模电集成运放实物图

合集下载

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

第4章 集成运算放大器电路
4―3―2差动放大器的工作原理及性能分析 基本差动放大器如图4―12所示。它由两个性能参
数完全相同的共射放大电路组成,通过两管射极连接 并经公共电阻RE将它们耦合在一起,所以也称为射极 耦合差动放大器。
I UE (UEE ) UEE 0.7
RE
RE
第4章 集成运算放大器电路
IC2
R1 R2
Ir
(4―7) (4―8)
第4章 集成运算放大器电路
可见,IC2与Ir成比例关系,其比值由R1和R2确定。 参考电流Ir现在应按下式计算:
UCC
Ir
UCC U BE1 Rr R1
UCC Rr R1
(4―9)
Ir
Rr
IC2
IB1
V1

UBE1 -
IE1
R1
IB2 +
UBE2 - R2
(4―11)
Ir
IC1
IB3
IC1
IC3
IC1 IC2,
IC3
3 1 3
IE3
IE3
IC2
IC1
1
IC2
2
若三管特性相同,则β1=β2=β3=β,求解以上各
式可得
IC3
(1 2ຫໍສະໝຸດ 222)Ir
(4―12)
第4章 集成运算放大器电路
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
4―2 电流源电路
电流源对提高集成运放的性能起着极为重要的作 用。一方面它为各级电路提供稳定的直流偏置电流, 另一方面可作为有源负载,提高单级放大器的增益。 下面我们从晶体管实现恒流的原理入手,介绍集成运 放中常用的电流源电路。

模电第02章 运算放大器(康华光)

模电第02章 运算放大器(康华光)
(5-15)
vp
vn
- ri ro + &#传输特性(vo~vi关系) 例如反相比例器:
vo
+Vom
传输特性
vo
Rf R1
vi
-vim
-Vom
vim
vi
vo 变化范围:
- Vom
~ + Vom
线性工作区
当vo = Vom时: vim = - +Vom R1/Rf 可见:加入负反馈(闭环使用时)使线性工作区变宽。
vn
in
ro
ri +
vp ip +
vo
- A(vp-vn)
可见: 当vp-vn> 0 时, vo=+Vom 运放工作在正向饱和区 当vp-vn<0时, vo=-Vom 运放工作在反向饱和区
∵实际运算放大器≈理想运算放大器 ∴分析实际运算放大器≈分析理想运算放大器
(5-11)
五.含理想运算放大器电路的分析依据
RL
+ vo -
2.指标计算 虚地 (1)电压增益 “虚短”: vn≈vp =0 “虚断”: ip=in≈0 ∴i1 = i2+in≈ i2
1.结构特点 负反馈引到反相输入端, 信号从反相端输入。
v i v n v n vo R1 R2 v i vo R1 R2
vo R2 Av vi R1
当(vp- vn)<0时, vo=-Vom ——负饱和值
饱和值Vom的绝对值略低于正负电源的绝对值。
(5-13)
§2.3 §2.4 线性运放电路
运放外部接若干元件(R、C 等),即可组成多种线 性运放电路。线性运放电路工作在闭环状态。

模电 25第七章集成运放概述PPT课件

模电 25第七章集成运放概述PPT课件
另 外 为 了 保 护 741在 负 反 馈 应 用 时 的 稳 定 性 , 在 3
T 16 基 极 和 T 17集 电 极 之 间 接 了 内 补 偿 电 容 , 由 于
米 勒 效 20.应 08., 2023 00p F的 电 容 起 到 了 一 个 大 模电电 课容 件的 补 偿 作 用 。 ① 引 脚 和 ⑤ 引 脚 外 接 调 零 电 位 器 。
R1
uo
uo ui1
u ui2
-VEE
uo
ui2
20.08.2020
模电课件
uo
VCC
VCC
uo
4
2.集成运放的封装 (a)金属圆壳封装
(b)双列直插封装
20.08.2020
(c)扁平陶瓷封装
模电课件
5
2.集成运放的组成框图 3从输出原级理:上一看般,为集互补成推运挽放射实级际跟上随器是,具以有提高高放集大成运倍放数负的 载多能级力直,接常还耦含合有放保大护电电路路。,其内部电路一般由输入级、 4输偏置出电级路、:中由间电级流源和电偏路置组电成路,等为各四级个放基大本器部设分置合组适成的
E
B
T13
CA CB
T13A
CA
CB
T13等效电路
8
二.典型集成运放电路741。
3.输出级:T23 构成以T13 B 为
有源负载的射随器作为输出级
的推动级,为消除交叉失真,
在 T23 射级I电C8路中接有T19 , T18 , R8 , 作为I C 1T14 , T26 的甲乙IC类2 偏置I 电C 9 路I m, T14 ,T26 为互补推挽射级输出器。
载 , T8为 偏 置 电 流 源 , 该 输 入 级 特 点 :

模电--运算放大器

模电--运算放大器

2.2.2 理想运放电路模型
V+
iP = 0
vP
ri
ro
+
+
vo
vN iN = 0
Avo(vP – vN) V-
vO / V V+
O vP – vN /mV V-
12 / 105
2.3 基本线性运放电路
2.3.1 同相放大电路
• 基本电路 • 负反馈概念 • 虚短与虚断 • 近似计算 • 电压跟随器
2.1.2 运算放大器电路模型
B. 电压传输特性
Avo越大,运放的线性 范围越小,必须在输
vo / V 正饱和
V+
线性放大区
出与输入之间加负反 馈才能使其扩大输入
vo = Avo(vP – vN)
信号的线性范围。
O
vP – vN /mV
例:若UOM =12V,Avo=106,
则 |ui| <12V 时,运放
15 / 105
2.3 基本线性运放电路
2.3.1 同相放大电路
3. 虚短与虚断
vi
由于运放的开环放大倍数很
大,输入电阻高,输出电阻
ii vp
vid+–
vn
+
A

vo
小,分析时常将其理想化, 称所谓的理想运放。
R1 R2
理想运放
线性区工作特点
Avo
ri ro 0
uo Avo (up un ) up un
v3
v2–

A2
+
R3 v4
v4
v2
iR2
R1 R2 R1
v2
R2 R1
v1
R4 R3

集成运算放大器的基础知识图解课件

集成运算放大器的基础知识图解课件

选择合适的集成运算放大器
01
02
03
04
根据应用需求选择合适的类型 和规格。
考虑集成运算放大器的性能参 数,如带宽增益积、精度、噪
声等。
考虑集成运算放大器的功耗和 散热性能。
考虑集成运算放大器的封装形 式和引脚排列,以便于电路设
计和连接。
05 集成运算放大器的常见应 用电路
反相比例运算电路
总结词
02 集成运算放大器的基本结 构与工作原理
差分输入级
差分输入级是集成运算放大器 的核心部分,负责将差分输入 信号转换为单端输出信号。
它通常由两个对称的晶体管组 成,能够有效地抑制温漂和减 小噪声干扰。
差分输入级的作用是提高放大 器的输入电阻和共模抑制比, 从而提高信号的信噪比。
电压放大级
电压放大级是集成运算放大器中 用于放大输入信号的级,通常由
微分电路
总结词
微分电路是一种将输入信号进行微分运算的 电路,通常用于测量变化快速的物理量。
详细描述
在微分电路中,输入信号通过电阻R1和电 容C加到集成运算放大器的反相输入端,输 出信号通过反馈电阻RF反馈到反相输入端 。由于电容C的充电和放电过程,输出信号 与输入信号的时间导数成正比,从而实现微 分运算。微分电路常用于测量流量、振动等 变化快速的物理量。
06 集成运算放大器的使用注 意事项与故障排除
使用注意事项
避免电源电压过高或过低
集成运算放大器的正常工作电压范围 有限,过高或过低的电压可能导致器 件损坏。
输入信号幅度控制
输入信号幅度过大可能导致集成运算 放大器过载,影响性能甚至损坏器件 。
避免直流偏置
直流偏置可能导致集成运算放大器性 能下降,甚至无法正常工作。

模电第三部分 集成运算放大电路PPT课件

模电第三部分 集成运算放大电路PPT课件
1、具有恒流源的差分放大电路 2、高输入阻抗的差分放大电路 3、带有负反馈的差分放大电路
# 阅读资料明确改 进的原因和电路的 分析方法。
第三讲 集成运算放大电路
集成运放是一种高增益的直接耦合放大器;是模拟集成电路中发 展最早应用最广泛电路。经常用于模拟信号的处理和产生电路之中, 因其性能高价格低,基本上取代了分立元件放大电路。
VCC
- R
VBE
只要参考电流IR恒定,IO就恒定
2、比例电流源
由电路可得 UBE1 +IE1Re1= UBE2+IE2Re2
由PN结电流方程可得 UUBBEE1≈-UUTIBnE2=IIEUS TInIIEE12
IE2Re2=
IE1Re1
+UTIn
IE1 IE2
IC2=
Re1 Re2
IR
+
UT In Re2
一、集成运放电路概述 1、电路特点
① 采用直接耦合方式。
② 利用对称结构改善电路性能。
③ 常用有源器件代替无源器件。
2、电路结构及功能
集成运放种类很多,电路也不尽相同,但从电路的组成结 构看,任何一个运放都由输入级、中间级、输出级和偏置电路 四部分组成。
输入级
中间级 偏置电路
输出级
二、集成运放电路读图
第三部分 集成运算放大电路
一、集成运放中的电流源 二、差分放大电路 三、集成运算放大电路
第一讲 集成运放中的电流源
能够输出恒定电流的电路称为电流源电路。电流源电路在集成 电路中作为偏置电路和有源负载为各级放大电路提供所需的偏流和提 高放大倍数。
一、基本电流源电路
1、镜像电流源 图中T1和R构成T2的偏置电路, 为T2提供偏流IR,T2的集电极 电流为输出电流IO

模拟电子电路模电课件清华大学华成英4集成运算放大电路

模拟电子电路模电课件清华大学华成英4集成运算放大电路

注意集成运算放大器的散热问题,采取适当的散热措施,避免过热导致性能下降或损坏。
在电路设计时考虑噪声干扰的影响,采取措施减小噪声干扰,如使用屏蔽、远离噪声源等。
在使用过程中注意避免突然的电压或电流冲击,以免造成集成运算放大器的损坏。
谢谢
THANKS
详细描述
共模抑制比是集成运算放大器性能的重要指标之一,它影响着电路的稳定性和性能。
总结词
在实际应用中,电路中的干扰和噪声通常是共模的,因此共模抑制比的大小直接影响到电路的性能和稳定性。在选择集成运算放大器时,需要根据实际需求来选择具有较大共模抑制比的型号。
详细描述
集成运算放大器的使用注意事项
了解集成运算放大器的规格书,确保其满足电路的性能要求。
良好的线性度
集成运放的内部电路设计使得它在放大信号时产生的噪声较低。
低噪声
集成运放的输入阻抗一般都在兆欧姆级别,使得它对信号源的影响较小。
高输入阻抗
按功能
可以分为通用型和专用型两类。通用型集成运放适用于多种场合,而专用型集成运放则是针对特定应用设计的,如仪表放大器、音频放大器等。
按性能指标
可以分为低噪声、高精度、高速型等不同类型。低噪声型集成运放主要用于信号放大,高精度型用于高精度的测量和运算,高速型则用于高速信号处理和传输。
电压-频率转换
电压-电流转换
集成运算放大器的性能指标
详细描述
开环电压增益的数值越大,意味着对微弱信号的放大能力越强,因此开环电压增益是衡量集成运算放大器性能的重要参数之一。
总结词
开环电压增益是衡量集成运算放大器放大能力的重要指标。
详细描述
开环电压增益是指在无反馈情况下,输入信号经过集成运算放大器放大后的输出电压与输入电压的比值。这个比值越大,说明放大器的放大能力越强。

模电课件53集成电路运算放大器

模电课件53集成电路运算放大器

2021/4/11
(maximum common mode input voltage)在保证运放正常工作条件下, 共模输入电压的允许范围。共模电压超 过此值时,输入差分对管出现饱和,放 大器失去共模抑制能力。
11
二、运算放大器的动态技术指标
1.开环差模电压放大倍数 Avd :(open loop voltage gain)运放在无外加反馈条件下,输出电压的变化量 与输入电压的变化量之比。
2021/4/11
5
3.运算放大器的符号和型号
(1)集成放大器的符号
按照国家标准符号如图5.15所示。
(a)
(b)
图5.15 模拟集成放大器的符号
(a) 国家标准符号 (b)原符号
2021/4/11
6
(2)集成运算放大器的型号命名
数字序号
(与世界上其它厂家同类型产品的序号相同。)
其它例如:集成功率放大器的型号命名 CD----
2021/4/11
21
4.高输入阻抗型
用于测量设备及采样保持电路中。 例如: AD549
IIB 0.040p A
Rid 1013
CF155/255/355
IIB 30p A
Rid 1012
2021/4/11
22
5.低功耗型
用于空间技术和生物科学研究中,工作于较低 电压下,工作电流微弱。 例如:
用于精密仪表放大器,精密测试系统,精密
传感器信号变送器等。 例如:
OP177 VIO 4μ V
IIO 0.3nA
dVIO 0.03μ V/ C d IIO 1.5pA/C
dT
dT
CF714
VIO 30 ~ 60 μ V dVIO 0.3 ~ 0.5 μ V/ C dT

模电课件第3章集成运放

模电课件第3章集成运放
7
2、差动放大电路的组成与原理
(1)典型差放电路组成
差动放大电路是由两个 结构对称、参数完全相同 的共射放大电路组成。
8
(2)差放抑制零点漂移的原理
静态时:
IC 1 IC 2 IC VC 1 VC 2 VCC I C RC
输出电压
UO VC 1 VC 2 0
温度发生变化时
1 单端输出时, Aud Au1 2
(RL=∞)
3、差模输入电阻不论双端输入还是单端输入方式, rid 2ri1
单端输出电阻是双端输出电阻的一半。
ro单
26
1 ro双 2
输出方式
输入方式 电路
双端输出
双端输入 单端输入
单端输出
双端输入 单端输入
差模电压增 益 共模电压增 益
Aud
1 ric [ Rb rbe (1 )2 Re ] 2
roc Rc
24
4 共模抑制比 KCMR
差动放大电路能够放大差模信号,抑制共模信号。 Aud是有用信号的放大倍数,越大越好;Auc表明零漂 的程度,越小越好。引入共模抑制比综合衡量。 共模抑制比
K CMR Aud Auc
uo Aud uid Auc uic =103 2 10-3=2V
12
3 差动放大电路的分析计算
(1)差放的静态分析
(2)差放的动态分析
13
(1)差放的静态分析 静态时:ui1= ui2= 0 设电路完全对称。 由0VEE回路得
VEE=IBRb+UBE+2IERe
通常,β>>1,UBE<<VEE, IBRb<<IERe
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.反相加法运算电路
电路图
uo Rf (ui1 ui2 ) R1 R2
实验内容路产
生大小不同的两个电压ui1、 ui2 ,完成表 2.31 。
3.减法运算电路
电 路图
uo Rf (ui2 ui1) R1
实验内容
万用表测输出uo。然后调节调零电位器RW, 使uo=0。
3) 在反相端加直流信号ui,完成表2.29 。
同相比例运算电路
uo (1 Rf )ui R1
AVf uo 1 Rf
ui
R1
实验内容
1) 按图连接实验电路。 2) 接通电源,调零之后在同相输入端加直流信
号ui,完成表2.30 。
集成运算放大器组成的基本运算 电路
集成运算放大UA741管脚说明
UU+ -12v
1、4、5脚接调零电位器
+12v Uo
1.反相比例运算电路
实验电路图
uo Rf ui R1
AVf uo Rf
ui
R1
实验内容
1) 按图连接实验电路。 2) 调零。将输入端接地,即ui=0,接通电源,用
幅值为1V,频率为1kHz,观察输出波形,描 绘出曲线uo=f(t)。
1) 按图连接实验电路。 2) 接通电源,调零之后,用电位器分压电路产
生大小不同的两个电压ui1、 ui2 ,在反相输入 端加直流信号ui1,在同相端加直流信号ui2, 完成表2.32 。
3积分运算电路
电路图
uo(t) 1
t
Edt
E
t
RC 0
RC
实验内容
1) 按图连接实验电路。 2) 接通电源,调零之后,输入ui接矩形波,其
相关文档
最新文档