冲压工艺--板料的冲压成形性能与成形极限
车身工艺制造工艺学冲压330
《汽车车身制造工艺学(冲压工艺)》复习要点第一章冲压工艺概论一、学习内容1冲压工艺的特点及冲压工序的分类2金属塑性变形的力学规律3板料的冲压成形性能和成形极限图4车身冲压材料5汽车冲压技术概论二、学习目的1.通过本章学习要求学员了解冲压工序的分类(分离工序和成形工序)、塑性应力应变关系、板料性能指标对冲压成形性能的影响;2.掌握成形极限图的概念及应用三、自我测试1.名词解释冲压成形工艺分离工序成形工序主应力三向应力状态屈斯加准则米塞斯准则增量理论全量理论板料的冲压成形性能成形极限图板料的各项异性2.简述题汽车车身分为哪五部分?冲压生产线有哪两种类型?冲压加工的优点有?冲压生产三大要素?常用的分离成形工序 ( 至少三种 )?冲压成形性能包括哪几方面?材料的力学性能指标都有哪些?冲压用钢板的几种类型?常用的钢板冲压成形性能模拟试验方法有哪些?3.案例汽车车门内板的冲压工艺过程?4.选择题杯突试验结果能反映哪种冲压工艺的成形性能()A.缩孔B.弯曲C.胀形D外凸外缘翻边塑性变形时应力应变关系是()A. .非线性的、不可逆的B.线性的 C 可逆的 D.可叠加的冲压工序按照加工性质的不同,可以分为两大类型,即()A.分离工序B.冲孔工序C. 成形工序D.拉深工序E. 翻边工序5.课本思考题 1 , 3 ,5第二章冲裁工艺一、学习内容1冲裁的变形过程2冲裁间隙3冲裁模刃口尺寸4冲裁力和冲模压力中心5冲模及冲裁模6冲裁件缺陷原因及分析二、学习目的1.通过本章学习,掌握冲裁间隙的确定方法、冲裁力及其计算方法2.通过本章学习,掌握冲裁力及其计算方法3.了解冲裁件缺陷原因及分析三、自我测试1.名词冲裁光亮带冲裁间隙卸料力模具的压力中心复合模闭合高度2.简述题简述冲裁变形过程。
冲裁模刃口尺寸确定原则有哪些?影响冲裁力的主要因素有哪些?降低冲裁力的措施?冲模的种类?毛刺产生的原因有哪些?3. 选择题计算冲裁力的目的是为了合理选用压力机和设计模具,压力机的公称压力必须()所计算的冲裁力A. 小于B.等于C.大于D. 无所谓模具的闭合高度H、压力机的最大装模高度、最小装模高度之间的关系为()A. 无所谓B.H ≤C.≤H≤D. H≥下列哪种部件不属于模具的定位部件()A. 定位销B. 定位侧刃C. 顶料销 D导正销冲裁的工件断面明显的分为哪几个特征区()A. 圆角带B.起皱带C. 断裂带D. 减薄带E.光亮带模具的导向部件包括()A.导块B. 导套C. 定位销D. 导板E. 导柱冲裁间隙对下列哪些因素有影响()A. 冲裁件断面质量B.滑块平度C.冲裁力的大小D. 模具寿命E.冲裁件的尺寸精度按照工艺性质分类,冲模可分为哪几种()A.拉深模B. 弯曲模C.胀形模D.翻边模E.冲裁模冲裁工序包括()A. 修边B.落料C.扩孔D.切口E.冲孔4.综合应用题冲压工艺都有哪些特点5.课本思考题 1 , 6第三章弯曲工艺一、学习内容1弯曲的变形过程2弯曲的变形特点(应力应变分析)3弯曲力的计算4弯曲件毛坯尺寸的确定5弯曲件质量分析与控制6 弯曲模具二、学习目的1.通过本章学习,掌握弯曲变形的过程、特点2.通过本章学习,掌握弯曲件质量分析与控制3.了解弯曲模具制造过程三、自我测试1.名词解释弯曲弯曲中性层回弹2.简述题简述弯曲变形过程。
冲压工艺作业参考答案
作业参考答案一、1、什么是冲压加工?冲压成形加工与其他加工方法相比有何特点?答:冲压加工就是建立在材料塑性变形的基础上,利用模具和冲压设备对板料进行加工,以获得要求的零件的形状、尺寸及精度。
冲压成形加工与其他加工方法相比,具有以下的优点:少、无屑加工;零件精度较高;互换性好;材料利用率高;生产效率高;个人技术等级不高;产品成本低等。
冲压成形加工与其他加工方法相比,具有以下的缺点:模具要求高,制造复杂,周期长,制造费用昂贵;有噪声,不宜小批量生产等。
2、冷冲压有哪些基本工序,各是什么?答:冷冲压按性质分有分离工序和成形工序两类。
分离工序包括落料、冲孔、剪切、切断、切槽、切边等几大类;成形工序包括拉深、胀形、翻边、扩口、缩口等工序。
3、什么是金属塑性变形?常见塑性指标有哪些?影响金属的塑性与变形抗力的主要因素有哪些?并作简要分析。
答:金属塑性变形就是指金属材料在外力的作用下产生不可恢复的永久变形(形状和尺寸产生永久改变)。
影响金属的塑性和变形抗力的主要因素有:(1)、化学成分和组织——化学成分:铁、碳、合金元素、杂质元素;组织:单向组织、多项组织,不同的组织,金属的塑性和变形抗力会有很大差异。
(2)、变形温度——温度升高,原子热运动加剧,热振动加剧(热塑性),晶界强度下降。
(3)、变形速度——速度大,塑性变形来不及扩展,没有足够的时间回复、再结晶,塑性降低变形抗力增加。
但速度大时热效应显著,变形体有温度效应对塑性增加有利。
二、1、什么是加工硬化现象?它对冲压工艺有何影响?答:随着冷变形程度的增加,金属材料所有强度和硬度指标都有所提高,但塑形、韧性有所下降。
其可制止局部集中变形的进一步发展,具有扩展变形区、使变形区均匀化和增大极限变形程度的作用。
2、冲裁变形过程分为哪几个阶段?裂纹在哪个阶段产生?首先在什么位置产生?答:冲裁变形过程分为弹性变形阶段、塑性变形阶段、断裂分离阶段。
裂纹出现在断裂分离阶段。
板料的冲压成形性能与成形极限
§6.1 概述
成形极限图(FLD)就是由不同应变路径下的局部极限 应变构成的曲线或条带形区域,它全面反映了板料在单向和 双向拉应作用下抵抗颈缩或破裂的能力,经常被用来分析解 决成形时的破裂问题。
§6.1 概述
全面地讲,板料的冲压成形性能包括抗破裂性、贴模性 (fitability)和定形性(shape fixability),故影响因素很多, 如材料性能、零件和冲模的几何形状与尺寸、变形条件(变 形速度、压边力、摩擦和温度等)以及冲压设备性能和操作 水平等。
§6.2 现代冲压成形的分类理论
一、各种冲压成形方法的力学特点与分类
正确的板料冲压成形工艺的分类方法,应该能够明确地 反映出每一种类型成形工艺的共性,并在此基础上提供可能 用共同的观点和方法分析、研究和解决每一类成形之艺中的 各种实际问题的条件。在各种冲压成形工艺中毛坯变形区的 应力状态和变形特点是制订工艺过程、设计模具和确定极限 变形参数的主要依据,所以只有能够充分地反映出变形毛坯 的受力与变形特点的分类方法,才可能真正具有实用的意义。
§6.2 现代冲压成形的分类理论
1、变形毛坯的分区
冲压成形时,在应力状态满足屈服准则的区域将产生塑 性变形,称为塑性变形区(A区)。不同工序,随着外力作 用方式和毛坯及模具的形状、尺寸的不同,变形区所处的部 位也不相同。应力状态不满足屈服准则的区域,不会产生塑 性变形,称为非变形区。根据变形情况,非变形区又可进一 步分为已变形区(B)、待变形区(C)和不变形区(D)。有时已变 形区和不变形区还起传力的作用,可称其为传力区(B 、C)。 图所示为拉深、翻边、缩口变形过程中毛坯各区的分布。
贴模性(fittability):板料在冲压过程中取得模具形状 的能力。
定形形(shape fixability):零件脱模后保持其在模内 既得形状的能力。
冲压性能及成形极限
五、冲压成形性能试验方法与指标
1、胀形成形性能试验(杯突试验)(Eriohsen试验)
指标:用破裂时凸包高度IE值评价。IE值越大,胀形成形性能越好。
2、扩孔成形性能试验(KWI扩孔试验)
指标:用破裂时极限扩孔率值评价。
d f d0 d0
100%
d f d f max d f min / 2
最小相对弯曲半径=
rmin / t
5、“拉—胀”复合成形性能试验 (福井杯锥试验)
指标:用杯底破裂时杯口平均直径 评价,称为CCV值。
CCV
1 ( Dmax Dmin ) 2
六、塑性拉伸失稳理论
1、拉深失稳的概念和类型
1)分散性颈缩(Diffuse necking): 载荷开始随变形增大而减小,由 于应变硬化,这种颈缩在一定尺寸范 围内可以转移,使材料在这个范围内 产生亚稳定的塑性流动,故载荷下降 比较缓慢。肉眼观察不到。 2)集中性颈缩(Localized necking): 应变硬化不足以使颈缩转移,应 力增长率远小于承载面积的减小速度, 故载荷随变形程度的增大而急剧下降。 肉眼可以观察到。
3、拉深成形性ቤተ መጻሕፍቲ ባይዱ试验
(1)圆柱形平底凸模冲杯试验(Swift平底冲杯试验)
指标:用拉破时极限拉深比LDR评价。 LDR Dmax / d p (2)TZP试验 Ff Fmax 指标:用拉深潜力T值评价。 T 100% Ff
4、弯曲成形性能试验
指标:用外表面破裂时的最小相对弯曲半径值评价。
二、冲压成形区域划分
四种典型工艺: 拉深 刚性凸模胀形 伸长类翻边 弯曲 复杂零件的成形经 常可视为两个或两 个以上的复合
变形趋向性:拉深、平底凸模胀形、圆孔翻边及扩孔所用模具相同,但毛 坯直径不同,或预制孔直径不同,则拉深和胀形可相互转变, 胀形和扩孔翻边可相互转变,或两种变形复合。
《冲压工艺与模具设计》知识点要点
《冲压工艺与模具设计》知识点1、冲压是利用安装在压力机上和模具对材料施加外力,使其产生分离或塑性变形,从而获得所需零件的一种加工方法。
冲压的三要素:设备(压力机)、模具、原材料。
冲压的优点有:生产率高、操作简便,尺寸稳定、互换性好,材料利用率高。
冲压工艺分为两大类,一类叫分离工序(落料、冲孔、切断、切口、剖切等),一类是成形工序(弯曲、拉深、翻边、胀形、缩孔)。
冷冲压模具是实现冷冲压工艺的一种工艺装备。
冲压生产中,需要将板料剪切成条料,这是由剪切机来完成的。
这一工序在冲压工艺中称下料工序。
2、压力机的标称压力是指滑块在离下死点前某一特定距离时,滑块上所容许承受的最大作用力。
B23-63表示压力机的标称压力为630KN。
其工作机构为曲柄连杆滑块机构。
32-300是一种液压机类型的压力机。
离合器与制动器是用来控制曲柄滑块机构的运动和停止的两个部件。
在冲压工作中,为顶出卡在上模中的制件或废料,压力机上装有可调刚性顶件(或称打件)装置。
3、冲裁是利用模具使板料的一部分与另一部分沿一定的轮廓形状分离的冲压方法。
变形过程分为弹性变形、塑性变形、断裂分离三个阶段。
冲裁件的断面分为圆角,光面,毛面,毛刺四个区域。
冲裁模工作零件刃口尺寸计算时,落料以凹模为基准,冲孔以凸模为基准,凸模和凹模的制造精度比工件高2-3级。
冲裁件之间及冲裁件与条料侧边之间留下的余料称作搭边。
它能补偿条料送进时的定位误差和下料误差,确保冲出合格的制件。
4、加工硬化是指一般常用的金属材料,随着塑性变形程度的增加,其强度、硬度和变形抗力逐渐增加,而塑性和韧性逐渐降低。
5、拉深是指用拉深模将一定形状的平面坯料或空心件制成开口件的冲压工序。
拉深时变形程度以拉深系数m 表示,其值越小,变形程度越大。
为了提高工艺稳定性,提高零件质量,必须采用稍大于极限值的拉深系数。
拉深时可能产生的质量问题是起皱和开裂。
一般情况下,拉深件的尺寸精度应在IT13级以下,不宜高出IT11级。
板材成形理论知识要点
第二章 冲裁工艺与模具设计
1冲裁变形分离过程大致可分为3个阶段。 弹性变形阶段, 塑性变形阶段,断裂分离阶段 2冲裁断面可明显地分成4个特征区, 即圆角带、光亮带、断裂带和毛刺 3降低冲裁力的方法:阶梯凸模冲裁, 斜刃口冲裁 4凸模侧面的磨损最大,是因为从凸模上卸料,长 距离摩擦加剧了侧面的磨损. 5确定合理间隙的理论计算法依据主要是:在合理 间隙情况下冲裁时,材料在凸、凹模刃口产生 的裂纹成直线会合.
第四章
拉深工艺与模具设计
1.拉深 是利用模具使平板毛坯变成为开口的空心零件的 冲压加工方法。 2.拉深件各部分的厚度是不一致的。一般是: 底部略为变薄,但基本上等于原毛坯的厚度; 壁部上段增厚,越靠上缘增厚越大; 壁部下段变薄,越靠下部变薄越多; 壁部向底部转角稍上处,则出现严重变薄,甚至断裂。 3.毛坯划分为5个区域: ⑴.平面凸缘区(|σ 1|=|σ 3|,有R=0.61Rt), ⑵. 凸缘圆角区, ⑶.筒壁区, ⑷.底部圆角区, ⑸.筒底部分
2.冲模零件的分类:分成五个类型的零件。
⑴.工作零件 是完成冲压工作的零件 ⑵.定位零件 这些零件的作用是保证送料时有良好的导 向和控制送料的进距. ⑶.卸料、推件零件 这些零件的作用是保证在冲压工序 完毕后将制件和废料排除,以保证下一次冲压工序顺 利进行。 ⑷.导向零件 这些零件的作用是保证上模与下模相对运 动时有精确的导向,使凸模、凹模间有均匀的间隙, 提高冲压件的质量。 ⑸.安装、固定零件 这些零件的作用是使上述四部分 零件联结成“整体”,保证各零件间的相对位置,并 使模具能安装在压力机上。
10.结构废料――由于工件结构形状的需要,如工 件内孔的存在而产生的废料,称为结构废料, 它决定于工件的形状,一般不能改变。 11.工艺废料―― 工件之间和工件与条料边缘之 间存在的搭边,定位需要切去的料边与定位孔, 不可避免的料头和料尾废料,称为工艺废料, 它决定于冲压方式和排样方式。 12.冲裁间隙对产品质量和模具寿命的影响
冲压工艺--板料的冲压成形性能与成形极限
t0
Dp
备注
0.5以下 10.~20 2ri≈0.2Dp 0.5~2.0 30~50 D0≥2.5Dp 2.0以上 50~100
3杯形件拉深试验(Swift试验)
Swift试验是以求极限拉深比LDR作为评定板材拉 深性能的试验方法。 试验所用装置与试验标准分别见图和表。
Swinft试验装置(1-冲头 2-压边圈 3-凹 模 4-试件)
六、板料的冲压成形性能与成形极限
板料基本性能与冲压成形性能的关系 衡量薄板性能的优劣,过去一般以薄板的基本 性能指标来评价,但是随着汽车、家电工业的发展, 对薄板成形性能的要求日益苛刻,从而使成形性指 标的测定越来越受到人们的重视和广泛研究。薄板 成形性(sheet metal formability),根据 BG/T15825.1-1995的定义,就是指金属薄板对 于冲压成形的适应能力。
具有最佳成形性能的材料应具有如下特点: 均匀分布应变; 承受平面内压缩应力而无起皱现象; 可以达到较高应变而无颈缩和断裂; 承受平面内剪切应力而无断裂; 零件由凹模出来后保持其形状 保持表面光洁,阻止表面损伤。
薄板本身固有的基本特性值与其成形性能之间具有一 定的相关性见下表。对于冷轧冲压钢板,往往希望具有 低的屈服强度、低的屈强比、高的n、r值。
坯料受到双向拉应力作用而实现胀形变形。 在胀形中当试件出现裂缝时,冲头的压入深度称为胀形深度或 Erichsen试验深度,简计为IE值。IE值作为评定板材胀形成 形能力的一个材料特性值。实际上,胀形是典型的拉伸类成形 工序,故IE值也是评定拉伸类冲压成形性能的一个材料特性值。 很明显,IE值越大,胀形性能越好。
2) 杯突试验(ERICHSEN TEST) 杯突试验是历史较为悠久、操作简便、在目前仍然广泛采用 的工艺试验方法,主要用来评定薄板材料的深冲性能,一般适 用于厚度等于或小于2mm,必要时也可试验厚度为2~4mm 的板材和带材,1914年是由德国的A.E.Erichsen做了专用的 试验设备,所以也叫Erichsen试验。其试验装置如图。 试验时,先将平板坯料试件放在凹模平面上,用压边圈压住试 件外圈,然后,用球形冲头将试件压入凹模。由于坯料外径比 凹模孔径大很多,所以,其外环不发生切向压缩变形,而与冲 头接触的试件中间部分。
板料冲压成形性能及冲压材料
板料冲压成形性能及冲压材料板料的冲压成形性能板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。
具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。
冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。
下面分别讨论。
(一)成形极限在冲压成形中,材料的最大变形极限称为成形极限。
对不同的成形工序,成形极限应采用不同的极限变形系数来表示。
例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。
这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。
依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。
冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。
因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。
归纳起来,大致有下述几种情况:1.属于变形区的问题伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。
压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。
2.属于非变形区的问题传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。
也分为两种情况:1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。
2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。
非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。
冲压模具设计
dε2 σ2-σm
=
dε3 σ3-σm
=dλ
式中 dλ——瞬时常数,在加载的不同瞬时是变
σm——平均主应力(静水应力)。
四、塑性变形时应力与应变的关系
全量理论认为,在比例加载(也称简单加 载,是指在加载过程中所有外力从一开始起就 按同一比例增加)的条件下,无论变形体所处 的应力状态如何,应变偏张量各分量与应力偏
b/B越小,拉深性能越
图2-12 拉楔试验
二、板料冲压成形性能的测定 (3)拉深性能试验
2)冲杯试验
也叫Swift拉深试验、LDR试验,是采用φ50mm的平底 凸模将试样拉深成形,图是GB/T 15825.3-1995“金属薄 板成形性能与试验方法拉深与拉深载荷试验”的示意图。
图2-13 冲杯试验
图是GB/T 15825.5-1995“金属薄板成形性能 与试验方法 弯曲试验”示意图。
二、板料冲压成形性能的测定 (5)锥杯试验
图是GB/T 15825.6— 1995“金属薄板成形性能与试 验方法锥杯试验”的示意图,
取冲头直径Dp与试样直径D0的
比值为0.35。
图2-17 锥杯试验
三、板料的基本性能与冲压成形性能的关系
三、板料的基本性能与冲压成形性能的关系
4.应变硬化指数n
硬化指数n表示材料在冷塑性变形中材料硬化 的程度。n值大的材料,硬化效应就大,这意味着 在变形过程中材料局部变形程度的增加会使该处 变形抗力较快增大,这样就可以补偿该处因截面 积减小而引起的承载能力的减弱,制止了局部集 中变形的进一步发展,致使变形区扩展,从而使 应变分布趋于均匀化。也就是提高了板料的局部 抗失稳能力和板料成形时的总体成形极限。
成形极限图Forming Limit Diagrams,缩写为 FLD)或成形极限曲线(Forming Limit Curves, 缩写为FLC)着眼于复杂零件的每一变形局部,它
冲压工艺--板料的冲压成形性能与成形极限
板料基本性能与冲压成形性能的关系 衡量薄板性能的优劣,过去一般以薄板的基本 性能指标来评价,但是随着汽车、家电工业的发展, 对薄板成形性能的要求日益苛刻,从而使成形性指 标的测定越来越受到人们的重视和广泛研究。薄板 成形性(sheet metal formability),根据 BG/T15825.1-1995的定义,就是指金属薄板对 于冲压成形的适应能力。
对数式,运用最小二乘法计算应变硬化指数n。(见下式)
20%)
产品标准规定或 协商
屈服后~最大力 前(常用15%)
12.5 (20)
50 (20,25)
75
≤11.5
12.5 (20)
50 (80)
75 (120)
3~30
≤0.5P
≤0.5P
屈服后~最大 力前(常用 10%~20%)
品标准规定或 协商
3~30
≤0.5P
屈服后~最大 力前(常用 5%~15%) 屈服后~最大 力前(常用
15%)
12.5 (20)
50 (80)
75 120
≤30
(12.5,20) 25
(50,80) 50
(60,120) 60
10~30
≤0.5P
≤0.8P
屈服后~最大 力前(常用 10%~20%)
屈服后~最大 力前(常用
σs /σb
σs /σb称为屈强比,它对板材冲压性能的影 响是多方面的。σs/σb的比例越低,屈服点和抗 拉强度的差距越大,钢板在同等强度对比加工 时,对压缩类成形工艺,材料起皱趋势也小; 对伸长类成形工艺,材料定形性和贴模性好, 回弹变形也小。
冲压成形性能试验方法与指标
1)机械性能的检验 拉伸试验是一种非常普遍的机械性能试验方
第7章 板料的冲压成形性能与成形极限
提高两类成形方法的成形极限的途径与方法不一致:
A、提高拉伸类成形极限的措施
1)、提高材料的塑性 如成形前(包括冲裁后)的退火、多次成形时的中间退 火,都是为了消除原材料或坯料的硬化、冲裁时生成的断面硬 化层及成形工序中形成的硬化,以提高材料塑性,从而提高极
限变形程度。
2)、减小变形不均匀的程度
向上的变形一定是伸长变形——伸长类成形。包括冲压应变图 中MON、NOA、AOB、BOC、COD。 作用于毛坯变形区内的压应力的绝对值最大时,在这个方 向上的变形一定是压缩变形——压缩类成形。包括冲压应变图
中MOL、LOH、HOG、GOEC、EOD。
MOD是伸长类成形和压缩类成形分界线(冲压应变图中)。 FOB是伸长类成形和压缩类成形分界线(冲压应力图中)。
F)
当0 > σ1 > σ2 >σ3 时,在最小压应力σ3方向上的变
形一定是压缩变形,而在最小压应力σ1 方向上的变形一定 是伸长变形。
例如:
缩口变形区的切向压应力绝对值最大,
故切向为压缩变形;径向压应力绝对值最小, 故径向为拉伸变形。
2、冲压成形的力学特点与分类
对冲压件变形毛坯进行分区:
成形工 序 变形区 已变形 区 待变形区 传力区 单纯不变区
二、冲压成形区域与成形性能的划分 1、冲压成形区域划分 四种典型成形:圆柱形凸模胀形、 伸长类翻边(包括扩孔)、拉深、弯曲。 (教材图P6-1、6-2、 6-3、 6-4 、 6-5)
2、冲压成形性能划分
在四种典型成形中,破裂有三种典型形式: α破裂——由于板料所受拉应力超过材料强度极限引起的
破裂;
第7章
板料的冲压成形性能与成形极限
航空航天工程学部
冲压工艺与模具设计复习题与答案 (1)
绪论一 . 填空题1 . 冷冲模是利用安装在压力机上的模具对材料施加变形力,使其产生变形或分离,从而获得冲件的一种压力加工方法。
2 . 因为冷冲压主要是用板料加工成零件,所以又叫板料冲压。
3 . 冷冲压不仅可以加工金属材料材料,而且还可以加工非金属材料。
4 . 冲模是利用压力机对金属或非金属材料加压,使其产生分离或变形而得到所需要冲件的工艺装备5 . 冷冲压加工获得的零件一般无需进行机械加工加工,因而是一种节省原材料、节省能耗的少、无无切屑的加工方法。
6 . 冷冲模按工序组合形式可分为单工序模具和组合工序模具,前一种模具在冲压过程中生产率低,当生产量大时,一般采用后一种摸具,而这种模具又依组合方式分为复合模、级进模、复合 - 级进模等组合方式。
7 . 冲模制造的主要特征是单件小批量生产,技术要求高,精度高,是技术密集型生产。
8 . 冲压生产过程的主要特征是,依靠冲模和压力机完成加工,便于实现自动化化,生产率很高,操作方便。
9 冲压件的尺寸稳定,互换性好,是因为其尺寸公差由模具来保证。
二 . 判断题(正确的打√,错误的打×)1 . 冲模的制造一般是单件小批量生产,因此冲压件也是单件小批量生产。
(×)2 . 落料和弯曲都属于分离工序,而拉深、翻边则属于变形工序。
(×)3 . 复合工序、连续工序、复合—连续工序都属于组合工序。
(√)4 . 分离工序是指对工件的剪裁和冲裁工序。
(√)5 . 所有的冲裁工序都属于分离工序。
(√)6 . 成形工序是指对工件弯曲、拉深、成形等工序。
(√)7 . 成形工序是指坯料在超过弹性极限条件下而获得一定形状。
(√)8 . 把两个以上的单工序组合成一道工序,构成复合、级进、复合 - 级进模的组合工序。
(×)9 . 冲压变形也可分为伸长类和压缩类变形。
(√)10. 冲压加工只能加工形状简单的零件。
(×)11 . 冲压生产的自动化就是冲模的自动化。
不锈钢冲压性能与工艺简介
冲压用材料应具备的基本性能条件
①材料应具有良好的塑性,即要有较高的延伸率和断面收缩率, 较低的屈服点和较高的抗拉强度。这样在变形工序中,其允许的 变形程度大,允许的变形力小,可以减少工序以及中间退火的次 数,或者根本不需要中间退火。有利于冲压工艺的稳定性和变形 的均匀性。 ②材料应具有光洁平整无缺陷损伤的表面状态。表面状态好的材 料加工时不容易破裂,不容易擦伤模具,制品表面状态好。 ③材料的厚度公差应符合国家的标准。因为一定的模具间隙适应 一定厚度的材料,材料的厚度公差太大,不仅会影响制品质量, 还可导致产生废品和损伤模具。
7.应变硬化指数(n)
应变硬化指数即通常说的n值,表示材料具有冷作过程 硬化现象,与材料的冲压成形性能十分密切。应变硬 化指数大,不仅能提高板料的局部应变能力,而且能 使应变分布趋于均匀化,提高板料成形时的总体成形 极限。
各钢种的加工硬化趋势
各钢种的加工硬化趋势
加工硬化现象的影响
从上面的几个钢种的加工硬化曲线也可以看出,由 于加工硬化现象的存在,金属在塑性变形中,会使 金属的强度指标,如屈服点、硬度等提高,塑性指 标如延伸率降低的现象,即材料的冷作硬化现象。 材料的冷作硬化现象会使材料的塑性指标急剧下降, 阻碍着材料的进一步变形,引起制品破裂。因此在 冲压加工过程中,必须采取有效措施如采取中间退 火工序以消除由于冷作硬化现象给冲压工艺带来的 不利影响。
形工艺。
拉深成形工艺
拉深是利用专用 模具将冲裁或剪 裁后所得到的平 板坯料制成开口 的空心件的一种 冲压工艺方法。 其特点是板料在 凸模的带动下, 可以向凹模内流 动,即依靠材料 的流动性和延伸 率成形
胀形成形工艺
胀形是利用模 具强迫板料厚 度减薄和表面 积增大,以获 取零件几何形 状的冲压加工 方法。特点是 板料被压边圈 压死,不能向 凹模内流动, 完全依靠材料 本身的延伸率 成形
冲压过程中的金属流动分析与成形极限研究
冲压过程中的金属流动分析与成形极限研究冲压技术是现代工业中广泛应用的一种金属成形工艺,其在汽车、电子、机械制造等领域发挥着重要作用。
而理解和研究冲压过程中的金属流动分析以及成形极限是提高冲压件质量和生产效率的关键。
本文将对冲压过程中的金属流动分析与成形极限进行探讨。
一、冲压过程中的金属流动分析金属在冲压过程中的流动行为对于成形质量起着决定性作用。
金属材料的流动性与其内部结构、添加元素以及材料的性质有关。
通过研究金属在冲压过程中的流变应力、热传导、变形温度等参数,可以得到金属的流动行为。
1.1 流变应力流变应力是指金属在受力下发生塑性变形时所需要克服的阻力。
冲压过程中,金属材料的变形受到应力-应变曲线的影响。
该曲线通常可以通过拉伸试验获得,即通过在不同应变速率下对金属样品施加力来测定其塑性变形特性。
对于不同材料,其流变应力也会有所差异,从而影响金属在冲压过程中的流动性。
1.2 热传导在冲压过程中,金属材料的温度分布对于成形质量也有重要影响。
金属的热传导性能与其热导率和导热系数有关。
冲压过程中,由于摩擦和塑性变形等因素的存在,金属材料容易发生加热。
通过研究金属材料的热传导特性,可以对冲压过程中的温度分布进行预测和控制,从而优化成形质量。
1.3 变形温度金属在冲压过程中因塑性变形而引起的变形温度也是影响金属流动性的重要因素之一。
当金属材料受到外力作用时,会产生变形热。
这种变形热会导致金属材料的温度升高,进而影响金属的流变应力和变形性能。
因此,在冲压过程中准确控制变形温度对于保证成形质量至关重要。
二、冲压过程中的成形极限研究成形极限是指金属冲压过程中所能够达到的最大成形程度。
成形极限的研究对于冲压工艺的设计和优化具有重要意义。
2.1 成形极限的定义成形极限的定义可以简单理解为材料在冲压过程中所能够承受的最大变形程度,超过这个程度就会发生破裂或产生质量缺陷。
成形极限通常通过表面上的裂纹形成来追踪和测定。
2.2 影响成形极限的因素在实际冲压过程中,成形极限受到多种因素的限制。
第6章 板料的冲压成形性能与成形极限
沈阳航空工业学院
主讲:贺平
6、1 冲压成形区域与成形极限
一、概述 板料对冲压成形工艺的适应能力叫板料的冲压成形性能 冲压成形性能。 冲压成形性能 板料在成形过程中可能出现两种失稳: 拉伸失稳:板料在拉应力作用下局部出现颈缩或破裂。 拉伸失稳 压缩失稳:板料在压应力作用下出现皱纹。 压缩失稳 板料在发生失稳之前可以达到的最大变形程度叫成形极 成形极 限。 成形极限分为总体成形极限和局部成形极限。 成形极限 总体成形极限反映板料失稳前某些特定的总体尺寸可以达 到的最大变化程度,如极限拉深系数、极限胀形高度和极限翻 边系数等,它们常被用作工艺设计参数。
伸长类应变指:成形过程中材料主要受拉应力作用,产生 的伸长变形导致厚度减薄; 压缩类应变指:成形过程中材料主要受压应力作用,产生 的压缩变形导致厚度增大; 弯曲应变指: 弯曲成形过程中,外区受拉,属于伸长类 成形,内区受压,属于压缩类应变。
(表6-1) (图6-7)
Байду номын сангаас 6、2 冲压成形性能试验方法与指标
局部成形极限反映板料失稳前局部尺寸可达到的最大变化 程度,如成形时的局部极限应变即属于局部成形极限。 成形极限图(FLD)就是由不同应变路径下的局部极限应 变构成的曲线或条带形区域,它全面反映了板料在单向和双向 拉应力作用下抵抗颈缩或破裂的能力,常被用来分析解决成形 时的破裂问题。 板料的冲压成形性能包括:抗破裂性、贴模性、定型性。 贴模性指板料在冲压过程中取得模具形状的能力。 贴模性 定型性指零件脱模后保持其在模内既得形状的能力。 定型性 目前主要以抗破裂性作为评定板料冲压成形性的指标。
模拟试验,是指模拟某一类实际成形方法来成形小尺寸 试样的板料冲压试验。 1、胀形成形性能试验 2、扩孔成形性能试验 3、拉深成形性能试验 (1)、圆柱形平底凸模冲杯试验 (2)、TZP试验 4、弯曲成形性能试验 5、“拉深—胀形”复合成形性能试验
3-2板料冲压成形性能及极限
局部成形极限 反映板料失稳 前局部尺寸可 以达到的最大 变形程度。
总体成形极限 反映板料失稳 前总体尺寸可 以达到的最大 变形程度。
(2)成形极限图 概念
成形极限图(FLD) 是用来表示金属薄板在变 形过程中,在板平面内的 两个主应变的联合作用下, 某一区域发生减薄时,就 可以获得的最大应变量。
成形极限图的应用
FLD可以用来评定板料的局部成形,成形极限图的应变水平越高, 板料的局部成形性能越好。
FLD可用来判断复杂形状冲压件工艺设计的合理性,在板成形的 有限元模拟中,成形极限图被用来作为破裂的判断准则。
FLD可用来分析冲压件的成形质量,并提供改变原设计中成形极 限的工艺对策,以消除破裂或充分发挥材料的成形能力。
FLD可用来对冲压生产过程进行监控,及时发现和解决潜在发展 的不利因素,以保轴、短 轴的尺寸即为变 形过程中,厚度 发生减薄,得到 最大变形量。
计算出椭圆的长 轴、短轴应变, 可得出次点的极 限应变。
取得足够的试验数据后,以椭圆的长轴应变ε1为纵坐 标,短轴应变ε2为横坐标,就可以绘制出成形极限图。
成 形 极 限 图
图中的阴影区域叫做临界区,变形如果位于临界区,说明此 处板材有濒临破裂的危险。因此FLD是判断和评定板材成形性能的 最简单和最直观的方法。
板料冲压成形性能及 极限
2.板料成形极限和成形极限图 (1)板料成形极限 板料在成形过程中可能出现两种失稳现象:
一种是拉伸失稳,板料在拉 应力作用下局部出现断裂或
缩颈;
另一种叫做压缩失稳,板料 在压应力作用下出现起皱。 板料在失稳之前可以达到的 最大变形程度叫做成形极限。
成形极限分为局部成形极限和总体成形极限。
绘制 实验之前,通过化学腐蚀法在板料表面制出
冲压工艺15简答题
1.如何判定冲压材料的冲压成形性能的好坏?板料对冲压成形工艺的适应能力,称为板料的冲压成形性能。
它包括:抗破裂性、贴模性和定形性。
抗破裂性是指冲压材料抵抗破裂的能力,一般用成形极限这样的参数来衡量;贴模性是指板料在冲压成形中取得与模具形状一致性的能力;定形性是指制件脱模后保持其在模具内既得形状得能力。
很明显,成形极限越大、贴模性和定形性越好,材料的冲压成形性能就越好。
2.普通冲裁件的断面具有怎样的特征?普通冲裁件的断面一般可以分成四个区域,既圆角带、光亮带、断裂带和毛刺四个部分。
3.什么是冲裁间隙?冲裁间隙对冲裁质量有哪些影响?冲裁间隙是指冲裁凹模、凸模在横截面上相应尺寸之间的差值。
该间隙的大小,直接影响着工件切断面的质量、冲裁力的大小及模具的使用寿命。
当冲裁模有合理的冲裁间隙时,凸模与凹模刃口所产生的裂纹在扩展时能够互相重合,这时冲裁件切断面平整、光洁,没有粗糙的裂纹、撕裂、毛刺等缺陷,如图2-3(b)所示。
工件靠近凹模刃口部分,有一条具有小圆角的光亮带,靠近凸模刃口一端略成锥形,表面较粗糙。
当冲裁间隙过小时,板料在凸、凹模刃口处的裂纹则不能重合。
凸模继续压下时,使中间留下的环状搭边再次被剪切,这样,在冲裁件的断面出现二次光亮带,如图2-3(a)所示,这时断面斜度虽小,但不平整,尺寸精度略差。
间隙过大时,板料在刃口处的裂纹同样也不重合,但与间隙过小时的裂纹方向相反,工件切断面上出现较高的毛刺和较大的锥度。
4.降低冲裁力的措施有哪些?当采用平刃冲裁冲裁力太大,或因现有设备无法满足冲裁力的需要时,可以采取以下措施来降低冲裁力,以实现“小设备作大活”的目的:(1).采用加热冲裁的方法:当被冲材料的抗剪强度较高或板厚过大时,可以将板材加热到一定温度(注意避开板料的“蓝脆”区温度)以降低板材的强度,从而达到降低冲裁力的目的。
(2).采用斜刃冲裁的方法:冲压件的周长较长或板厚较大的单冲头冲模,可采用斜刃冲裁的方法以降低冲裁力。