换热器种类及原理

合集下载

换热器分类

换热器分类

换热器分类换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能用量十分大的领域,随着节能技术的飞速发展,换热器种类开发越来越多。

适用于不同介质,不同工况,不同温度,不同压力的换热器,结构和形式亦不同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。

(一)按传热原理分类1.直接接触式换热器这类换热器主要工作原理是两种介质经接触面而相互传递热量,实现传热,接触面积直接影响到传热量。

这类换热器的介质通常是一种气体,另一种为液体,主要以塔设备为主体的传热设备,但通常又涉及传质。

故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。

2.蓄能式换热器(简称蓄能器)这类换热器用量极少,原理是通过一种固体物质,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到传递热量的目的。

3.板,管式换热器这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质的传热设备,这类换热器是我们通常称为管壳式,板式,板翘式,板壳式换热器。

(二)按传热种类分类1.无相变传热一般分为加热器和冷却器。

2.有相变传热一般分为冷凝器和重沸器。

重沸器又分为釜式重沸器,虹吸式重沸器,再沸器,蒸发器,蒸汽发生器,废热锅炉。

(三)按结构分类分为釜式换热器,固定管板式换热器,填料函式换热器,u形管式换热器,蛇管式换热器,双壳程换热器,单套管换热器,多套管换热器,外导流筒换热器,折流杆式换热器热管式换热器,插管式换热器,滑动管板式换热器。

(四)按折流板分类分为单弓形换热器,双弓形换热器,三弓形换热器,螺旋弓形换热器。

(五)按板状分类分为螺旋板式换热器,板式换热器,板翘式换热器,板壳式换热器,板式蒸发器,板式冷凝器,印刷电路板换热器,穿孔板换热器。

(六) 按密封形式分类此类换热器多用于高温,高压装置中,具体分为:螺旋锁紧环换热器,薄膜密封换热器,钢垫圈换热器,密封盖板式换热器。

十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。

板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。

压紧板上有本设备与外部连接的接管。

板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。

人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。

并采用特殊结构,保证两种流体介质不会串漏。

板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。

它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。

结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。

螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。

列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。

广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。

特别是在石油炼制和化学加工装置中,占有极其重要的地位。

换热器的型式。

管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。

它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。

钢壳内衬铜的厚度一般为1.0mm。

钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。

此阀除非定期检修是绝对不能取消的。

部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。

各种换热器的原理特点及适用范围

各种换热器的原理特点及适用范围

各种换热器的原理、特点及适用范围一、T 型翅片管一、原理及特点1、原理T型翅片管是由光管经过滚轧加工成型的一种高效换热管。

其结构特点是在管外表面形成一系列螺旋环状T型隧道。

管外介质受热时在隧道中形成一系列的气泡核,由于在隧道腔内处于四周受热状态,气泡核迅速膨大充满内腔,持续受热使气泡内压力快速增大,促使气泡从管表面细缝中急速喷出。

气泡喷出时带有较大的冲刷力量,并产生一定的局部负压,使周围较低温度液体涌入T型隧道,形成持续不断的沸腾。

这种沸腾方式在单位时间内,单位表面积上带走的热量远远大于光管,因而这种管型具有较高的沸腾传热能力。

2、特点⑴传热效果好。

在R113工质中T管的沸腾给热系数比光管高1.6-3.3倍。

⑵常规的光管换热器,只有当热介质的温度高于冷介质的沸点或泡点12℃-15℃时,冷介质才会起泡沸腾。

而T型翅片管换热器只需2℃-4℃的温差,冷介质就可沸腾,且鼓泡细密、连续、快速,形成了与光管相比的独特优势。

⑶以氟利昂11为介质的单管实验表明,T型管沸腾给热系数可达光管的10倍;以液氨为介质的小管束实验结果,总传热系数为光管的2.2倍;C3、C4烃类分离塔的再沸器工业标定表明,低负荷时,T 型管总传热系数比光滑管高50%,大负荷时高99%。

⑷较铝多孔表面传热管的价格便宜。

⑸由于隧道内部的气液扰动非常激烈以及气体沿T缝高速喷出,因而无论是T型槽内部还是管外表面,都不易结垢,这一点保证了设备能长期使用而传热效果不会受到结垢的影响。

二、应用场合只要壳侧介质比较干净、无固体颗粒、无胶质,均可采用T型翅片管作换热元件,形成T型翅片管式高效换热器,以提高壳侧沸腾传热效果。

二、低螺纹翅片管一、原理及特点1、原理低螺纹翅片管是普通换热管经轧制在其外表面形成螺纹翅片的一种高效换热管型,其结构如图所示:这种管型的强化作用是在管外。

对介质的强化作用一方面体现在螺纹翅片增加了换热面积;另一方面是由于壳程介质流经螺纹管表面时,表面螺纹翅片对层流边层产生分割作用,减薄了边界层的厚度。

换热器基本知识

换热器基本知识

(2) 浮头式换热器
浮头式换热器 1—防冲板;2—折流板;3—浮头管板;4—钩圈;5—支耳
浮头式换热器
• 浮头式换热器 管束一端的管板可自由浮动,完 全消除了热应力;且整个管束可从壳体中抽出, 便于机械清洗和检修。浮头式换热器的应用较 广。
• 优点:管间和管内清洗方便,不会产生热应力 ;
• 缺点:结构复杂,造价比固定管板式换热器高 ,设备笨重,材料消耗量大,且浮头小盖在操 作中无法检查,制造时对密封要求较高。
• 流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。 图示为最简单的单壳程单管程换热器,简称为1-1型换热器。为提高管内 流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样 流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。 同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次 通过壳体空间,称为多壳程。多管程与多壳程可配合应用。
设备。
二、间壁式换热器的类型
沉浸式蛇管换热器
管式换热器
间壁式换热器
板式换热器
喷淋式换热器
套管换热器
固定管板式
列管式换热器
U型管
平板式换热器
浮头式 填料函式
螺旋板式换热器 夹套式换热器
板翘式换热器 翘片式换热器
翘片管换热器
(一) 管式换热器
管式换热器特点
• 管式换热器虽然在换热效率、结构紧凑性和单位传热
• 缺点:由于受弯管曲率半径的限制,其换热管 排布较少,管束最内层管间距较大,管板的利 用率较低,壳程流体易形成短路,对传热不利 。当管子泄漏损坏时,只有管束外围处的U形 管才便于更换,内层换热管坏了不能更换,只 能堵死,而坏一根U形管相当于坏两根管,报 废率较高。

工业用换热器分类概述

工业用换热器分类概述

换热器的结构形式
管式换热器的结构形式
1、列管式换热器(管壳式换热器)
它结构紧凑,单位体积所具有的传热面积较大(40~ 150m2/m3),传热效果好,适应性强,操作弹性大,尤其 适用于高温、高压和大型装置中,是管式换热器中应用 最普遍的换热器。
在列管式换热器中,由于管内外流体温度不同,使管 束和壳体的受热程度不同,导致它们的热膨胀程度出现 差别。若两流体温差较大,就可能由于热应力而引起设 备的变形,管子弯曲甚至破裂,严重时从管板上脱落。 因此当两流体的温度差超过50℃时,就应从结构上考虑 热膨胀的影响,采取相应的热补偿措施。根据热补偿方 法的不同,列管式换热器分为三种形式:
(3)能利用低温热源 由于流道长而且两流体可达到完全逆 流,因而传热温差大,能充分利用温度较低的热源。
(4)结构紧凑 由于板薄2~4mm,单位体积的传热面积可 达到150~500m2/m3。
主要缺点是操作压强不能超过2MPa,操作温度在300~ 400℃以下,另外因整个换热器焊为一体,一旦损坏检修困 难。螺旋板换热器直径在1.5m之内,板宽200~1200mm, 板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢 制造,目前广泛用于化工、轻工、食品等行业。
二、按用途分
1.加热器:用于把流体加热到所需温度,被加热流体在加热过 程中不发生相变。 预热器:用于流体的预热,以提高整套工艺装置的效率。 3.过热器:用于加热饱和蒸汽,使其达到过热状态。 4.蒸发器:用于加热液体,使其蒸发汽化。 5.再沸器:用于加热已被冷凝的液体,使其再受热汽化。为蒸 馏过程专用设备。 6.冷却器:用于冷却流体,使其达到所需温度。 7.冷凝器:用于冷却凝结性饱和蒸汽,使其放出潜热而凝结液 化。
换热器是工艺过程必不可少的单元设 备,广泛用于石油、化工、轻工、制药、 食品、机械、冶金、动力等工程领域中。

换热器的原理及应用

换热器的原理及应用

换热器的原理及应用一、换热器的基本原理换热器是一种热交换设备,用于将热量从一个介质传递到另一个介质中。

其基本原理是利用不同温度的两种流体(或气体)之间的热传导,使它们在多个细小通道中进行流动,并通过这些通道的壁与介质之间进行换热。

换热器通常由两个主要部分组成:热源端和热载体端。

热源端是传递热量的一侧,热载体端是吸收热量的一侧。

换热器的基本工作原理如下:1.传热方式:换热器主要通过对流、传导和辐射的方式进行热传导。

2.热源端:热源端的流体吸收热量,并传递给换热器中的壁面。

3.热载体端:热载体端的流体通过与换热器的壁面接触,吸收热量进行传递。

4.换热器壁面:换热器壁面起到隔离两边流体的作用,并通过壁面的传导和对流换热,将热量从热源端传递到热载体端。

5.换热流体状态:换热器可以处理不同物态的流体,包括气体、液体和气液两相流体。

二、换热器的应用领域换热器是广泛应用于工业生产中的关键设备,其作用多种多样。

以下是一些典型的换热器应用领域的列举:1.供暖系统:供暖系统中的换热器将锅炉中的热水或蒸汽传递给房间内的暖气设备,用于供暖。

2.汽车冷却系统:汽车发动机冷却系统中的散热器,通过冷却剂的循环来降低发动机温度,保证发动机正常运行。

3.空调系统:空调系统中的蒸发器和冷凝器,通过制冷剂的循环工作,实现对空气的冷却或加热。

4.石油化工:在石油化工生产过程中,换热器用于原油加热、冷却和重整等工序。

5.核能领域:核电站中的换热器被用于冷却核反应堆中的燃料,并产生蒸汽驱动涡轮发电机。

6.食品加工:食品加工行业中的换热器,用于热交换、杀菌、蒸煮和冷却等工艺。

7.航空航天:飞机和火箭中的换热器,用于控制燃料温度和提供舒适的空调环境。

8.造纸业:造纸过程中,使用换热器来调节纸浆的温度,以实现最佳的造纸质量。

三、换热器的类型根据换热器的结构和工作原理,可以将其划分为多种类型。

以下是常见的几种换热器类型的介绍:1.管壳式换热器:管壳式换热器由一个外壳和许多平行或螺旋排列的管子组成。

换热器的种类及应用

换热器的种类及应用

换热器的种类及应用换热器是一种用于传热的设备,广泛应用于化工、电力、冶金、石油等行业。

根据传热方式和工作原理的不同,换热器可以分为多种类型。

1. 管壳式换热器:管壳式换热器是最常见的换热器之一。

它由管束和外壳组成,热媒通过管束流动,被换热的物质则在外壳中流动,通过管壳内外流体的对流和传导传热,实现换热过程。

管壳式换热器广泛应用于化工、冶金等行业的蒸发、冷凝、汽化、加热等工艺中。

2. 板式换热器:板式换热器采用多层波纹板组成,通过多个波纹板的叠加形成通道,在通道内实现换热。

板式换热器具有换热效率高、紧凑、易于清洗等优点,被广泛应用于空调、制冷、化工、食品加工等领域。

3. 管束式换热器:管束式换热器由多根平行布置的管子组成,通过管子内的热媒与外壳中的被换热物质进行换热。

管束式换热器适用于高温、高压、粘稠液体的换热过程,常用于石油、化工等行业。

4. 螺旋板换热器:螺旋板换热器采用螺旋板作为热传输面,通过螺旋板的内外壁形成两个流通通道,通过流体在螺旋板内外壁之间交替流动,实现换热。

螺旋板换热器具有高换热效率、低压降等优点,广泛应用于化工、制药等行业。

5. 空气冷却器:空气冷却器以空气作为冷却介质,通过与被冷却物质接触,将被冷却物质的热量传递给空气,使其冷却。

空气冷却器广泛应用于电力、化工等行业中的冷却系统,如发电厂中的冷却塔、汽车发动机中的散热器等。

6. 管式加热器:管式加热器是一种通过将热媒加热后传递给被加热物质,实现加热的设备。

管式加热器应用于化工、电力等行业中需要对物质进行加热的工艺中,如石油精制中的加热炉、电站中的锅炉等。

总之,换热器可以根据不同的换热原理和应用场景,分为管壳式换热器、板式换热器、管束式换热器、螺旋板换热器、空气冷却器和管式加热器等多种类型。

这些换热器在不同的工业领域中发挥着重要作用,提高了能源利用效率,降低了设备运行成本,促进了工业生产的发展。

换热器原理

换热器原理

21. 间断型翅片管式换热器强化传热原理.
P117
22. 翅片管式换热器翅片的常用形式、特点.
(1).平翅片:主要通过增大换热面积来达到强化传热的效果,平翅片结构简单,易于加工,应用最早和最广泛的翅片结构。
(2).间断型翅片
在平翅片表面开孔、开槽,使其表面结构改变的翅片称为间断型翅片。如条缝形翅片、槽形翅片、百叶窗形翅片、穿孔形翅片等。
3. 对腐蚀性介质,可选用什么材料换热器?
非金属材料换热器:石墨、工程塑料、玻璃、陶瓷换热器等
4. 管壳式换热器特点,常用类型?
优点:管壳式换热器具有易于制造、成本较低、清洗方便、适应性强、处理量大、工作可靠以及选材范围广等特点,且能适用于高温高压的工况。缺点:存在壳程流动死区、壳程压力损失较大、容易结垢以及容易发生管束诱导振动等
(4)液体耦合间接式换热器:
系统由两台间壁式换热器组成,通过某种传热介质(如水或液态金属)的循环耦合在一起。
主要优点:①② P4
2. 换热器常用哪些材料制造?
金属材料换热器:碳钢、不锈钢、铝、铜、镍及其合金等
非金属材料换热器:石墨、工程塑料、玻璃、陶瓷换热器等。
稀有金属换热器可解决高温、强腐蚀等换热问题,但材料价格昂贵使应用范围受到限制。钛应用较,钽、锆等应用较少。
(2) 加大平均温差:尽量采取近于逆流的传热方式; 提高热流体温度或降低冷流体温度
(3) 采用高效能传热面
8. 用对数平均温差法,效率-传热单元数法进行传热计算.
9. 温度变化对流体物性参数的影响,如何修正.
?
10. 已知冷、热流体进口温度分别为t1、t2,出口温度分别为t’1,t’2,画出顺流、逆流换热时冷热流体温度的变化曲线,写出顺流、逆流的对数平均温差计算公式,并比较对数平均温差法和效能=传热单元数法.

换热器工作原理

换热器工作原理

管壳式换热器的三种分类管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类:1、固定换热器管板式换热器固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。

固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。

2、浮头式换热器浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。

浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。

3、U 型管换热器U 型管换热器的换热器传热管束是呈 U 形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部份,而完全消除了热应力对管束的影响。

U 型管换热器的结构简单、应用方便,但很难拆卸和清洗。

管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。

管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特殊是在高温高压和大型换热器中的应用占领绝对优势。

通常的工作压力可达 4 兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。

普通壳体直径在1800 毫米以下,管子长度在 9 米以下,在个别情况下也有更大或者更长的。

工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。

A 流体从接管 1 流入壳体内,通过管间从接管 2 流出。

B 流体从接管 3 流入,通过管内从接管 4 流出。

如果 A 流体的温度高于 B 流体,热量便通过管壁由 A 流体传递给 B 流体;反之,则通过管壁由B 流体传递给 A 流体。

壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A 流体)。

换热器种类及原理

换热器种类及原理

换热器种类及原理各种换热器优缺点、原理图及适用场合一、换热器种类及原理:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热;表面式换热器有管壳式、套管式和其他型式的换热器;2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的;蓄热式换热器有旋转式、阀门切换式等;3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体;4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等;二、换热器优缺点、原理图及适用场合1、表面式换热器:间壁式换热器1、管壳式换热器:优点:结构简单造价低、制造方便和内径小;缺点:由于温差问题会引起管子弯曲造成泄漏、污垢清洗很困难、只适用于温差小、单行程、压力不高以及结垢不严重的场合;2、容积式换热器:优点:供水平稳、安全,易于清除污垢;主要用于热水供应系统;但其传热系数比壳管式换热器低得多;3、板式换热器:优点:传热系数很高;缺点:水质不好形成水垢或污物沉积,都容易堵塞;在我国城镇集中供热系统中开始得到广泛应用;4、螺旋板式换热器:与板式换热器相比,流通截面较宽,不易堵塞;缺点:不能拆卸清洗、2、蓄热式交换器:优点:结构紧凑、价格便宜、单位体积传热面积大,适用于气-气热交换;如回转式空气预热器;局限:若两种流体不允许混合,不能采用蓄热式换热器;3、流体连接间接式换热器:4、直接接触式热交换器混合式换热器:优点:传热效率高、单位容积传热面积大、设备结构简单、价格便宜等;仅适用工艺上允许两种流体混合的场合;。

换热器培训教程

换热器培训教程

换热器培训教程一、换热器的概述换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备。

简单来说,它的作用就是将热量从一种流体传递到另一种流体,以满足工艺需求或实现能源的有效利用。

换热器在工业生产中的应用非常广泛,比如化工、石油、制药、食品、动力等众多领域。

它不仅能够提高能源的利用效率,降低生产成本,还能在一些工艺过程中起到关键的作用,如加热、冷却、冷凝、蒸发等。

二、换热器的类型换热器的种类繁多,常见的有以下几种:1、板式换热器板式换热器由一系列具有一定波纹形状的金属板片叠装而成。

板片之间形成薄矩形通道,通过板片进行热量交换。

它的优点是传热效率高、结构紧凑、占地面积小、重量轻,但也存在密封垫片容易老化、工作压力和温度受限等缺点。

2、管壳式换热器管壳式换热器由壳体、管束、管板、封头、折流挡板等组成。

一种流体在管内流动,另一种流体在壳程内流动,通过管壁进行热量交换。

这种换热器结构坚固、可靠性高、适应性强,能承受高温高压,但传热效率相对较低,占地面积较大。

3、螺旋板式换热器螺旋板式换热器由两张平行的金属板卷制而成,形成了两个螺旋形通道。

冷热流体在通道内逆向流动进行换热。

它的优点是结构紧凑、传热效率高,但制造难度较大,维修不太方便。

4、热管换热器热管换热器利用热管内工质的蒸发和冷凝来传递热量。

热管具有极高的导热性能,能够在很小的温差下传递大量的热量。

这种换热器具有传热效率高、结构简单等优点,但成本相对较高。

5、空气冷却器空气冷却器是以空气作为冷却介质,使高温流体得到冷却。

它常用于石油化工等领域中对高温气体的冷却,具有节水、节能等优点。

三、换热器的工作原理无论哪种类型的换热器,其工作原理都是基于热量传递的三种基本方式:热传导、热对流和热辐射。

热传导是指由于物体内部或物体之间存在温度差,使得热量从高温处向低温处传递的现象。

在换热器中,通过固体壁面(如管壁、板壁等)的传热就属于热传导。

热对流是指由于流体的宏观运动,使得流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递过程。

六种换热器的原理及介绍

六种换热器的原理及介绍

介绍
管式换热器在各种工业和民用领域中得到广泛应用,如石油化工、电力、供暖等。其优点 包括结构简单、易于制造、成本低、适应性强等。然而,管式换热器的流体阻力较大,需 要较高的泵送功率。此外,其热传导效率相对较低
3
原理
壳管式换热器是一种通过将热流体和冷流体分别流过相互平行的壳体和管束来实现热量交 换的设备。热量通过管壁传导给壳体中的冷流体,从而实现热量交换。壳管式换热器具有 较高的传热效率和较强的适应性
感谢观看
20XX年XX月
介绍
螺旋板式换热器在各种工业领域 中得到广泛应用,如石油化工、 电力等。其优点包括较高的紧凑 性、较低的流体阻力、能够处理 高温高压流体等。然而,螺旋板 式换热器的制造和维护较为复杂 ,成本相对较高。此外,其传热 效率相对较低
5
原理
翅片式换热器是一种通过在金属表面加工出翅片来增强传热效果的设备。它通过将冷热流 体分别流过翅片表面,通过翅片的扩展表面来增大传热面积,从而实现热量交换。翅片式 换热器具有较高的传热效率和较强的适应性
介绍
壳管式换热器在各种工业和民用 领域中得到广泛应用,如制冷、 化工等。其优点包括较高的传热 效率、较强的适应性、能够处理 各种类型的流体等。然而,壳管 式换热器的体积较大,需要较大 的安装空间。此外,其成本相对 较高
4
原理
螺旋板式换热器是一 种由两块螺旋形金属 板组成的热交换器。 它通过将冷热流体分 别流过金属板的内外 侧,通过金属板的热 传导和流体之间的对 流来实现热量交换。 螺旋板式换热器具有 较高的紧凑性和较低 的流体阻力
介绍
板式换热器在各种工业和民用领域中得到了 广泛应用,如供暖、制冷、工业制程中的加 热和冷却等。其优点包括高效能量转换、低 成本、易于维护和清洁等。然而,板式换热 器的流体阻力较大,对流体的清洁度要求较 高

家用换热器原理

家用换热器原理

家用换热器原理家用换热器,是一种利用燃气、电力、太阳能等能源作为动力的热水设备,它的主要作用是将冷水加热后通过管道送到家庭使用的各个水龙头,用于浴室、厨房等家庭生活中需要热水的场合。

本文将对家用换热器的工作原理、种类及安装方法等方面进行介绍。

一、家用换热器的工作原理家用换热器的工作原理与其他热水设备类似,主要包括加热器和水管系统两部分。

家用换热器的核心部分是一个铜制的热交换器,它与水箱相连,通过加热器中的火焰来加热水箱内的水。

在热水通往家庭中的水龙头之前,必须经过热交换器,这样能够将冷水加热到适当的温度,方便家庭使用。

家用换热器有两种加热方式,一种是通过燃气燃烧加热,一种是通过电力加热。

使用燃气加热的家用换热器,需要将燃气接入到加热器中,通过点火器将燃气点燃,使热交换器中的水加热。

而使用电力加热的家用换热器则通过电加热元件将电能转化成热能,从而加热水箱内的水。

这两种加热方式都可以满足家庭生活中的用水需求。

二、家用换热器的种类家用换热器种类繁多,根据不同特点可以分为以下几种:1. 燃气热水器:这种热水器在加热水时采用燃气直接燃烧加热的方法,因此需要接入燃气管道,常见于家庭用水量较大的情况下。

2. 电热水器:这种热水器是采用电加热器来将电能转化成热能,从而加热水箱内的水,安装简单,结构比较简单,但用水时需要较长的加热时间。

3. 太阳能热水器:这种热水器是利用太阳能将水加热,无需燃料,因此使用成本较低,适合在阳光充足的地区使用。

三、家用换热器的安装方法家用换热器的安装需要严格按照相关规定进行,一般需要找专业的安装人员进行安装,避免因安装不当而导致事故的发生。

总体来讲,家用换热器安装需要考虑以下几点:1. 安装位置选择:应选择通风、干燥、尽量靠近使用热水的房间或卫生间的位置。

2. 安装高度:水箱最好安装在人体高度的位置,便于操作和维修。

3. 烟道安装:燃气家用换热器需要安装烟道,烟道的长度和设置需要按照规定来进行。

换热器工作原理

换热器工作原理

换热器工作原理引言概述:换热器是一种常见的热交换设备,广泛应用于工业生产和日常生活中。

它通过传导、对流和辐射等方式,实现热量的传递和平衡。

本文将详细介绍换热器的工作原理,包括热量传导、对流换热、辐射换热、换热器的类型和应用。

一、热量传导1.1 热传导的基本原理热传导是指热量通过物质内部的分子振动和碰撞传递的过程。

它遵循热量从高温区向低温区传递的规律,符合热力学第二定律。

热传导的速率与物质的导热性能有关,导热性能好的物质能够更快地传递热量。

1.2 热传导的影响因素热传导的速率受到多个因素的影响,包括物质的导热系数、温度差、物质的厚度和面积等。

导热系数是物质传导热量的能力,不同物质的导热系数差异很大。

温度差越大,热传导速率越快。

物质的厚度和面积越大,传导热量的能力越强。

1.3 热传导的应用热传导在换热器中起着重要作用。

通过合理设计换热器的传热面积和材料选择,可以提高热传导效率,实现热量的高效传递。

在工业生产中,热传导广泛应用于蒸汽发生器、冷凝器等热交换设备。

二、对流换热2.1 对流换热的基本原理对流换热是指热量通过流体的对流传递的过程。

在对流换热中,热量通过流体的传导和对流两种方式进行传递。

对流换热的速率与流体的流速、温度差、流体的物性等有关。

2.2 对流换热的影响因素对流换热的速率受到多个因素的影响,包括流体的流速、温度差、流体的物性、流体的流动方式等。

流速越大,对流换热速率越快。

温度差越大,热量传递越快。

流体的物性如导热系数、比热容等也会影响对流换热的效果。

2.3 对流换热的应用对流换热广泛应用于换热器中,例如散热器、冷却塔等。

通过合理设计换热器的流体通道和流速,可以提高对流换热效率,实现热量的快速传递。

在工业生产中,对流换热被广泛应用于空调系统、汽车发动机冷却系统等领域。

三、辐射换热3.1 辐射换热的基本原理辐射换热是指热量通过电磁辐射传递的过程。

所有物体都会发射电磁辐射,辐射的强度与物体的温度有关。

各种换热器工作原理和特点,值得收藏

各种换热器工作原理和特点,值得收藏

各种换热器工作原理和特点,值得收藏一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了除去热应力。

性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压本领强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

(2)缺点是管内清洗不便,管束中心部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。

此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。

这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。

2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。

依据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。

(1)优点这是一种古老的换热设备。

它结构简单,制造、安装、清洗和维护和修理便利,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。

(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。

为提高传热系数,容器内可安装搅拌器。

3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。

性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

换热器的结构及工作原理

换热器的结构及工作原理

换热器的结构及工作原理1. 换热器的基本概念嘿,大家好!今天我们来聊聊一个听起来有点高大上的东西——换热器。

你可能在生活中没有直接接触过它,但其实它就在我们身边,默默地发挥着作用,就像那位在你身边的“默默无闻”好朋友,关键时刻总能给你支招。

换热器,顾名思义,就是一个用来交换热量的设备。

简单来说,就是把热的东西和冷的东西放在一起,看看能不能让它们彼此“分享”一下温度。

1.1 换热器的结构换热器的结构其实并不复杂,它就像一个大大的“夹心饼干”,里面夹着热流体和冷流体。

通常情况下,外面是冷的流体,里面是热的流体,二者通过热交换管道互相“打招呼”。

这就好比在炎热的夏天,喝一杯冰凉的饮料,嘴巴里冰冰凉凉的,简直太舒服了!而换热器的“夹心”部分则是各种材料的组合,常见的有金属、塑料等。

它们都很擅长传导热量,就像运动员在比赛中传球一样,来来回回,热量就这样轻松地传递。

1.2 换热器的分类换热器的类型也不少,按照形状和用途可以分为几种,比如管壳式、板式、空气冷却式等等。

想象一下,一个个换热器就像各具特色的“明星”,各自都有自己的招牌动作。

管壳式换热器就像一个巨大的咖啡杯,热流体和冷流体在里面搅拌得热火朝天。

而板式换热器则像个叠罗汉,紧凑得让人心疼,却能在有限的空间里发挥出最大的功效。

2. 换热器的工作原理那么,换热器究竟是怎么工作的呢?好吧,接下来就让我们来“揭开它的面纱”。

换热器的工作原理可以用“热量转移”四个字来概括。

热流体在一个地方通过管道流动,碰到冷流体的时候,热量就开始悄悄“移情别恋”,渐渐把热量传递给冷流体。

而冷流体呢,就像是一个“海绵”,吸收着热量,慢慢变热起来。

这一过程就像是一场舞蹈,热和冷在换热器中翩翩起舞,生动又有趣。

2.1 热量的传递方式在传递热量的过程中,热流体和冷流体的流动方向是非常关键的。

有时候,它们是顺流而行,就像两位好友在河边散步,互相分享着各自的故事;而有时候,它们则是逆流而上,像一对老夫妇,在漫长的岁月中互相支持,始终如一。

各种换热器工作原理

各种换热器工作原理

1.套管式换热器1^1每一段套管称为〃一程",程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。

热量通过内管管壁由一种流体传递给另一种流体。

通常,热流体(A流体)由上部引入,而冷流体(B流体)则由下部引入。

套管中外管的两端与内管用焊接或法兰连接。

内管与U形肘管多用法兰连接,便于传热管的清洗和增减。

每程传热管的有效长度取4~7米。

这种换热器传热面积最高达18平方米,故适用于小容量换热。

优点:结构简单,能耐高压。

传热面积可根据需要增减,应用方便。

缺点:管间接头多,易泄露。

占地面积较大,单位传热面消耗金属量大。

2、浮头式换热器浮头式换热器浮头端结构由圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成。

钩圈式浮头的详细结构见下图所示。

盖娜去兰外头盖法兰B型钩圈浮头盖法兰优点:当换热管与壳体有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力。

管束可从壳体内抽出,便于管内和管间的清洗。

缺点:结构较复杂,用材量大,造价高。

浮头盖与浮动管板之间若密封不严,发生内漏,造成两种介质的混合。

3、沉浸蛇管换热这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中。

优点:结构简单,能承受高压,可用耐腐蚀材料制造。

缺点:容器内液体湍动程度低,管外换热系数小为提高传热系数,容器内可安装搅拌器。

板式换热器是液一液、液一汽进行热交换的理想设备。

它是由具有一定波纹形状的一系列金属片叠装而成的一种新型高效换热器。

板式换热器的结构原理:可拆卸板式换热器是由许多冲压有波纹薄板按一定间隔,四周通过垫片密封,并用框架和压紧螺旋重叠压紧而成,板片和垫片的四个角孔形成了流体的分配管和汇集管,同时又合理地将冷热流体分开,使其分别在每块板片两侧的流道中流动,通过板片进行热交换。

5、具有补偿圈的换热器由挡板、补偿圈和放热嘴构成的换热器。

当流体为高温换热时,由于壳体与管束因温度相差太大,引起不同的热膨胀率,补偿圈就是为了消除这种热应力。

换热器的工作原理

换热器的工作原理

换热器的工作原理
换热器是一种可以转移热量的设备。

它基于热量从高温区域到低温区域传导的原理,通过增大接触面积和利用流体的流动来实现热量的转移。

换热器通常由两个热交换介质之间的热交换管或板组成。

这些管道或板具有大量细小的通道,以增加接触面积。

当热交换介质在这些通道中流动时,热量从热源处传递到冷源处。

换热器的工作原理可以分为两种类型:直接换热和间接换热。

直接换热器通常由一个单一流体的循环系统组成。

流体在热源处被加热,然后通过换热器中的管道或板传递热量,最终在冷源处放出热量。

这个过程中,热源处的流体会得到加热,而冷源处的流体会被冷却下来。

间接换热器将两个不同的流体通过换热器中的管道或板分开。

其中一个流体被加热,在流动过程中传递热量给另一个流体。

这种类型的换热器常用于加热水器、蒸汽发生器和冷凝器中。

换热器的效率可以通过以下几个因素来衡量:热交换面积、流体的流速和温度差。

增大热交换面积可以提高传热效率,而增加流速和温度差可以加快热量传输速度。

总之,换热器通过增大接触面积和利用流体的流动来实现热量的转移。

通过直接或间接的方式,热量可以从高温区域传递到低温区域,从而实现热能的利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热器种类及原理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
换热器种类及原理各种换热器优缺点、原理图及适用场合
一、换热器种类及原理:
1、表面式换热器
表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。

表面式换热器有管壳式、套管式和其他型式的换热器。

2、蓄热式换热器
蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。

蓄热式换热器有旋转式、阀门切换式等。

3、流体连接间接式换热器
流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

4、直接接触式换热器
直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。

二、换热器优缺点、原理图及适用场合
1、表面式换热器:(间壁式换热器)
(1)、管壳式换热器:优点:结构简单造价低、制造方便和内径小;缺点:由于温差问题会引起管子弯曲造成泄漏、污垢清洗很困难、只适用于温差小、单行
程、压力不高以及结垢不严重的场合。

(2)、容积式换热器:优点:供水平稳、安全,易于清除污垢。

主要用于热水供应系统。

但其传热系数比壳管式换热器低得多。

(3)、板式换热器:优点:传热系数很高;缺点:水质不好形成水垢或污物沉
积,都容易堵塞。

在我国城镇集中供热系统中开始得到广泛应用。

(4)、螺旋板式换热器:与板式换热器相比,流通截面较宽,不易堵塞。

缺点:不能拆卸清洗、
2、蓄热式交换器:优点:结构紧凑、价格便宜、单位体积传热面积大,适用于气-气热交换。

如回转式空气预热器。

局限:若两种流体不允许混合,不能采用蓄热式换热器。

3、流体连接间接式换热器:
4、直接接触式热交换器(混合式换热器):优点:传热效率高、单位容积传热面
积大、设备结构简单、价格便宜等。

仅适用工艺上允许两种流体混合的场合。

相关文档
最新文档