,得到序列: 1,3,9,5, 4,1,3,9........ 如果令 a 3, x0 2, 得到序列: 2, 6, 7,10,8, 2, 6.......
P{P(n 1) U P(n)} P(n) P(n 1) pn , (n 1,2, )
令 {P(n 1) U P(n)} {X x } n
则有
P{X xn } pn
据此,可得产生 X的随机数的具体过程为:每产 生一个(0,1)区间上均匀分布随机数 U,若
2147483399 2147483563
复杂一些的生成器
Multiple recursive generator
xi (a1 xi 1 a2 xi 2 ...... ak xi k ) mod m ui xi / m 需要选取种子(xk 1 , xk 2 .......x0 )
从Buffon(蒲丰)投针问题谈起
Buffon 投针问题:平面上画很多平行线,间距为 a.向此平面投掷长为 l ( l < a) 的 针,此针与任一平行线相交的概率 p。
随机投针可以理解成针的中心 点与最近的平行线的距离X是均匀 地分布在区间 [0, a / 2] 上的r.v.,针 与平行线的夹角是均匀地分布 在区间 [0, ] 上的r.v.,且X与相互独立,