【CN109934402A】一种风电场集控中心集中风功率预测系统及其设计方法【专利】
风电场功率预测系统的设计原理与性能评估
风电场功率预测系统的设计原理与性能评估近年来,随着可再生能源行业的蓬勃发展,风能作为一种清洁、可持续的能源形式逐渐受到广泛关注。
然而,风能的不稳定性成为了风电场运营和管理的主要挑战之一。
在风能变化无常的情况下,电网需求不断变化,因此如何准确预测风电场的出力功率,成为了风电场运维管理的关键。
本文将介绍风电场功率预测系统的设计原理和性能评估。
风电场功率预测系统主要包括数据采集、特征提取、模型训练和预测四个关键步骤。
通过对这些步骤的设计和优化,能够提高风电场功率预测的准确性和稳定性。
首先,数据采集是风电场功率预测系统的基础。
系统需要采集风电场内各个风机的工作状态数据、天气数据、风速数据等相关信息。
这些数据将被用于分析和建立预测模型,并对风电场未来的出力功率进行预测。
对数据采集系统进行设计时,应考虑数据的实时性和准确性,确保采集到的数据能够真实地反映风能的变化情况。
其次,特征提取是风电场功率预测的关键步骤之一。
通过对采集到的数据进行分析和处理,提取出能够反映风能变化的关键特征。
这些特征可以包括风速、风向、气象条件等。
在特征提取过程中,应综合考虑多个变量之间的相互关系,并通过合适的算法和方法进行特征选择和降维,以减少数据维度和提高预测准确性。
模型训练是风电场功率预测系统的核心环节。
在模型训练过程中,可以采用各种机器学习方法,如回归分析、神经网络、支持向量机等。
这些方法能够利用历史数据和特征信息,建立出有效的预测模型。
在模型训练过程中,应使用合适的算法和技术,优化模型的参数和结构,以提高模型的预测精度和鲁棒性。
最后,预测是风电场功率预测系统的最终目标。
通过利用建立好的预测模型和实时采集到的数据,可以对未来一段时间内风电场的出力功率进行预测。
预测结果可以用于电网调度、风电场管理、风机功率优化等方面,提高风电场的利用效率和经济性。
除了设计原理,对于风电场功率预测系统的性能评估也是必不可少的。
性能评估可以通过比较预测结果与实际测量结果的差异来进行。
风电功率预测系统设计方案
风功率预测系统设计方案随着社会的发展,传统能源出现面临枯竭的危险,发展新能源经济是当今世界的历史潮流和必然选择。
而二次能源开发中利用风力发电是最有潜力最为环保的方式之一,但这也引出了分布式发电并网难的问题。
由于风能发电的间歇性、不稳定性,并网后对电网冲击巨大,因此,做好风能发电的预测和调控是风力发电并网稳定运行和有效消纳的重要条件。
国外的经验证明,对风力发电进行有效预测,可以帮助电网调度部门做好各类电源的调度计划,减少风电限电,由此大大提高了电网消纳风电的能力,进而减少了由于限电给风电业主带来的经济损失,增加了风电场投资回报率。
为此,国能日新自主研发的风电功率预测系统,为国家的风电事业发展贡献自己的一份力量。
风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。
在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。
这种高纬度与低纬度之间的温度差异,形成了南北之间的气压梯度,使空气作水平运动,风沿水平气压梯度方向吹,即垂直与等压线从高压向低压吹。
地球在自转时,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球南方吹向北方的风向东偏转,北方吹向南方的风向西偏转,南半球则相反。
所以地球大气运动除受气压梯度力外,还要受地转偏向力的影响,大气真实运动是这两种力综合影响的结果。
国能日新开发的风电功率预测系统SPWF-3000,具备高精度数值气象预报功能、风电信号数值净化、高性能物理模型、网络化实时通信、通用风电信息数据接口等高科技模块;可以准确预报风电场未来168小时功率变化曲线。
在即使没有测风塔的情况下,采用国能日新的虚拟测风塔技术,风功率系统短期预测精度超过80%,超短期预测精度超过90%。
一种风电机组的功率控制系统及方法[发明专利]
专利名称:一种风电机组的功率控制系统及方法专利类型:发明专利
发明人:刘颖,罗乔
申请号:CN202010943211.4
申请日:20200909
公开号:CN112072702A
公开日:
20201211
专利内容由知识产权出版社提供
摘要:本发明属于风力发电技术领域,具体公开了一种风电机组的功率控制系统及方法,包括风电功率预测模块、功率控制模块和数据检测模块,所述风电功率预测模块用于根据风电场风速来预测输出功率,所述功率控制模块用于预测功率的输出量,所述数据检测模块用于对储能电容的剩余电压进行实时检测,并根据剩余电压来控制放电电压的使用量,本发明科学合理,使用安全方便,利用风电功率预测模块可以通过调节风电场的风速来控制输出功率,来预测一定时间内风速所对应的输出功率,利用功率控制模块可以对功率的实际输出功率进行分配,利用数据检测模块来对风电机组中的储能电容的放电电压进行实时检测,工作人员可以提前了解风电机组中储能电容的储存的电量并可以及时调节。
申请人:南京工业职业技术大学
地址:210023 江苏省南京市中山东路532-2号
国籍:CN
代理机构:北京华际知识产权代理有限公司
代理人:褚庆森
更多信息请下载全文后查看。
风电场风功率预测系统研究
风电场风功率预测系统研究随着可再生能源的发展,风电场已成为一种主要的电力发电方式。
然而,由于风速的不稳定性和不可预测性,风电场的发电效率和稳定性存在一定的挑战。
因此,开发一种风功率预测系统对于风电场的运行和调度至关重要。
风功率预测系统可以通过分析历史风速数据、天气数据等多种因素,来预测未来一段时间内的风功率变化趋势。
这对于风电场的运行和调度具有重要的指导作用,可以减少风电场的停机时间,提高电力发电效率。
首先,风功率预测系统需要收集和整理大量的历史数据。
这些数据包括风速、风向、气温、大气压力等多种气象因素。
根据历史数据的变化趋势和规律,可以建立起一个合适的数学模型来预测未来的风功率。
其次,风功率预测系统需要考虑其他因素对风速的影响,如地形、海拔、风机布置等。
这些因素会对实际的风速产生一定的影响,因此需要分析并加以考虑。
然后,风功率预测系统需要选择合适的预测方法。
目前常用的预测方法包括基于统计学的方法,如回归分析、时间序列分析等,以及基于机器学习的方法,如人工神经网络、支持向量机等。
这些方法可以根据风电场的实际情况来选择合适的预测方法。
最后,风功率预测系统的实施还需要结合实时的监测数据和监测设备。
通过实时监测风速和风功率的变化,可以对预测结果进行修正和调整,提高预测的准确性和可靠性。
综上所述,风功率预测系统的研究对于风电场的运行和调度至关重要。
它可以帮助风电场准确预测未来的风功率变化趋势,提前做好调整和计划。
这将不仅可以减少风电场的停机时间,提高电力发电效率,还可以降低对传统能源的依赖,促进可持续发展。
因此,继续加强对风功率预测系统的研究和开发,将对风电场的发展产生积极影响。
面向大规模风电场的功率预测系统设计与实现
面向大规模风电场的功率预测系统设计与实现随着全球对可再生能源的不断追求和风能资源的广泛开发利用,风电场规模不断扩大。
然而,由于风能的不稳定性和变化性,大规模风电场的运行管理面临诸多挑战。
为了提高风电场的运行效率和经济性,预测风电场的功率输出成为一个关键问题。
本文将介绍面向大规模风电场的功率预测系统的设计与实现。
一、系统设计1. 数据采集与预处理面向大规模风电场的功率预测系统设计,首先需要进行数据采集与预处理。
通过部署传感器设备,从风电场各个风机以及气象站等获取风速、风向、温度等相关数据,并对原始数据进行预处理,如去除异常值、噪声处理和数据归一化等。
这些数据将提供给后续的预测模型进行分析和建模。
2. 特征提取与选择在数据预处理完成后,需要对数据进行特征提取与选择。
针对风电场的功率预测问题,通常需要提取与风能相关的特征,如风速、风向、气温等。
在特征选择方面,可以采用统计学方法、信息论方法或者机器学习方法来进行特征选择,选择出对功率预测具有较高相关性的特征变量。
3. 预测模型建立根据已经提取和选择的特征变量,建立合适的预测模型是系统设计的关键。
常用的功率预测模型包括基于统计学的方法,如回归分析、时间序列分析和灰色系统模型等,以及基于机器学习的方法,如人工神经网络、支持向量机和随机森林等。
根据风电场的具体情况和数据特征,选择合适的模型进行建模和训练。
4. 模型评估与选择建立预测模型后,需要对模型进行评估与选择。
可以利用交叉验证、均方根误差和平均绝对百分比误差等指标来评估模型的准确性和性能。
通过比较不同模型的预测结果,选择性能较好的模型作为最终的功率预测模型。
5. 系统集成与优化在设计阶段完成后,需要进行系统集成与优化。
将数据采集、预处理、特征提取、预测模型和评估等模块进行集成,形成完整的功率预测系统。
此外,还可以引入多源数据融合、实时监测和优化调度等技术,进一步提高系统的效率和准确性。
二、系统实现1. 软件开发面向大规模风电场的功率预测系统需要进行软件开发。
风电场风电功率预测方法研究
风电场风电功率预测方法研究风电场风电功率预测方法研究一、引言随着能源需求的不断增长和对环境保护意识的提高,可再生能源日益受到重视,其中风能作为一种无污染的能源,具有巨大的潜力。
风电场利用风能发电,具有可再生、清洁、环保等优势。
然而,风能的不稳定性和不可控性给风电场的运行和管理带来了一定的挑战。
为了更好地管理风电场发电功率,提高风电场的运行效率,风电功率预测成为一个重要的研究方向。
二、风电功率预测方法1. 传统统计方法传统统计方法主要利用历史数据来预测未来的风电功率,包括时间序列分析、回归模型等。
时间序列分析方法利用历史风功率数据的趋势、周期和随机性等特征来预测未来的风功率。
回归模型则通过分析风速、风向、温度等气象数据与风功率之间的关系建立预测模型。
2. 人工智能方法随着人工智能技术的发展,利用人工智能方法来预测风电功率成为一种新的趋势。
神经网络、支持向量机、模糊逻辑等人工智能方法被广泛应用于风电功率预测。
这些方法通过对大量的风电场数据进行学习,建立模型来预测未来的风功率。
三、风电功率预测模型的评估指标为了评估风电功率预测模型的性能,需要选择合适的评估指标。
常用的评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)、相关系数(Correlation coefficient)等。
通过比较不同模型的评估指标,可以选择最合适的预测模型。
四、案例分析以某风电场为例,利用传统统计方法和人工智能方法进行风电功率预测。
首先,基于历史风功率数据,利用时间序列分析和回归模型建立预测模型。
然后,利用人工智能方法,如神经网络、支持向量机等,建立预测模型。
最后,通过评估指标来比较不同模型的性能,并选择最合适的模型。
五、结论与展望通过对风电场风电功率预测方法的研究,我们可以发现传统统计方法和人工智能方法各有优劣。
传统统计方法简单直观,但对于非线性关系预测能力较弱;人工智能方法能够更好地捕捉复杂的非线性关系,但需要更多的数据和计算资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 (43)申请公布日 (21)申请号 201910180757.6
(22)申请日 2019.03.11
(71)申请人 北京天润新能投资有限公司西北分
公司
地址 830026 新疆维吾尔自治区乌鲁木齐
市经济技术开发区上海路107号
(72)发明人 景志林 张宁 马辉 梁志平
(74)专利代理机构 北京华仲龙腾专利代理事务
所(普通合伙) 11548
代理人 李静
(51)Int.Cl.
G06Q 10/04(2012.01)
G06Q 10/06(2012.01)
G06Q 50/06(2012.01)
(54)发明名称一种风电场集控中心集中风功率预测系统及其设计方法(57)摘要本发明提供一种风电场集控中心集中风功率预测系统,包括:(1)数据源;(2)数据平台层;(3)应用展示层;集中风功率预测系统采用微服务软件设计模式,系统中的每一个模块都是可以独立分拆、独立部署的微服务,底层使用的Docker容器技术和容器云平台,基于容器云平台上的持续集成、持续部署技术实现系统的快速迭代更新,分为生产控制大区的架构及信息管理大区的架构。
还公开了一种风电场集控中心集中风功率预测系统的设计方法,包括步骤:1)设计集中风功率预测系统网络拓扑及电力监控系统安全防护模块;2)设计集中风功率预测系统的预测结果获取与展示模块;3)设计人为干预功率预测
结果的实施策略。
权利要求书3页 说明书12页 附图11页CN 109934402 A 2019.06.25
C N 109934402
A
权 利 要 求 书1/3页CN 109934402 A
1.一种风电场集控中心集中风功率预测系统,其特征在于包括:
(1)数据源:作为集中功率预测系统的基础数据来源,基础数据按照电场类别分为风电场数据、光伏电场数据,按照设备类型分为风机数据、逆变器数据、测量设备数据、升压站数据,展示以设备分类列出的数据源,测量设备数据包括风速、辐照度两种电场的实时监测数据,基础数据是通过客户端通过大数据平台的统一数据接口上传到中心端系统中,功率预测厂商的气象和功率预测数据为所述风电场集控中心集中风功率预测系统气象预报预警数据和预测功率数据的数据源,这部分数据通过互联网直接上传到所述风电场集控中心集中风功率预测系统中心端;
(2)数据平台层:用于为统一的所述风电场集控中心集中风功率预测系统中心端提供统一存储和计算资源,所述风电场集控中心集中风功率预测系统的各业务子系统均部署在数据平台层;
(3)应用展示层:是集中功率预测系统的界面,新能源用户通过所述界面实现所有风电场功率预测业务的查询、监控、报表工作。
2.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述数据平台层包括统一数据接入服务、统一数据存储池、统一计算资源池、数据仓库、统一数据发布服务,所述数据接入服务基于大数据的采集技术,包括流数据和批数据采集技术Apache Kafka、日志等非结构化数据采集技术Logstash;所述应用展示层包括气象预报预警业务、功率预测业务和业务管理业务,所述气象预报预警业务分为天气数据展示、气象灾害预警、气象数据对比查询,所述功率预测业务分为预测指标展示、预测实测数据对比、上报状态查询与手动补报等功能,所述业务管理业务包括基础信息查询与管理、用户权限设置与管理、综合查询系统、数据归档管理、自由报表系统、测量设备管理系统。
3.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述集中功率预测系统采用微服务软件设计模式,系统中的每一个模块都是可以独立分拆、独立部署的微服务,底层使用的Docker容器技术和容器云平台,基于容器云平台上的持续集成、持续部署技术实现系统的快速迭代更新。
4.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述集中功率预测系统分为生产控制大区的架构以及信息管理大区的架构,所述生产控制大区分为安全Ⅰ区(控制区)和安全Ⅱ区(非控制区),所述安全Ⅰ区直接实现对电力一次系统的实时监控,纵向使用电力调度数据网络或专用通道,所述安全Ⅱ区在线运行但不具备控制功能,使用电力调度数据网络,与控制区中的业务系统或其功能模块电连接,所述集中功率预测系统在生产控制大区设置防火墙、功率预测服务器、内代理服务器、正向隔离、反向隔离,用于设备数据采集、协议适配、实时监控、告警管理、数据转发,所述集中功率预测系统的服务器把通过反向隔离传输过来的集中功率预测的结果按照电网要求的报文格式,上报给电网;内代理服务器将安全区数据通过正向隔离传输给外代理;所述信息管理大区采集存储服务器集群接受内代理转发的数据,对数据进行反向的解密、解压、数据拆箱匹配信息模型、流计算、数据持久化;获取其他管理信息系统数据,进行数据清洗、转换、加载、持久化,形成跨多数据引擎的清洁能源大数据湖;提供多副本集存储,保证数据的高可用性,查询分析服务集群提供海量异构数据的即席查询服务、多维数据聚合服务、并行化分析引擎、离线分析服务、数据审计核查、质量评估修复、使用痕迹记录等,为上层应用提供RESTful原则的
2。