背包问题

合集下载

理学背包问题详解

理学背包问题详解
9
0 1 2 3 4 5 6 7 8 9 10
000000000000
x1=1
w1=2 v1=6 1 0 0 6 6 6 6 6 6 6 6 6
x2=1
w2=2 v2=3 2 0 0 6 6 9 9 9 9 9 9 9
x3=0
w3=6 v3=5 3 0 0 6 6 9 9 9 9 11 11 14
可用动态规划算法求解。
3
其他类型背包问题
完全背包问题(0/1):
有N种物品和一个容量为V的背包,每种物品都有 无限件可用。第i种物品的费用是c[i],价值是w[i]。 求解将哪些物品装入背包可使这些物品的费用总和 不超过背包容量,且价值总和最大。
多重背包问题
有N种物品和一个容量为V的背包。第i种物品最多 有n[i]件可用,每件费用是c[i],价值是w[i]。求解 将哪些物品装入背包可使这些物品的费用总和不超 过背包容量,且价值总和最大。
{// 计算x
for (int i=1; i<n; i++)
if (m[i][c]==m[i+1][c])
x[i]=0;
else
{
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c])?1:0;
}
11
算法改进
由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的 i(1≤i≤n),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃 点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其 全部跳跃点唯一确定。如图所示。
(7,7)
(6,6) (4,5)
(4,5)(6,6)
(0,
0)
(2,
(3,2) 1)

背包问题的分支定界法

背包问题的分支定界法

背包问题的分支定界法
背包问题的分支定界法是一种求解背包问题的有效方法。

分支定界法的基本思想是将问题分解为若干个子问题,通过逐个解决子问题来逼近原问题的解。

在背包问题中,分支定界法通过将问题分解为一系列背包问题,从最简单的情况开始逐步扩展问题的规模,从而逐步逼近最优解。

分支限界法求解:
1.初始化:首先确定问题的约束条件和目标函数,并初始化问题的解空间树。

解空间树是问题解的搜索空间,其中每个节点表示一个可能的解。

2.搜索:从根节点开始,按照广度优先或最小耗费优先的方式搜索解空间树。

在搜索过程中,每个节点代表一个子问题,通过对子问题进行求解,可以逐步逼近原问题的解。

3.剪枝:在搜索过程中,根据问题的约束条件和目标函数,对一些不可能成为最优解的节点进行剪枝,从而减少搜索空间的大小。

剪枝可以提高搜索效率,但需要注意避免剪枝过度导致最优解丢失。

4.求解:当搜索到叶子节点时,表示找到了一个可行的解。

此时需要对叶子节点进行评估,确定其是否为最优解。

如果叶子节点的价值大于当前最优解的价值,则更新最优解;否则将叶子节点加入到已访问节点集合中。

5.回溯:如果搜索到叶子节点时发现当前最优解的价值不小于已访问节点集合中的最大价值,则说明当前最优解已经是最优解或者已经超出了搜索空间的上限。

此时需要进行回溯操作,即从当前节点向上回溯到上一层节点,并继续搜索。

6.结束:当搜索到根节点时,表示已经搜索完了解空间树。

此时需要判断是否找到了最优解,如果没有找到则需要进一步调整搜索策略或调整问题的约束条件和目标函数。

背包问题课件

背包问题课件

刷表法——手推
【样例输入】package.in
10 4
21
for(int i=1;i<=n;++i)
Hale Waihona Puke 33for(int v=m;v>=w[i];--v)
45
f[v]=max(f[v],f[v-w[i]]+c[i])
79
【样例输出】package.out
12
i
W[i]
C[i]
i=0
0
0
i=1
2
1
i=2
理一件物品,作为一个阶段,共有n个 阶段 2、定义状态:
定义f[i][v]是前i件物品恰好放 入一个容量为v的背包,所得到的最大 价值 3、状态转移方程: 若第i件物品没有放入背包,则f[i][v]=f[i-
1][v] 若第i件物品放入背包,则f[i][v]=f[i-1][v-
w[i]]+c[i] 根据状态定义,f[i][v]=max(f[i-1][v],f[i-
【输出格式】 仅一行,一个数,表示最大总价值。
【样例输入】package.in 10 4 21 33 45 79
【样例输出】package.out 12
01背包
【问题描述】 一个旅行者有一个最多能用m公斤的
背包,现在有n件物品,它们的重量分别是 W1,W2,...,Wn,它们的价值分别为 C1,C2,...,Cn.若每种物品只有一件求旅行者 能获得最大总价值。 【输入格式】
1][v-w[i]]+c[i]) 4、临界值: 当i==0时,表示一件物品也没有, f[0][v]=0,数组f在main函数前定义即可
刷表法——手推
【样例输入】package.in 10 4

背包问题

背包问题

完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN) 的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得 出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如 何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关 的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令 f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程, 像这样:f[i,v]=max{f[i,v-vi]+wi,f[i-1,v]}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的 时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过O(VN)的。
背包问题已经研究了一个多世纪,早期的作品可追溯到1897年 数学家托比亚斯·丹齐格(Tobias Dantzig, 1884-1956)的早期作品 ,并指的是包装你最有价值或有用的物品而不会超载你的行李的常见问题。
应用
1998年的石溪布鲁克大学算法库的研究表明,在75个算法问题中,背包问题是第18个最受欢迎,第4个最需 要解决的问题(前三为后kd树,后缀树和bin包装问题)。
基础背包
题目 基本思路
空间复杂 示例程序
递归实现 程序
测试数据 总结
有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些 物品的重量总和不超过背包容量,且价值总和最大。

数学建模背包问题

数学建模背包问题

背包问题背包问题(Knapsack problem)是一种组合优化的NP 完全问题。

问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

问题的名称来源于如何选择最合适的物品放置于给定背包中。

相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。

也可以将背包问题描述为决定性问题,即在总重量不超过W 的前提下,总价值是否能达到V ?它是在1978年由Merkel 和Hellman 提出的一、定义:背包问题属于组合优化问题,一般的最优化问题由目标函数和约束条件两部部分组成:我们有n 种物品,物品i 的重量为w i ,价格为p i 。

我们假定所有物品的重量和价格都是非负的。

背包所能承受的最大重量为W 。

如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。

可以用公式表示为:1max ni i i p x =∑1..,ni i i S T w x W =≤∑ {}0,1i x ∈如果限定物品i 最多只能选择b i 个,则问题称为有界背包问题。

可以用公式表示为:1max ni i i p x =∑1..,n i i i S T w xW =≤∑ {}0,1,,i i x b ∈⋅⋅⋅如果不限定每种物品的数量,则问题称为无界背包问题。

各类复杂的背包问题总可以变换为简单的0-1背包问题进行求解。

二、基本模型的建立方法1、0-1背包问题的数学模型(最基础的背包问题)分类:0-1背包问题简单分为一维背包和二维背包问题。

特点:每种物品仅有一件,可以选择放或不放。

1.1 一维背包问题问题:一个旅行者准备进行徒步旅行,为此他必须决定携带若干物品。

设有n 件物品可供他选择,编号为1,2,...,n 第i 件物品重量为i w 千克,价值为i p 元,他能携带的最大重量为w 千克。

他应该装入哪几件物品价值最大。

解:引入变量i x ,且设1,(1,2,,)0,i i x i n i ⎧==⎨⎩表示将第种物品装入包中表示不将第种物品装入包于是此问题的数学模型为:1max ni i i f p x ==∑1122.....01,1,2,...,.n n iw x w x w x W S T x i n +++≤⎧⎨==⎩或 1.2 二维背包问题一维背包问题只考虑了背包重量的限制,如果再增加背包体积的限制为V ,并设第i 件物品的体积i v ,问如何携带可使总价值最大。

背包问题状态转移方程

背包问题状态转移方程

背包问题是一个经典的动态规划问题,有两个主要变种:0/1背包问题和背包问题。

以下是它们的状态转移方程:
1.0/1背包问题:
–设物品的重量数组为weights,价值数组为values,背包容量为W,物品个数为n。

–令dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。

–状态转移方程:
dp[i][j]=max(dp[i−1][j],dp[i−1][j−weigℎts[i]]+values[i])
–其中,dp[i-1][j]表示不选择第i个物品,dp[i-1][j-weights[i]] + values[i]表示选择第i个物品。

2.背包问题(允许物品分割):
–设物品的重量数组为weights,价值数组为values,背包容量为W,物品个数为n。

–令dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。

–状态转移方程:
dp[i][j]=max(dp[i−1][j],dp[i][j−weigℎts[i]]+values[i])
–其中,dp[i-1][j]表示不选择第i个物品,dp[i][j-weights[i]] + values[i]表示选择第i个物品。

这两个状态转移方程是背包问题中最基本的形式,它们都采用动态规划的思想,通过填表格的方式逐步求解问题。

在实际应用中,你可以根据具体问题的要求进行适当的调整。

背包问题的算法

背包问题的算法

背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。

以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。

2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。

3. 初始化:f[0][0]=0。

4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。

时间复杂度:O(n*m),其中n为物品数量,m为背包容量。

空间复杂度:O(n*m)。

01背包问题动态规划算法

01背包问题动态规划算法

01背包问题动态规划算法
01背包问题是求在限定条件下,在一定的容量内最优装载物品,使得总价值最大。

动态规划算法是一种用于解决多阶段决策问题的途径,其特点是将原问题划分成若干子问题,每个子问题只求解一次,保存子问题的解,避免了重复计算。

01背包问题动态规划算法的步骤如下:
1、确定状态:物品的种数i (i=1,2,…n),背包的容量j (j=0,1,2,…V)。

2、确定状态转移方程:f[i][j]=max{f[i-1][j],f[i-1][j-wi]+vi}。

3、确定初始状态:f[i][0]=0,f[0][j]=0。

4、确定输出:最后f[n][V]即为最优解。

5、根据状态转移方程从左到右,从上到下进行迭代计算。

01背包问题(01knapsackproblem)

01背包问题(01knapsackproblem)

01背包问题(01knapsackproblem)0 / 1 背包问题(0 / 1 knapsack problem)背包问题(Knapsack problem)是⼀种组合优化的问题。

问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。

问题的名称来源于如何选择最合适的物品放置于给定背包中。

相似问题经常出现在商业、[组合数学],[计算复杂性理论]、[密码学]和[应⽤数学]等领域中。

也可以将背包问题描述为,即在总重量不超过W的前提下,总价值是否能达到V。

1、题⽬描述假设商店中有如下3个商品,他们的重量和价格如下:索引重量价值011500143000232000假如你是⼀个⼩偷,你有⼀个重量为4的包,每个商品只能偷⼀次,请问你怎么偷才会使得最后的价值最⼤?2、分析这种问题⼀般可以⽤动态规划很好地解决。

但是如果我不⽤动态规划,⽽是⽤搜索所有情况来解决也可以,每个商品都有偷或不偷的选项,所以n个商品就有n^2种情况,所以⽤遍历的⽅法时间复杂度为O(n^2) n为商品的数量现在我们假设B(k, w)表⽰的是前k个商品,在背包容量为w的情况下能偷的最⾼价值当现在⾯对的第k个物品重量太重时:B(k, w) = B(k-1, w),代表我在多了⼀个物品的选择的情况下,仍然和没有这件物品时的选择⼀样,所以结果也⼀样(因为我偷不了或者我不偷的情况)当第k个物品的重量我可以接受时:B(k, w) = B(k-1, w - 这件物品的重量) + 这件物品的价值代表我如果偷了这件物品,那剩下的w - 这件物品重量的空间可以容纳的最⼤价值就是在上⼀次选择时B(k-1, w - 这件物品的重量)的值。

再加上这件物品的价值就是我偷了这件物品的最⼤值。

所以,在衡量⼀个B(k, w)时,⾸先看⼀下能不能偷,能得话看⼀下偷还是不偷两个的最⼤值,就是B(k, w)的值,所以我们回到上⾯的问题,问题的解就是B(2,4)的值我们⽤⼆维数组 dp[][]来表⽰整个的过程可选商品 \ 背包容量012340号商品(1,1500)015001500150015000 ~ 1号商品(4,3000)015001500150030000 ~ 2号商品(3,2000)01500150020003500如图中加粗数字1500代表的是在有前两个商品,背包容量为2时可以偷的最⼤价值为1500图中加粗数字3000,即在有前2个商品,背包重量为4时,可以偷的最⼤价值为3000,这个数是这样算的:第⼆个商品(1号)重量为4,正好满⾜,如果偷的话所以价值为3000 + 0 = 3000如果不偷的话价值和只有1个商品,背包容量为4的价值⼀样,1500取最⼤值为3000所以问题的关键就在构建这个⼆维数组3、实现/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(n * capacity) 可以优化为capacity*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[][] dp = new int[goods][capacity + 1];// 初始化第⼀⾏,因为第⼀⾏上层没有元素了,即只有第⼀个商品时for(int j = 1; j <= capacity; j++){if(j >= w[0]) dp[0][j] = v[0];}// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 1; i < goods; i++) {for(int j = 1; j < capacity + 1; j++) {// 如果容量不够放下第i个商品if(w[i] > j) {dp[i][j] = dp[i-1][j];} else { // 如果可以放下这件商品dp[i][j] =Math.max(dp[i-1][j], v[i] + dp[i-1][j-w[i]]);}}}// System.out.println(Arrays.deepToString(dp));return dp[goods - 1][capacity];}}⽤滚动数组优化空间复杂度:因为如果我们从后往前构建每⼀⾏,那上⼀⾏保留的就可以在构建时候⽤/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(capacity)*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[] dp = new int[capacity + 1];// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 0; i < goods; i++) {for(int j = capacity; j > 0; j--) {// 如果能装下就更新,装不下就不更新(上⼀⾏的值)if(j - w[i] >= 0) {dp[j] = Math.max(dp[j], v[i] + dp[j - w[i]]);}}}return dp[capacity];}}。

01背包问题的数学逻辑

01背包问题的数学逻辑

01背包问题的数学逻辑摘要:一、背包问题概述二、背包问题的数学模型1.基本形式2.扩展形式3.多维背包问题三、求解背包问题的算法1.暴力枚举法2.动态规划法3.贪心算法4.回溯算法四、背包问题的应用1.运筹学2.物流管理3.投资决策五、提高背包问题求解效率的方法1.优化数据结构2.改进算法策略3.利用贪心策略正文:一、背包问题概述背包问题是一个经典的组合优化问题,起源于运筹学领域。

它描述了一个旅行者需要在有限的重量和容量限制下,从一系列物品中选择最有价值的物品装入背包的过程。

背包问题具有广泛的应用背景,如物流管理、投资决策等。

二、背包问题的数学模型1.基本形式背包问题基本形式可以用以下数学模型表示:给定一组物品,每种物品都有一定的重量和价值,求在背包重量限制下,如何选择物品使得背包内物品的总价值最大。

2.扩展形式在基本形式的基础上,背包问题还可以扩展为多个背包、有先后顺序的物品、有特殊约束条件等。

3.多维背包问题多维背包问题是在二维平面上的扩展,不仅需要考虑物品的重量和价值,还要考虑物品之间的相互依赖关系。

三、求解背包问题的算法1.暴力枚举法暴力枚举法是一种简单的求解背包问题的方法,通过遍历所有可能的物品组合,找到满足条件的最优解。

但该方法时间复杂度高,不适合处理大规模问题。

2.动态规划法动态规划法是将背包问题分解为子问题,通过递归的方式求解。

该方法具有较好的时间复杂度,但需要合理设计状态转移方程。

3.贪心算法贪心算法在每一步都选择当前最优的解,但不一定能得到全局最优解。

在背包问题中,贪心算法可以通过物品的价值与重量比来选择装入背包的物品。

4.回溯算法回溯算法是一种试探性的搜索算法,通过逐步尝试的方式寻找最优解。

在背包问题中,回溯算法可以通过剪枝策略减少搜索空间。

四、背包问题的应用1.运筹学背包问题是运筹学领域的一个典型例子,通过求解背包问题,可以优化物流、仓储等领域的运营管理。

2.物流管理在物流领域,背包问题可以用于优化路径规划、货物分拣等问题。

背包问题的数学模型

背包问题的数学模型

背包问题的数学模型摘要:1.背包问题的定义2.背包问题的数学模型3.背包问题的求解方法4.背包问题的应用实例正文:一、背包问题的定义背包问题是一个经典的优化问题,它的问题是给定一个背包和n 种物品,其中,背包的容量为V,第i 种物品的质量为c_i,价值为p_i,如何通过物品选择,使得装入背包中的物品总价值最大。

二、背包问题的数学模型为了更好地理解背包问题,我们可以将其建立一个数学模型。

假设有n 种物品,分别用v_i 表示第i 种物品的价值,c_i 表示第i 种物品的质量,那么背包问题的数学模型可以表示为:f(x) = max {v_1x_1 + v_2x_2 +...+ v_nx_n}s.t.c_1x_1 + c_2x_2 +...+ c_nx_n <= Vx_i >= 0, i = 1,2,...,n其中,f(x) 表示背包中物品的总价值,x_i 表示第i 种物品的数量,V 表示背包的容量,c_i 表示第i 种物品的质量,v_i 表示第i 种物品的价值。

三、背包问题的求解方法背包问题的求解方法有很多,常见的有动态规划法、回溯法、贪心算法等。

这里我们以动态规划法为例进行介绍。

动态规划法的基本思想是将问题分解为子问题,通过求解子问题,最终得到原问题的解。

对于背包问题,我们可以将问题分解为:在容量为V 的情况下,如何选择物品使得总价值最大。

然后,我们可以通过递归的方式,依次求解子问题,最终得到原问题的解。

四、背包问题的应用实例背包问题是一个非常实用的优化问题,它在现实生活中有很多应用。

例如,一个果农需要根据市场需求和成本,选择合适的水果进行装箱;一个旅行者需要根据行李箱的容量和物品的价值,选择携带的物品等。

这些都可以通过背包问题来求解。

综上所述,背包问题是一个经典的优化问题,它有着广泛的应用。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

算法背包问题的五种方法

算法背包问题的五种方法

算法背包问题的五种方法1. 动态规划背包问题是一种经典的组合优化问题,动态规划是解决背包问题的常用方法之一。

动态规划将问题分解为子问题,并利用已解决子问题的结果来求解更大规模的问题。

对于背包问题,动态规划算法的基本思想是创建一个二维数组dp,其中dp[i][j]表示在前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值。

通过填表格的方式,从子问题逐步求解到原问题,最终得到最优解。

2. 贪心算法贪心算法是另一种解决背包问题的方法。

它的基本思想是每一步都选择当前看起来最好的选择,而不考虑之前的选择对后续步骤的影响。

在背包问题中,贪心算法通常是按照物品的价值密度(价值与重量的比值)进行排序,然后依次选择价值密度最高的物品放入背包,直到背包容量不足为止。

贪心算法的优势在于其简单性和高效性,但它并不一定能得到最优解。

3. 分支定界法分支定界法是一种通过搜索方式求解背包问题的方法。

它的基本思想是通过搜索可能的解空间,并根据当前搜索路径的特性进行剪枝操作,从而减少搜索的时间和空间复杂度。

在背包问题中,分支定界法通常根据当前节点的上界(通过松弛问题得到)与当前最优解进行比较,如果上界小于当前最优解,则该节点不再继续拓展,从而减少搜索空间的大小,提高求解效率。

4. 回溯算法回溯算法是一种通过不断试探和回退的方式求解背包问题的方法。

它的基本思想是从问题的初始状态开始,不断地尝试不同的决策,并根据约束条件判断该决策是否可行。

如果决策可行,则继续尝试下一步决策;如果不可行,则回退到上一步并尝试其他决策。

在背包问题中,回溯算法通过递归的方式依次尝试每个物品的放入与不放入两种选择,直到找到满足约束条件的解或者穷尽所有可能。

5. 近似算法近似算法是一种通过快速求解背包问题的“近似”解来减小计算复杂度的方法。

它的基本思想是用一种简单而快速的策略求解背包问题,并且能够保证求解结果的近似程度。

在背包问题中,常见的近似算法有贪心算法和启发式算法。

背包问题问题实验报告(3篇)

背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。

2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。

3. 分析背包问题的复杂度,比较不同算法的效率。

4. 通过实验验证算法的正确性和实用性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。

c. 返回dp[n][C],即为最大价值。

2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。

《背包问题详解》课件

《背包问题详解》课件

VS
约束条件
背包的容量有限,每个物品的数量和重量 、价值是已知的,目标是最大化背包中物 品的总价值。
多重背包问题的最优解法
贪心算法
按照物品单位重量的价值进行排序,优先选择单位重量价值最高的物品,直到背包满或者无法再放入更多物品。
动态规划
将问题分解为子问题,通过解决子问题的最优解来得到原问题的最优解。具体来说,对于多重背包问题,可以将 问题分解为多个一维背包问题,然后分别求解每个一维背包问题的最优解,最后取最优解中的最大值。
02
背包问题通常涉及到多个约束条 件,如物品的重量、价值、体积 等,以及一个目标函数,如背包 中物品的总价值或总重量。
背包问题的分类
根据物品能否分割,背包问题可以分为可分割问题和不可分 割问题。在可分割问题中,物品可以被切割成任意大小,而 在不可分割问题中,物品只能以完整的形式装入背包。
根据是否考虑时间因素,背包问题可以分为静态问题和动态 问题。在静态问题中,所有物品的属性和背包的容量都是固 定的,而在动态问题中,物品的属性和背包的容量可能会随 着时间变化。
完全背包问题的最优解法
最优解法通常采用贪心算法,即每次选择单位重量价值最高的物品,直到背包容量用完为止。这种方 法能够得到最优解,但并不是所有情况下都能找到最优解。
在某些情况下,贪心算法可能会错过最优解,因为它的选择是基于当前的最优选择,而不是全局的最 优选择。
完全背包问题的动态规划解法
动态规划是解决完全背包问题的另一 种方法,它通过将问题分解为更小的 子问题来求解。对于完全背包问题, 动态规划的思路是先解决子问题,再 根据子问题的解来解决原问题。
《背包问题详解》ppt 课件
目录
• 背包问题的定义与分类 • 0-1背包问题详解 • 多重背包问题详解 • 完全背包问题详解 • 变种背包问题详解

背包问题

背包问题

背包问题常州一中林厚从背包问题是信息学奥赛中的经典问题。

背包问题可以分为0-1背包和部分背包两种类型,0-1背包还可以再分为有限背包和无限背包(完全背包)。

背包问题的求解涉及到贪心、递归、递推、动态规划、搜索等多种算法。

熟练掌握各种背包问题及其变形试题的解法,是信息学奥赛选手从入门走向提高的必经之路。

先简单归纳一下涉及到的这几种重要算法:1、贪心:贪心法可以归纳为“每步取优”。

假设你的程序要走1~n共n步,则你只要保证在第i步(i=1..n)时走出的这一步是最优的。

所以,贪心法不是穷举,而只是一种每步都取优的走法。

但由于目光短浅,不考虑整体和全局,所以“步步最优”并不能保证最后的结果最优。

比如经典的“两头取数”问题、“n个整数连接成最大数”问题、“删数”问题等。

2、递归:递归算法可以归纳为将问题“由大化小”。

也就是将一个大问题分解为若干个“性质相同”的子问题,求解的的过程,一般是通过“函数的递归调用”,不断将大问题逐步细化、直至元问题(边界情况),最后通过递归函数的自动返回得到问题的解。

递归算法的关键是递归函数的构造,它的效率往往比较低,原因在于大量的“冗余”计算。

比如经典的“斐波那挈数列”问题,在递归实现时效率极低,存在着大量的冗余计算,可以采用“记忆化”的方法优化。

3、递推:递推问题往往有一个“递推公式”,其实和“递归公式”差不多,但是出发点不一样,递归的思想是“要想求什么就要先求出什么”。

而递推是从问题的边界情况(初始状态)出发,一步步往下走,直到走完n步,判断最后的解。

由于其中的每一步并不知道当前一步的哪一个值对后面的步骤有用,所以只能把所有情况(一步的所有走法)全部计算出来,也造成了很多的“冗余计算”。

时间上往往没有太多的优化余地,但空间上经常利用“滚动数组”等方式,把空间复杂度由O(n2)降到O(2n)。

比如经典的“杨辉三角形”问题、“判断n是否是斐波那挈数”问题等。

4、动态规划:本质上是一种克服了“冗余”的“递归”算法。

背包九讲(DD)

背包九讲(DD)

背包问题九讲目录第一讲 01背包问题第二讲完全背包问题第三讲多重背包问题第四讲混合三种背包问题第五讲二维费用的背包问题第六讲分组的背包问题第七讲有依赖的背包问题第八讲泛化物品第九讲背包问题问法的变化附:USACO中的背包问题前言本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。

现在你看到的是这个写作计划最先发布的一部分。

背包问题是一个经典的动态规划模型。

它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。

读本文最重要的是思考。

因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。

更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。

你现在看到的是本文的1.0正式版。

我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。

但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以“背包问题九讲”为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。

目录第一讲 01背包问题这是最基本的背包问题,每个物品最多只能放一次。

第二讲完全背包问题第二个基本的背包问题模型,每种物品可以放无限多次。

第三讲多重背包问题每种物品有一个固定的次数上限。

第四讲混合三种背包问题将前面三种简单的问题叠加成较复杂的问题。

第五讲二维费用的背包问题一个简单的常见扩展。

第六讲分组的背包问题一种题目类型,也是一个有用的模型。

后两节的基础。

第七讲有依赖的背包问题另一种给物品的选取加上限制的方法。

第八讲泛化物品我自己关于背包问题的思考成果,有一点抽象。

【转载】各种背包问题模板讲解

【转载】各种背包问题模板讲解

【转载】各种背包问题模板讲解 背包问题集合 ⼀般来说,动态规划(DP)。

都是初学者最难闯过的⼀关,⽽在这⾥详细解说动态规划的⼀种经典题型:背包问题。

这⾥介绍的背包分为以下⼏种:01背包,完全背包,多重背包,混合背包,⼆维费⽤的背包。

(以后会持续更新)【⼀:01背包】⾸先放上例题:01背包问题【题⽬描述】:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,他们的重量分别是W1,W2…Wn,它们的价值分别是C1,C2……Cn,求旅⾏者能够获得的最⼤总价值。

【输⼊格式】:第⼀⾏:两个整数,M,(背包容量,M<=200)和N(物品数量N<=30)第2⾄N+1⾏,每⾏两个整数,Wi,Ci,表⽰每个物品的重量和价值。

【输出格式】:仅⼀⾏,⼀个数,表⽰最⼤总价值。

【输⼊样例#1】:10 42 13 34 57 9【输出样例#1】:1201背包问题可以说是最简单的背包问题,简单之处就在:他的每⼀个物品都只有⼀个。

⾸先定义⼀个f[MAXN][MAXN]数组,⽤来记录最⼤价值。

即:f[i][v]表⽰的就是当前i件物品放⼊⼀个容量为v的背包的时候可以获得的最⼤价值。

01背包的状态转移⽅程式便是:f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+c[i])。

众所周知DP问题最重要的便是状态转移⽅程式了,那么这个状态转移⽅程式究竟是怎么来的呢??详解来啦“既然说了是“将第i件物品放⼊背包”,那么如果只考虑第i件物品的⽅式策略,那么就只和第i-1件物品有关了,如果是放第i件物品,那么问题就转化为:“前i-1件物品放⼊容量为v的背包中”,此时能够获得的最⼤价值就是f[i-1][v-w[i]],也就是第i-1件物品放⼊容量为v(原来的总容量)减去w[i](第i件物品的占容)产⽣的最优价值,再加上放通过⼊第i件物品增加的价值c[i]。

那么放⼊第i件物品产⽣的最⼤价值就是要在”放“,或者是”不放“中选择了,”不放“的话,产⽣的价值就是f[i-1] [v],”放“的话,产⽣的最⼤价值就是,f[i-1][v-w[i]]+c[i])。

背包问题的各种求解方法

背包问题的各种求解方法

背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。

因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。

则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。

如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。

这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。

1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。

则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。

由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。

因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。

动态背包问题实验报告

动态背包问题实验报告

一、实验背景动态背包问题(Dynamic Knapsack Problem)是组合优化领域中的一个经典问题。

该问题源于现实生活中的背包问题,即在一个有限容量的背包中,如何选择物品以使背包的总价值最大化。

动态背包问题通常分为0-1背包问题、完全背包问题、多重背包问题等不同类型。

本实验主要针对0-1背包问题进行探讨。

二、实验目的1. 理解动态背包问题的基本原理和解决方法。

2. 掌握动态规划算法在解决背包问题中的应用。

3. 分析0-1背包问题的特点,提高解决实际问题的能力。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 开发工具:PyCharm四、实验内容1. 0-1背包问题介绍0-1背包问题:给定N件物品和一个容量为V的背包,每件物品只能使用一次。

物品的体积和质量分别是c[i]和w[i]。

目标是找出哪些物品可以使背包内物品的总体积不超过V,且总价值最大。

2. 动态规划算法实现(1)状态定义定义dp[i][j]为前i件物品放入容量为j的背包中所能获得的最大价值。

(2)状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i]),其中1 ≤ i ≤ N,0 ≤ j ≤ V。

(3)初始化dp[0][j] = 0,其中0 ≤ j ≤ V。

(4)结果输出输出dp[N][V]即为所求的最大价值。

3. 代码实现```pythondef knapsack(c, w, V):N = len(c)dp = [[0] (V + 1) for _ in range(N + 1)]for i in range(1, N + 1):for j in range(1, V + 1):if j >= c[i - 1]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i - 1]] + w[i - 1])else:dp[i][j] = dp[i - 1][j]return dp[N][V]c = [2, 3, 4, 5] # 物品重量数组w = [3, 4, 5, 8] # 物品价值数组V = 8 # 背包容量max_value = knapsack(c, w, V)print("最大价值为:", max_value)```五、实验结果与分析1. 通过实验,我们成功实现了0-1背包问题的动态规划算法,并得到了最大价值为15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告课程名称数据结构课程设计课题名称背包问题专业信息与计算科学班级1001班学号22姓名王锐指导教师刘洞波张晓清郭芳2012年6月9日课程设计任务书课程名称数据结构课程设计课题背包问题专业班级信科1001班学生姓名王锐学号22指导老师刘洞波张晓清郭芳审批刘洞波张晓清郭芳任务书下达日期:2012年6月9日任务完成日期:2012年6月16日一、设计内容与设计要求1.设计内容:1)问题描述假设有一个能装入总体积为T的背包和n件体积分别为W1,W2,···,Wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使W1+W2+···+Wn=T,要求找出所有满足上述条件的解。

例如:当T=10,共6件物品,物品的体积为{1,2,3,4,5,8},那么可找到下列4组解:(1,2,3,4)、(1,4,5)、(2,3,5)、(2、8)。

2)实现提示可利用回溯法的设计思想来解决背包问题。

首先,将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品“太大”不能装入,则丢弃而继续选取下一件,直至背包装满为止。

但如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合适”,应将它取出“丢弃一边”,继续再从“它之后”的物品中选取,如此重复,直至求得满足条件的解,或者无解。

由于回溯求解的规则是“后进先出”,因此要用到栈。

2.设计要求:课程设计报告规范1)需求分析a.程序的功能。

b.输入输出的要求。

2)概要设计a.程序由哪些模块组成以及模块之间的层次结构、各模块的调用关系;每个模块的功能。

b.课题涉及的数据结构和数据库结构;即要存储什么数据,这些数据是什么样的结构,它们之间有什么关系等。

3)详细设计a.采用C语言定义相关的数据类型。

b.写出各模块的类C码算法。

c.画出各函数的调用关系图、主要函数的流程图。

4)调试分析以及设计体会a.测试数据:准备典型的测试数据和测试方案,包括正确的输入及输出结果和含有错误的输入及输出结果。

b.程序调试中遇到的问题以及解决问题的方法。

c.课程设计过程经验教训、心得体会。

5)使用说明用户使用手册:说明如何使用你编写的程序,详细列出每一步的操作步骤。

6)书写格式见附带说明。

7)附录a.参考书目b.源程序清单(带注释)●考核方式指导老师负责验收程序的运行结果,并结合学生的工作态度、实际动手能力、创新精神和设计报告等进行综合考评,并按优秀、良好、中等、及格和不及格五个等级给出每位同学的课程设计成绩。

具体考核标准包含以下几个部分:①平时出勤(占10%)②系统需求分析、功能设计、数据结构设计及程序总体结构合理与否(占10%)③程序能否完整、准确地运行,个人能否独立、熟练地调试程序(占40%)④设计报告(占30%)注意:不得抄袭他人的报告(或给他人抄袭),一旦发现,成绩为零分。

⑤独立完成情况(占10%)。

●课程验收要求①运行所设计的系统。

②回答有关问题。

③提交课程设计报告。

④提交软盘(源程序、设计报告文档)。

⑤依内容的创新程度,完善程序情况及对程序讲解情况打分。

二、进度安排附:课程设计报告装订顺序:封面、任务书、目录、正文、评分、附件(A4大小的图纸及程序清单)。

正文的格式:一级标题用3号黑体,二级标题用四号宋体加粗,正文用小四号宋体;行距为22。

正文的内容:一、课题的主要功能;二、课题的功能模块的划分(要求画出模块图);三、主要功能的实现(至少要有一个主要模块的流程图);四、程序调试;五、总结;六、附件(所有程序的原代码,要求对程序写出必要的注释)。

正文总字数要求在5000字以上(不含程序原代码)。

目录1.需求分析……………………………………………………………………1.1程序功能……………………………………………………………….1.2输入输出要求………………………………………………………….2.概要设计……………………………………………………………………2.1主要程序功能模块图…………………………………………………2.2数据结构及其关系……………………………………………………3.详细设计……………………………………………………………………3.1C语言定义的相关数据类型……………………………………………3.2模块的主要类C码算法……………………………………………….3.3主要函数的流程图……………………………………………………3.4各函数模块的调用关系图……………………………………………4.调试分析以及设计体会……………………………………………………4.1测试数据………………………………………………………………4.2调试中的问题与分析…………………………………………………4.3课程设计心得体会……………………………………………………5.使用说明……………………………………………………………………6.参考书目……………………………………………………………………附录:源程序清单(带注释)1.需求分析1.1程序的功能程序的功能是:假设有一个能装入总体积为T的背包和n件体积分别为W1,W2,···,Wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使W1+W2+···+Wn=T,要求找出所有满足上述条件的解。

例如:当T=10,共6件物品,物品的体积为{1,2,3,4,5,8},那么可找到下列4组解:(1,2,3,4)、(1,4,5)、(2,3,5)、(2、8)。

1.2输入输出要求1.从界面中输入的供选择的物品的数目不能超过程序定义的N;2. 输入一个物品体积后,要按回车键,然后输入下一个数据;3.输入背包容纳的体积T不能大于所有物品的体积总和;4,输入后稍等片刻,程序进行清屏。

2.概要设计2.1主要程序的功能模块图功能模块图如下图1图12.2数据结构及其关系程序中定义了主要的类型是int类型和struct 类型。

int 类型中有int w[M],int T,int N,int i,int j等,int w[M]是一个数组,其中的各数据元素都是同属一个集合的关系,是的顺序存储结构。

其它的数据是无向关系。

struct类型:struct{int s[M];int top;}things;struct 类型中int s[M]和int top都是其所属的元素。

其中int s[M] 是一个数组,其中的各数据元素都是同属一个集合的关系,是的顺序存储结构。

int s[M]和int top是一种线性关系。

结构体本身事顺序存储的。

3.详细设计3.1 C语言定义的相关数据类型int 类型:int w[M]; //供选择的物品int T=0; //背包的最大容量int N=0; //物品的数目int k=0;int i=0;int j=1struct类型:struct{int s[M]; //存放被选出来的物品序号的数组int top; //栈顶指针}things;3.2模块的主要类C码算法初始化模块:for(i=0;i<N;i++){things.s[i]=0;things.top=0;}挑选模块和输出模块:do{ while(T>0&&k<=N){if(T>=w[k]){ things.s[things.top++]=k;T-=w[k];}k++;}if(T==0){ printf("\n第%d种挑选方法:(",j);for(i=0;i<things.top;i++){printf("\t%d ",w[things.s[i]]);}j++;printf(")\n");}k=things.s[--things.top];things.s[things.top]=0;T+=w[k];k++;}while(!(things.top==0&&k==N));3.3主要函数的流程图流程图如下图2图23.4各函数模块的调用的关系图模块调用关系图如下图3图34.调试分析以及设计体会4.1测试数据为了测试程序的正确性,我准备了几份数据,数据如下:1.输入供选择的物品的数目:6输入供选择的物品的体积:第一个物品的体积:1第二个物品的体积:3第三个物品的体积:4第四个物品的体积:5第五个物品的体积:8第六个物品的体积:2输入背包的容量:10测试结果如下图4图42.输入供选择的物品的数目:3输入供选择的物品的体积:第一个物品的体积:1第二个物品的体积:3第三个物品的体积:4输入背包的容量:4输出结果如下图5图54.2调试中的问题与分析调试程序是课程设计中一个很重要的环节,它让我们发现自己程序的错误,让我们不断的改正错误直到程序可以运行。

在调试中,我的程序出现了很多的问题,有些是出于本身的知识遗忘缺陷和,有些一些是出于实践与理论的差别,还有一些是由于粗心引起的。

由于很久没有温习C语言的,所以对C语言输入输出的知识有所遗忘,在输入物体体积时,开始在scanf语句输入数组的一个数,我以为数组输入只需写数组名,没有使用地址符,只写“W[i]”,结果数据一直无法输入,后来在同学的提醒下才想起来,对数组中的数据一个一个输入和一次输入数组时不同的,前者需要输写地址符,正确的输入应该是”&W[i]”,修改后数据才正常的输入,这是个对知识遗忘引起的错误。

在调用延时清屏函数时犯了一个错误就是Sleep函数中S必须大写,这是头文件中#include"windows.h"中默认的形式,如果不大写将无法调用该函数。

在平时运行中,程序都可以做,但是在答辩那天程序不能做,检查了好久的程序觉得没有错误,找了好多人来检查程序也没发现错误,直到后来回到寝室才发现,是自己不小心挪动了初始化数据的部分,使其放到了输入数据之前,在输入数据之前对数据进行了初始化,在使用数据时,出现数据溢出的现象。

这个问题是由于粗心引起的,而且是个很难发现的错误。

调试程序的过程中,我发现了很多的错误。

这个过程不仅仅是对程序的检测也是对我的学习的检测。

让自己发现自己还存在着很多的不足。

在机房的几次调试,让我再次去温习了C语言,对于C语言和自己学习的成果有了再次的提升,也对自己的编写习惯有了一些改变。

总之调试程序让我受益匪浅。

4.3课程设计心得体会本次课程设计让我将我所学的C语言与数据结构有机结合,即提升了动手写程序的能力,也温习了C语言和检测了我的学习效果。

虽然在两周的课程设计中我遇到了很多的困难,但是最后看着自己编写的程序能够实现功能并且很好的运行是一件非常开心的事。

相关文档
最新文档