液压原理图教材
力士乐液压培训教材2
压1. 压 路 压现 压 路 压 压 将 压 转 为 不 环节 压 连 压 路 环节产 转 压 不 压 产 线 传 线 力略 时 压 力F 压力p 积AF=p*A (kN)产 线 则 压 驱计简单 便不 将 转 转 为 线 压 驱 率较压 续产 力, 行 开 , 行 结 过 压力阀 简单 现 率塞 度 流量 塞 积 流量 不 , 则 行 开 结 , 塞 度 不压 关, 产 压力, 拉力 力压 率 驱对负 , 降, 锁紧 , 压 应 2. 关 压不 , 压 :单 压压2.1 单 压单 压 力 塞 弹 , 塞 , 力 单 压 积2.1.1 压图7.1 塞 压 图 内 图 内 导 塞术 , 这 产 力应 不 , 压 带 不带 内 行 导 塞 对 压 来说, 压力 塞 积 压力 积将 塞 力, 则 压 行 , 切 ,“A” 压力流 , 压 积 , 塞 (C) 塞 , 力2.1.2弹 压弹 压 没 力 场 弹 内, 为 压 独立 弹 产 行 力, “ 压 ” 应 例 夹紧 , 维“A ” 压力流 压 积 , 塞 (C ) 塞 缩则 弹 “B” 压力流 压 积 , 塞 内 缩 (D ) 塞 则 弹2.2压压 对 积, , 不 这 压 不 过“A ” “B ” 压力流 , 塞 行 别产 拉力 力 应 场 这 压压 : 单 压 压2.2.1压 单 压压 , 数为 塞 单 压 塞刚 结 塞 ,径 塞 侧不 积 塞 环 横 积 数(ф) 传 力 时 塞 积, 缩 时 环 积, 还 压力 这 : 压力 , 时 力 缩 时 , ф 为行 , 积 , 积 不 , 行 度 积图7.4 单 压图7.2 单 压 图 内弹 图 弹图7.3 单 拉 图 内弹 图 弹说:积 度 积 度2.2.2 压压 塞 径 塞 刚 连 力 环 积 压力 这 , 压力, 产 力 积 行 度 , 积 , 度, 压 塞 塞 不 径这 压 力 度( ), 圆环 积2.3 单 压对 应 场 , 力 , 对标 单 压 利 行 狭 , 塞 力 这 众 , 导 列 压 诞 当 ,时 难 烦 难 尽 了 图7.5 压2.3.1 串 压图7.7 串 压串 压 连 压 , 塞 , 过 连 塞 这 , 积 了 便不 压力, 对 径 传 较 力 当 , 这 度 了, 对 应 虑图7.6 压2.3.2压压 压 对 这 压 , 不 压力时, 积, 谓 塞 压力 压力阀 行 开关 , 塞 积 连 压力 :积塞 积 产 较 压力2.3.2.1 单 压(C) “A1”“S”压紧力(C) “A2”力 缩“A1” “A2”2.3.2.2 压(C) “A1”“S”压紧力(C) “A2”缩 , “B”“A1” “A2”2.3.3 缩 压缩 压 压 不 , 行 缩 , 塞 , 当 将 行 了 级, 零行 ( 度, 导 度, 宽度 度) 说, 级 缩 压 缩 度约为 行 1/4 1/2 不 , 2,3,4 5 级 缩 压 压 降 , 顶 , , , 线2.3.3.1 单 缩 压图7.8 单 压图7.10 单 缩 压图7.9 压 “A” 给这 塞 压力 , 则 塞顶 压力 负载 积 , 积 塞不 压力 流量 , 力 度 , 力 度进力 积进行计 对 单 缩 压 , 缩 顺 , 积 塞2.3.3.2 缩 压缩 压 理 单 缩级 缩 顺 压力 环 积 负载 当 “B” 压力 时,环 积 塞缩 压 缩 压 这时, 级 塞 缩3. 理压 结 度 应 不 . 为满 , 开 了许 压 , 行 , , 压 , 不 结 这里, 针对 单 压 , 讨论 理图7.11 缩 压压 为 :压 ,压3.1 压压 , 过 连 压 结 紧这 压 结 紧 节省 , , 线,图7.12 压 兰图7.13 压 兰连图 压 节轴 环图7.15 压 节轴 环图7.17压 3.2 压压 结 为螺纹, , 螺 挡 过 结结 牢 , 压 恶劣 环这 压 行 , , , 压 , , , , 陆图7.18压 兰连图7.19 压 节轴 环图7.20压 节轴 环图7.21 压 节轴 环图7.22 压 节轴 环图7.23 压 节轴 环图7.24 压 塞 螺纹4. 项了 压力, 塞 塞 径, 行 度 拉力 力 , 还 压 ,7.1 7.2 列 了 压 时, 对 则 认 虑 7.3a 7.3b 给 了六 项过 数 应 例 , 节 转轴7.2 压7.3b 项5.5.1 弯当 行 压 时, 产 稳 问题 弹 弯 应力( 迈 ),弹 弯 应力( 应力 欧拉 来 )塞 当 细 理, 欧拉 来进行 压 计弯 负载 负载计弯 负载22**kE JKsπ= (N) (1)这 负载 将弯负载KFS=(N) (2)s k = 弯 度 (mm)E= 弹 量 ( 2.1*105) (N/mm2)J= 圆 转 惯量 (mm4)= d4* / 64 = 0.0491* d4S= 数 (3.5)弯 度 欧拉应力 ( 7.4) 为了简 计 , 略了 挠度 , 满 弯 应力 , , 标 压5.2 弯当 度倾 时, 详细 铰 压 来进行计了单纯压应力, 还 产 弯 对 行 较 较 压 , 应6. 缓6.1压 缓塞(1) 过缓 塞当锥 缓 (2)进 (3) 时, 开 , 开 塞 (4) 流 为零 塞 (4) 流 (5) 调节流阀(6)流 缓 过节流阀来 流 积 , 缓缓 时, 节流阀 流螺钉(7) 脱 过锁紧螺 (8) 对缓 进行单 阀(9) 压 时 , 压 时 流绕过节流 压 过 阀螺钉(10)缓 压 , 阀螺钉6.2力压 缓 , 须 证 行 度, ( )过 缓 开 时, ( 质量 度 计 结 )应不 过缓 量 转 为节流缓 阀 热6.2.1 力 计压 力 计 :F B = m * a + A k * p (3) F B = m * a + A R * p(4)图7.25 压 调 缓F B = 力 N m = 质量 kga = 度 m/s 2 a = v 2/ 2*s v = 行 度 m/s s = 缓 度 m A k = 塞 积 cm 2 A R = 环 积 cm 2 p = 压力 N/cm 2 1 bar ≈ 10 N/cm 2对 压 , 须 , 力( 负载 , 塞 塞 ) 力F B , 力F B 这 力 计 略了 内 力6.2.2缓 压力 计, 缓 压力不 压 称压力 p D = F B / A Dp D = 缓 压力 N/cm 2 F B = 力 N A D = 缓 积 cm 2 1 bar ≈ 10 N/cm 2计 压力 过 , 应 缓 度, 降 压力7. 压压 独 压压 , 不 术 计 “ 行 压 ”, 塞 轴 (静压轴 )静压轴 压 , 频率 数 应 场压 , 料 检测 , 态 应 度 线驱 应压 :压阀 ,7.1 压过 来 压 :行 压 力 许压 塞 侧 负压 度数不 , 结 压 :静压轴 压 , 塞 压 静压 轴 轴 压 , 塞 压图7.26 带 阀 压7.1.1 静压轴 Array 静压轴 压 , 度 V max=2 m/s侧 负 较 场 ( 压 惯 力 量力)轴 压 , 压力 210 bar,负载力1-4,000 kN: 节轴 , 兰连 , 轴压 应 传 , 将测 塞行压 没 压力 , 这轴 力 , 了 滑现 这为 线( 图7.30).较结 , 压 力降 了3-4图7.27 静压轴 压图7.28 压 结 理图 静压轴 塞图7.29 静压轴 塞 结 理图 静压轴 压 压力(p)图7.30 力测量 p St=210bar, v=0.1m/s, s= 100mm; 静压轴 压 滑 压7.1.2 轴 轴对 , 侧 负 较 压 , 轴 轴轴 压 , 压力 280 bar, 负载力10-10,000 kN: 兰连 , 轴 组压 应 传 , 将测 塞行结 , 轴 围 , 压 塞 这 对压力场 , 终 轴略 塞 侧 负 , 则 轴 压力 当 压力 50% 塞 侧 力, 则轴 对 压力 , 压 塞 终 轴轴 轴 现 力, 静压轴 ( 图7.30) 这 力 对侧 负 还 , 为 塞 不 轴 产 , 不 进 围图7.31 静压 轴 轴 压 带 阀图7.32 结 理图 轴 轴 压图7.33 轴 轴 结 理图7.2 阀为了 压驱 良 力 , 不 , 阀 路应尽 这 , 将 阀 压 力 组 连 路, 连 线路, 阀 来 现 , 诸 力 , 导 轴 过滤, 压力储 , 该阀图7.34 路图 压 阀摆1.论 结 摆 压力 产 轴 摆 摆 度 调 摆 围紧 坚 结 传 摆 别 恶劣 行环2.转 压 摆 为径 /切 塞轴 塞 2.1 摆摆 结 计 为 轴连 转 了圆连续轴 结这 驱 摆 显 衔摆 280º 摆转 过对 转 压力 产 摆 围内 转 不图8.1 转 执行图8.2 单 转过 转 摆 约 60%图8.4 径 塞 摆 螺纹 轴图8.3 摆2.2 径 塞 摆这 结 摆 , 流 塞 , 螺线 螺纹轴, 螺线 轴 倾 度 约为45º 轴线螺纹 内螺纹 啮 , 该内螺纹 结 侧产 摆 转 轴 当径 塞 压 时, 产 轴 塞 螺纹 结, 塞 绕 转轴 转 轴 塞 螺纹 结, 开 转 们 螺 , 塞 轴 这 转径 塞 摆 720º 摆2.3 轴 塞 摆轴 塞 摆 , 压 塞, 产 行塞压力,塞传轴( 内 理 ) 轴 这 塞 , 对摇 产 切 力轴 塞 摆 100º 摆图8.5 轴 塞 摆2.4 连 内 塞 摆连 内 塞 摆 压 没 塞塞 过 连 驱 轴 传 转 塞 连 闭 内 兰连 内 塞 摆 180º 摆2.5 内 塞 摆这 结 导 过 换 压 压力 驱 塞来这 内 塞 切啮 内 轴 侧 侧 转 传 摆 为90 140 180 240 300 360º 更 度图8.6 连 内 塞 摆图8.7 内 塞 摆 , 过 率压 应1., 获 数量 压力流 储, 时满流 压力流 , , 压力 ; 计 时 虑 行压力, 时还 过 当 验 标为 内 流 压力 储 量, 量 弹 , 压缩 为 载 负 (图9.1)内 力 状态, 力 弹 力 压缩 胀力, 了 内 压力 力 弹 力负 仅 领 , 不 环节 压 压 , 则压缩 压流数 压 , 带 环节 - (压缩 )环节 不 , 为 , 塞 , 节将 详细 绍图9.1 不2.- 压 :储 量储流紧 行力击压力 击漏流 偿击对悬产 量压力 流量 偿( 当 对 扩 )2.1 量 储图9.2 率时 图 图 , 率 时 里 , 当 阶 时 为了这 时 率, 压 应 率过 - , 率 率 流量 流量, 则 流量 行 对 进行 流量 , 则 流量 产图9.2 率图:较 压率较热更维 简单, 还 缓 压力 击 ( 计), 了 过 - , 量 了节省对 简单 量 , 行 压 , -2.1.1 应 举例2.1.1.1 对 不 执行2.1.1.2 较过 执行 - , 压 组 更 流 惯 力 , 该 更 , 还 对执行 不 流量 进行 偿图9.4 量 储2.1.1.3 较 行 时压 产线 行 标, 时 里 载行 过 , 则 来 - 压 进行载行 , 压 (1)( 压 ), 压 (2)( 压 ) , 这 度载 压力 , 单 阀(A)关闭, 现 流量 压 , 时, (1)给图9.5 较 行 时 量 储2.2当 时, 不 为 量 来 行 连 过 漏 , 将 储 量 来, 时 给压 带 环节, 紧 状 行, 断 时执行执行 , 举例 : 闭 , 闸 阀 纵 率闸 关断2.3 紧 行紧 状态 , 断 时, 利 量来 行 结 图9.6 为 压 紧 行 路图 断 , 弹 力 阀(1)关闭 , 阀(2) 这 , 压 塞 侧 连 , 压力 塞时紧 状态 行 例, 当 阀 现 时, 开 行 (图9.6)利 紧 行 : 储时 不 惯较 维图9.7 时 压 图9.6 压 紧 行紧区 路, 紧 刹 闭 压 来 , 量行, 刹 弹 力, “开 ” 弹 力 现紧 润滑为了 轴 润滑 , 续 给润滑 这 润滑区 压力 润滑 现 , 过 将压力 , 辅 立 压力为图9.9 轴 紧 润滑图9.8 紧行 断行 产线时, 较 损 这 状 , 证 开 行图9.10 行 断2.4 力 偿对力 进行 偿 这 连续 时, 过 不 , 负 辊 , 现产 度 图9.11 为 路, /关断阀 :稳 力 , 对 应力较省 了 , 了 量 积图9.11 产 辊2.5 漏压 预 力, 当 漏 时 压 图9.12 为 漏 路图 , 来 进 压 内 压力降 ,:连续 行热 , 行费2.6 对 击图9.13 悬图9.12 漏 行过 , 压流 流 状态 , 现 压 压力:压 内 不 匀弹 -质量 (阀 压力 偿) 不 级压力 连关断阀 阀开关时 过压 开 关闭关 , 行 现流量 压力 , 这 产 不利压力 , 关 , 为压力 击 压力 为 证 行不 这 , 须 计时 压力 , 选择 尽 压力 , 证 , 压 压图9.15 例阀 阀 压 流量 压 , 满 率 时 行 , 时还 满 降 这 流量 , 鸣 传 , 降 , 了对 积 (图9.14)流量 积 关 这 , 压 损图9.14 压 流量对 开关阀(图9.15)证 , 稳开 阀 ( 阀 例阀) , 这 还 现负压 , 为 对 压力 路 滤 损对 压力 荡(图9.16)数 压 , 压力 荡 压 , 负载 , 铲, 对压力 荡 ( 压 )图9.16 压 流量 对 开关过 (图9.17)路 量流 流时, 产 压力 击, 对冷 滤 损, 流 , 产 压力 击 对阀 , 路 损 这 紧 开关过压弹压 压弹 , 击这时 内 , 悬 压弹 应 :链 张紧(图9.18)张紧 辆 驱 链 , 传 击图9.17 压力 击 张紧, 悬索 张紧(图9.19)悬索(举例) 度 较 围内, 这 行 没对 过 , 度 负 绳 度 别, 进行 偿对 度 拉力,图9.18 张紧 链图9.19 张紧 绳索辆悬 (图9.20)当 辆行驶 不 路 轨 时, 产 击, 损 盘- 悬 , 压 将 击转 为 压 击这 压 击- 悬 :许 行载料负 ,降 行费2.7 流对 100% 质 , 内 过 进行2.7.1对 为 , 力 时 压驱 , 显 易 ( 夹紧 )将 压 开来 这 , 专 压 组了图9.21 将 压图9.20 辆悬2.7.2 质例 , 行 压缩 轴 , 压缩 理 压缩 ,不 流这 单独 润滑 , 压力 压缩 压 0.5 1 bar压缩 了 , 压对压缩 流 , 压缩 压数 流 不 润滑 , 轴 轴 单独 润滑这 质 , 来 现2.7.3论 对 阀进 , 还 为 度剧 现 结 , 利 来 现 压图9.23 滤图9.223. 不, 还 压 路 连 压力 时, 压, 流 进 内压 为 : 塞图9.25图9.26图9.243.1, 还围 压 路 连 当压力 时, 流 , 压缩 压力降 则压缩 胀, 将 路 ( 议 ), 度倾 ( ) 倾 , 则 终应将流 阀铸 压力 (1), (2), 进 阀(3) 进 阀(4) 压流 (2)3.2圆 压 内 弹 料( ): 结 螺纹 结对 结 , 进行环 须将 压 过 当 , , , 料 时 损,螺纹 结 时, 将 , 连 螺 图9.27图9.28 图 结图 螺纹结3.3 塞塞,塞内预压 路 连 当压力 时, 流 塞 , 压缩 压力降 则压缩 胀, 将 路 塞 , 议 , 顶 , 这 对 塞 颗粒进行 理塞 结 图9.29 (1), 带 塞(2), 别带 (5) (6) (3,4), 内 压力, 对 - 塞进行导内 级 , 塞 时 力 这 , 约 1bar 压塞 检测 塞 开关 时 塞 检测 该 压3.4压力 , 积较 时 量 , 这 , 议 连选择 时 虑:环 度 积 胀许 压力 积 p 2/p 0 = V 0/V 2 积. 图9.29 塞图9.30 连4. - 辅4.1辅 , 压执行 , 该 质量标 , 压力 术 , 过了 压力 关 压力 规图9.32图9.33 阀图9.34 导 流阀 阀图9.314.1.1 计阀 (1), 流阀(2), 阀(3), 阀(4), (5) 关 压力 4.2 测试图9.36 测试, - 漏 为, 现 预 压P0降, 检 预 压利 测试 , 对 进行 , 对预压力进行 这 , 测试压阀 螺纹连 , 软标 检 预 压力 仅 压 ,则 软 对 预 压P0,须 维 检 , ,还 检 没 现 漏,约 检 漏 , 则 年检了图9.354.3对 进行 证对标 利 , 压 20bar, 压 350bar 4.4图9.37 便图9.38 图9.39 /较 ,内 流 还产 力, , - , 这 对 路 产 力5. 带5.1 行 数- 计 数 图9.40 了 说 状态 状态 量, 压力, 度 积图9.40 行 数5.2 状态状态过过绝热过 ,过5.2.1 过这 状态 , 积没 , 没 这 状态 , 预 态 , 热 换 预 压力状态 : p/T = p1/T1 = 数(1)5.2.2 过这 状态 , 热量 进行了 换, 度不当 / 时 时, 这 状态过 , 环 进行 热 换状态 : p*V = p1*V 1 = 数(2) 5.2.3 绝热过这 状态 , 时 来不 围进行热量 换状态 : p*V k = p1*V 1k = 数(3)积 压力, 度 压力 关 , 状态图9.41 p-V图 状态 T*V k-1 = T1*V 1k-1 (4) T*p(1-k)/k = T1*p 1(1-k)/k, k 为绝热 数, 对 , 为 1.4图9.42 0 100 绝热 数5.2.4 过行 , 不 理论 热 换, 状态 过 绝热 这 过 过 过 数关 绝热过 , 数N 绝热 数 了5.3计 , 过 时 单 验 , 列< 1绝热过> 3绝热过< 1过1 3过9.1 给 了 计 计 不仅 , 计时 验 , 获 积 利 较9.2 给 了不 验5.4 理状态 对理 不 , , 便 压 理 这 称为 理 状态 量p, T V , 数 关 应 , 这 度, 则 力, 计 时 , 计 计 量 这 , 虑 时, 议 数, 过 状态 计 :V0 real = C i * V0ideal绝热过 状态V0 real = C a * V0ideal 这 数C i C a 规5.5 计 骤为了计 应 , 流 积 V 量Q为 , 虑 , 诸压力度压计时 : 压力为p1 p2 状态, 过 为绝热过 状态 为计 础, 这 许过 对时 计 结 , 认 绝热过 , 对 计结 ( 数C i C a 规 )预 压力( 预 压力)应 压力 0.7 0.9 内( 度 )P0(T2) ≤0.9*p1(5)这 为了 阀 围内, 连续 行 对阀 损9.1 计5.6 标 应 选5.6.1积较 良 , 较 , 行 惯5.6.2积, 应 度 年来 质量 , 了9.2 标 应 , 流 时5.6.3 塞塞 较 积 场 连则更为这 塞 , 应 度较 , 还 力 不 这 压力 了10% 时 塞 度不 过2m/s 塞。
力士乐液压培训教材5
4.2 ഃ̋䢮䕃时ٙ䁌ձ̋൷
ί̋̋过ʕdν؈䢮䕃度৷ɓ࠴d
则䢮䕃ٙ൷ఱࠅᄣɽՑ 4 ࠴f
͟ي理䕎ʮόՑٙ̋ձ䁌൷d̋度ձ䢮䕃
͟ϤҢ们̙˸了༆Ցd㽢䢮䕃൷ٙԉ度Ͻ虑d̋
度䞯ٙ关ӻdͪɲϜ线 33f
度选ٙ过ɽd对ɲᄣ̋̋൷จ䂎ϊ不ɽf䔃Ϝ线 33
䔔Ѝʱ
4.2.1 ̋ձ䁌൷
若̋度选͜过ЭᧅࠢϜ线˸̸,䔃Ϝ线 32d则ც ࠅٙ̋时䞯过䔉f Ϝ线 32 ูήڌd0.1 ߆Ց 5 ߆ߪ围ٙુսՌ数d̙调 时䞯݊ԑ䃣ٙf
Ϝ线 32. ഃ̋䢮䕃时ٙ̋ձ䁌时䞯 108
ˢ例阀开环છՓӻ䕠ٙ䕧计ࡘ则
—————————————————————————————————————————————————————
݊䁔ɛ为选֛ٙdɓছ䕓݊选ٙ˄f
这里̀须ءจd̋א䁌൷݊㯞ڋ度̻ٙ˙Ͼ
䕇ʷٙf
Ϝ线 33. ഃ̋时ٙ̋൷ձ䁌൷ 109
ˢ例阀开环છՓӻ䕠ٙ䕧计ࡘ则 ————————————————————————————————————————————————————
4.3 ոϞ频率
3. ୌ㠈单З
3.1 ߔذ驱䕃
104
ˢ例阀开环છՓӻ䕠ٙ䕧计ࡘ则 —————————————————————————————————————————————————————
图 130.
图 131. ߔذա力ઋ䀒d՟䁑ɲ䕧计ۨόձτ㠠Зໄ. 105
ˢ例阀开环છՓӻ䕠ٙ䕧计ࡘ则 ————————————————————————————————————————————————————
液压技术教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集课件汇编
§1-3
流体力学基础
2.压力的表示方法
绝对压力:以绝对真空作为基准所表示的压力。
相对压力:以大气压力作为基准所表示的压力。
绝对压力=大气压力+相对压力
压力的法定单位是Pa(帕),在工程上常采用kPa(千帕)
和Mpa(兆帕)。
§1-3
流体力学基础
3.压力的传递
帕斯卡原理:置于密闭容器
中的液体,其外加压力发生变化
大时,柱塞向左运动,密封容积减
小,油液产生压力。泵体内压力油
经单向阀6进入系统,液压泵压油。
§1-1
液压传动系统概述
二、液压泵的类型、参数和图形符号
1.液压泵的类型
§1-1
液压传动系统概述
2.液压泵的基本性能参数
(1)压力
1)工作压力(p)
液压泵实际工作时的输出压力。
2)额定压力(pn)
液压泵在正常工作条件下,按试验
回油箱,大活塞8在重物和自重
的作用下向下移动。
§1-1
液压传动系统概述
二、液压传动系统的组成
1.动力部分
动力部分将原动机输出的机械能转换为
油液的压力能(液压能)。
2.执行部分
执行部分将液压泵输入的油液压力能转
换为带动机构工作的机械能。
§1-1
液压传动系统概述
3.控制部分
控制部分用来控
4.辅助部分
作用下始终与偏心轮1接触。当偏心轮转动时,
柱塞作左右运动。
§1-1
液压传动系统概述
1.吸油过程
当偏心轮的向径由最大转向
最小时,柱塞向右运动,其左端
和泵体间的密封容积增大,形成
局部真空,油箱中的油液在大气
压的作用下打开单向阀5,油液进
液压与气压传动教材
第1章 液压传动的基础知识
体积压缩系数的倒数称为体积弹性模量 K ,单位为Pa, 写成微分形式,即
1 dp V K k dV
(1-3)
液体的体积压缩系数(或体积弹性模量)说明液体抵抗压缩能力的小, 其值与压力、温度有关,但影响甚小。因此,在压力、温度变化不大 的液压系统中可视为常数,认为液压油是不可压缩的。 常用油液体积弹性模量 K =(1.2~2.0)×109 Pa。
图0-3气压传动系统 1-电动机 2-空气压缩机 3-储气罐 3-压力控制阀 4-逻辑元件 5-方向控制阀6流量控制阀 7-机控阀 9-气缸 8-消声器 11-油雾器 12-空气过滤器
绪论
0.3.2 液压传动的优缺点
液压传动与机械传动、电气传动相比有以下优点 ⑴输出力大,定位精度高、传动平稳,使用寿命长。 ⑵容易实现无级调速,调速方便且调速范围大。 ⑶容易实现过载保护和自动控制。 ⑷机构简化和操作简单。 液压传动的缺点 ⑴传动效率低,对温度变化敏感,实现定比传动困难。 ⑵出现故障不易诊断。 ⑶液压元件制造精度高, ⑷油液易泄漏。
第1章 液压传动的基础知识
1.4.4 液压泵出口压力的确定
1.5 液体流经孔口及缝隙的流量压力特性
1.5.1 液体流经小孔的流量压力特性 1.5.2 液体流经缝隙的流量压力特性
1.6 液压冲击与气穴现象
1.6.1 液压冲击
1.6.2 气穴现象
第1章 液压传动的基础知识
第1章 液压传动的基础知识
油液是液压传动与控制系统中用来传递能量 的工作介质。此外,它还起着传递信号、润滑、 冷却、防锈和减振等作用。
(1-5)
第1章 液压传动的基础知识
2.运动粘度 液体的动力粘度μ与它的密度ρ之比,用符
液压基础知识教材课程
液压流体使用中的注意事项
掌握液压流体的选用、更换、污染控 制等使用要点,以确保液压系统的正 常运行。
03 液压泵与马达
液压泵类型及工作原理
齿轮泵
通过齿轮啮合产生容积变化来吸 油和压油,具有结构简单、价格 便宜的优点,但噪音和流量脉动
较大。
叶片泵
利用叶片在转子槽内滑动产生的 容积变化来吸油和压油,分为单 作用和双作用两种,具有流量均 匀、噪音小等优点,但结构较复
行排气处理。
噪声和振动
检查油液粘度是否合适,更换合适 的油液;清洗冷却器,提高散热效 果;检查系统过载原因,消除过载 。
温度过高
检查阀门卡滞原因,清洗或更换阀 门;检查油缸内泄情况,更换密封 件或油缸;检查管路堵塞情况,清 洗或更换管路。
THANKS FOR WATCHING
感谢您的观看
压力控制阀
用于控制液压系统中油液的压 力,包括溢流阀、减压阀、顺
序阀等。
流量控制阀
用于控制液压系统中油液的流 量,包括节流阀、调速阀等。
比例阀和伺服阀
能够根据输入信号连续地按比 例控制液压系统的压力和流量
,实现高精度控制。
液压缸与液压阀选用原则
根据系统工作压力和流量 选择合适的液压缸和液压 阀。
根据工作需求选择合适的 液压缸类型和结构形式, 如活塞式、柱塞式等。
04
动作失灵或缓慢
可能是由于阀门卡滞、油缸内泄 或管路堵塞等原因引起。
故障排除方法与技巧
压力不稳定或不足
检查液压泵、阀门和油缸等元件的 工作情况,清洗或更换故障元件; 检查油液污染情况,更换油液或清
洗油箱和滤网。
动作失灵或缓慢
检查液压泵、马达和阀门等元件的 损坏情况,更换损坏元件;检查管 路固定情况,加强固定;对油液进
液压基础知识详解(经典培训教材)
伸缩式液压缸
具有多级套筒结构,行 程长且收缩后体积小。
摆动式液压缸
输出扭矩大,可实现往 复摆动运动。
液压控制阀概述及分类
按功能分类
方向控制阀、压力控制阀、 流量控制阀。
按结构分类
滑阀式、锥阀式、球阀式 等。
按连接方式分类
管式连接、板式连接、法 兰连接等。
方向控制阀结构与工作原理
01
02
03
04
回路设计注意事项
元件选型
根据系统需求和性能参数选择合适的 液压元件,确保系统可靠运行。
回路布局
合理布局液压元件和管路,减少压力 损失和泄漏,提高系统效率。
安全保护
设计必要的安全保护措施,如过载保 护、超压保护等,确保系统安全运行。
调试维护
方便对系统进行调试和维护,留有必 要的检测点和维修空间。
回路优化策略探讨
应用
液压马达广泛应用于工程机械、农业机械、交通运输、石油采矿、船舶、机床等领域。不同类型的液 压马达具有不同的特点和适用场合,应根据具体需求选择合适的液压马达。
04 液压缸与液压控制阀
液压缸类型及结构特点
活塞式液压缸
由缸筒、活塞和活塞杆 等组成,结构简单,应
用广泛。
柱塞式液压缸
只能实现单向运动,回 程需借助其他外力或自
蓄能器
储存压力能,在需要时释放能量,补充系统 泄漏或提供瞬时大流量。
典型回路分析举例
压力控制回路
通过压力控制阀等元件实现对系 统压力的控制,包括调压、卸荷、
减压、增压等回路。
速度控制回路
通过流量控制阀等元件实现对执行 元件速度的控制,包括节流调速、 容积调速等回路。
方向控制回路
通过方向控制阀等元件实现对执行 元件运动方向的控制,包括换向、 锁紧等回路。
液压与气压传动课程设计教材
液压与气压传动课程设计任务书
目录
液压传动课程设计任务书 (1)
(一)、主要任务与目标 (1)
(二)、主要内容 (1)
(三)、工作量要求 (1)
一:装载机的简介 (3)
(一)简介和设计要求 (3)
二:液压传动系统工作原理图 (4)
三:ZL-50液压传动系统工作原理 (5)
(一)动臂液压缸工作回路 (5)
(二)转斗液压缸工作回路 (5)
(三)自动限位装置 (5)
(四)转向液压缸工作回路 (5)
四:各元件参数计算 (6)
(一)查阅资料整理得表 (6)
(二)铲斗液压分析计算 (6)
(三)动臂液压分析计算 (10)
(四)转向液压缸液压分析计算 (13)
(五)选择液压元件及油路分析 (17)
五、设计小结 (20)
六、感想 (21)
七、参考文献 (22)
生压差p’=p1-p2和-p3,总压差=+=p1-p3。
液动分流阀左端控制油路接p1,右端接
流量Q1正常,达到规定值而弹/F时,分
作装油路。
当发动机转速降低,使Q1减小到
时p1值也随之上升,直到弹/F时,分流阀便
-p2和-p3,总压差=+=
常,达到规定值而弹/F时,分流阀被推至A 发动机转速降低,使Q1减小到弹/F时,分流。
液压原理图教材
液压基础第1部分液压传动的工作原理动力装置:柴油机、汽油机、电动机传动装置:改变速度、方向、力矩工作装置:铲刀、挖掘斗、…动力装置---------传动装置----------工作装置一传动的分类与特点1.机械传动优点:古典、成熟、可靠、不易受负载影响缺点:笨重、体积大、自由度小、结构复杂、不好实现自动控制2.电气传动优点:远距离控制、无污染、信号传递迅速、易于实现自动化等缺点:体积重量偏大、惯性大、调速范围小、易受外界负载的影响,受环境影响较大;3.气体传动优点:结构简单、成本低,易实现无级变速;气体粕性小,阻力损失小,流速可以很高,能防火、防爆,可在高温下工作。
缺点:空气易压缩,负载对传动特性的影响较大,不宜在低温下工作,只适于小功率传动。
二液压传动的工作原理1.液压传动:以液体作为工作介质来实现能量的传递和转换。
机械能---液压能----机械能压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2容积相等:W1=W2 A1L1=A2L2 或: L1/L2=A2/A12.力比和速比等压特性:帕斯卡定律“平衡液体内某一点的液体压力等值地传递到液体内各处”等体积特性:假设液压缸1让出的液体体积等于液压缸2吸纳的体积。
2 液压传动可传递力:力比等于二活塞面积之比 液压传动可传递速度:速比等于二活塞面积之反比 v2/v1=A1/A2可写成: A1v1=A2v2=Q (流量)这在流体力学中称为液流连续性原理,它反映了物理学中质量守恒这一现实。
F1v1=F2v2=N=pQ (功率) 说明能量守恒。
综上所述,可归纳出液压传动的基本特征是: 以液体为传动介质,靠处于密闭容器内的液体静压力来传递动力,其静压力的大小取决于外负载;负载速度的传递是按液体容积变化相等的原则进行的,其速度大小取决于流量。
因此采用液压传动可达到传递动力,增力,改变速比等目的,并在不考虑损失的情况下保持功率不变。
三 液压传动的优点:(1)体积小、重量轻、惯性小、响应速度快 (2)能够实现无级调速,调速范围广 (3)可缓和冲击,运动平稳 (4)容易实现过载保护(5)液压元件有自我润滑作用,使用寿命较长 (6)容易实现自动控制 液压传动的缺点:(1)泄露问题(可通过工艺克服)(2)控制复杂一些:非线性因素多、难于精确建模 (3)能量经过两次转换,效率比其它两种传动方式低 (4)液压元件的制造和维护要求均较高四 液压技术的发展概况1650年帕斯卡提出了静止液体中的压力传播规律——帕斯卡原理,1686年牛顿揭示了粘性液体的内摩擦定律,18世纪流体力学的两个重要原理——连续性方程和伯努利能量方程相继建立,为液压技术的发展奠定了基础。
液压系统基础知识
1.5.2 液压油的性质
1.比重:比重越大,泵吸入性越差 矿物油系液压油,比重约0.85-0.95 w/o形比重约0.92-0.94, o/w型比重约1.05-1.1。。
2.闪火点 油温升高时,部分的油会蒸发而与空气混合成油气,
此油气所能点火的最低温度称为闪火点,如继续加热,则 会连续燃烧,此温度称为燃烧点。 3.粘度
系 高粘度指数 L-HR L-HL油加添加剂,改善粘温特性,VI值达175以上,适用于对粘
液 液压油
温特性有特殊要求的低压系统,如数控机床液压系统
压 液压导轨油 L-HG轨润滑,可作液压合用的系统
全损耗系统用 L-HH 浅度精制矿油,抗氧化性、抗泡沫性较差,主要用于机械润滑,
油
可用液压代用油,用于要求不高的低压系统
汽轮机油
L-TSA 深度精制矿油加添剂,改善抗氧化、抗泡沫等性能,为汽轮机专
用油,可作液压代用油,用于一般液压系统
1.5.1 液压油的种类
类型 名称
水包油 乳 乳化液 化 型 油包水
乳化液
ISO代号
L-HFA
L-HFB
特性和用途
又称高水基液,特点是难燃、粘温特性好,有一 定的防锈能力,润滑性差,易泄漏。适用于有抗 燃要求、油液用量大且泄漏严重的系统。
第二章 液压动力元件
液压泵是液压系统的动力元件,为系统 提供一定的流量和压力。液压泵由电动机带 动将液压油从油箱吸上来并以一定的压力输 送出去,使执行元件推动负载作功。
液压机培训教材
四、操作
1.起动发动机 (1)打开燃料控制杆。
在控制杆垂直向下的 时候燃料开始流动。
四、操作
1.起动发动机 (2)将操作杆置于开
始位置。 (3)打开化油器风门
杆。
四、操作
1.起动发动机 (4)把动力控制开关
打到“ON”位置。
四、操作
1.起动发动机 (5)用力拉启动器 (6)在发动机启动后,
风门一秒钟内自动调节发 动机转速。 (7)打开化油器风门杆。 (8)泵使用前要让发动 机低速(L)转动大约五 分钟以预热。 (9)如果泵在冬天或着 晚上气温比较低的环境下 操作,使用前要预热10分 钟。
四、操作
2.压接 (1)安装适合待压接
套筒的模具。 (2)把发动机操作杆
调到有线或无线控制 位置。
料。 4.添加油液必须用N32#抗磨液压油,绝不能用酒精、水、
甘油、刹车油等其它液体作为工作液加入。 5.使用时要根据标牌上的额定工作压力进行操作,不可以
随便使用最高输出压力。 6.在维修泵体时,柱塞副为偶件配合,不要随意调换。 7.经常使机具清洁,检查有无漏油现象。并注意油位,保
持在视油孔可见位置。 8.定期更换液压油,一般一年一次或一个工程一次。
四、操作
2.压接 (3)把开关打到
“AUTO”位置。 (4)把导线插入套筒
并检查模具是否安装 到位。来自四、操作2.压接 (5)按下控制开关上
的“UP”按钮。 (6)继续压接,压力
增加直至液压达到 700kgf/cm2 。
四、操作
2.压接 (7)如果活塞仍在前
进要让它退回,请按 “DOWN”按钮。活塞 退回,发动机自动减 速。 (8)如果开关在手动 位置,按下“UP”按钮 的时候活塞开始前进。
液压阀详解
YYF
为了避免这一不正常现象发生,采用液压锁,液控单 向阀2的控制油液由油缸下腔引入,此时下腔为低压, 阀2在上腔高压作用下紧紧关闭,保证无泄漏,支腿不 会缩回。当需要收回支腿时,换向阀左位接入,液压 泵的油液由A口经单向阀1进入油缸下腔,由这一油路 引出的控制油使阀2强制开启,油缸上腔得油反向流 过阀2经B口流回油箱,支腿收回。当换向阀右位接入 时,液压泵的油经B口和阀2通向油缸上腔,并与阀1 控制油道相通,使阀1强制打开,油缸下腔回油经阀1 反向流回油箱,支腿放下。
AB
图形符号 po
电磁换向阀由电气信号操纵,控制方便,在实现机 械自动化方面得到广泛应用,但由于受到磁铁吸力较 小的限制,其流量一般在63L/min以下,最大通流量 小于100L/min。
YYF
2、滑阀的中位机能(又称滑阀机能)
中位机能——根据不同的使用要求,使三位换向 阀处于中间位置时,其各油口间的各种不同连接方式 称“中位机能”或“滑阀机能” 。
见教材P87 表4-1 常用的有O、P、H、Y、M五种,必须掌握。
机能 4通符号 5通符号 O型 P型
Y型
或
H型
M型
性能特点
各油口全封闭,油缸两腔闭锁,油泵 不卸荷,可用于多个换向阀并联工作, 利用中位油缸停止,能保压。
压力油P与A、B通,O封闭,油泵与 油缸两腔相通,可组成差动回路,中 位停止,泵不卸荷,差动油缸不能停 止,换向平稳 。 P口封闭,A、B、O三口相通,油缸 浮动,油泵不卸荷,缸在外力作用下 可移动,中位停止,可用于差动油缸 停止,因有泄漏换向不平稳。
M型
双向锁紧,油泵卸荷。
H型
油缸浮动,泵卸荷。
P型
差动连接。
Y型
油缸浮动,系统保压。
液压系统课程设计图
液压系统课程设计图一、教学目标本节课的教学目标是让学生了解液压系统的基本原理、组成和应用,掌握液压系统的基本操作和维护方法。
具体目标如下:1.知识目标:–了解液压系统的定义、分类和特点;–掌握液压系统的基本原理及其在工作中的应用;–了解液压系统的组成部分及其功能;–掌握液压系统的基本操作和维护方法。
2.技能目标:–能够分析并解决液压系统的基本问题;–能够熟练操作液压设备,并进行简单的维护;–能够运用所学知识对液压系统进行优化设计。
3.情感态度价值观目标:–培养学生对液压技术的兴趣,提高学生学习的积极性;–培养学生团队协作、创新思维和实践能力;–使学生认识到液压技术在现代工业中的重要性,增强学生的责任感。
二、教学内容本节课的教学内容主要包括以下几个部分:1.液压系统的定义、分类和特点;2.液压系统的基本原理及其在工作中的应用;3.液压系统的组成部分及其功能;4.液压系统的基本操作和维护方法;5.液压技术在现代工业中的应用。
三、教学方法为了提高教学效果,本节课将采用以下教学方法:1.讲授法:教师通过讲解液压系统的原理、组成和操作方法,使学生掌握基本知识;2.案例分析法:教师通过分析实际案例,使学生了解液压技术在工程中的应用;3.实验法:学生动手操作液压设备,培养学生的实践能力;4.小组讨论法:学生分组讨论问题,培养学生的团队协作能力和创新思维。
四、教学资源为了支持教学内容的实施,本节课将准备以下教学资源:1.教材:液压系统基本原理及应用;2.参考书:液压系统设计与维护;3.多媒体资料:液压系统工作原理动画演示;4.实验设备:液压实验装置;5.工具:液压系统操作工具及维护工具。
通过以上教学资源的使用,为学生提供一个丰富、直观的学习环境,提高学生的学习兴趣和效果。
五、教学评估本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和积极性。
液压与气压传动电子教材 (2)
《液压与气压传动》教学大纲一、课程性质与任务1.课程性质:本课程是车辆工程专业的专业选修课。
2.课程任务:通过本课程的学习使学生了解和掌握液压传动技术的基本知识,典型液压元件的结构特点和工作原理;掌握液压基本回路的组成,典型液压传动系统的工作原理;液压传动系统的设计计算及其在工程实际中的应用等;通过实验课使学生对液压元件结构及液压传动系统有更深刻的认识,并掌握必要的实验技能和一定的分析和解决问题的实际能力。
二、课程教学基本要求通过对液压概念、液压元件和液压系统组成的介绍,让学生理解液压系统以及各组成元件的工作方式、工作原理、结构细节对性能的影响,最终达到自己设计液压系统的目的。
通过必要的理论学习和实验操作,使学生掌握基本的实验方法及实验技能,学习科学研究的方法,帮助学生学习和运用理论处理实际问题,验证消化和巩固基础理论;通过液压传动实验使学生初步具备液压元件、液压回路的调整和测试的综合能力;培养学生正确处理实验数据和分析实验结果的能力,运用所学的理论解决实际问题的能力,提高学生的综合素质。
使学生同时具备将抽象的液压原理用简洁的机构表达出来的能力。
教学中要坚持以学生为主体,教师为主导,充分调动学生学习的主动性和积极性,让学生主动参与教学全过程;课堂教学中要多采用模型、实物和现代教育技术,加强直观性教学,注意理论联系实际,重视培养学生的实际操作能力。
成绩考核形式:平时30%(作业、考勤、练习、实验),期末70%(考试)。
成绩评定采用百分制,60分为及格。
三、课程教学内容第一章绪论1.教学基本要求了解液压传动发展概述;理解压力、流量、速度的基本概念;掌握液压系统的工作原理、组成。
2.要求学生掌握的基本概念、理论通过本章教学使学生初步具有识别简单液压系统的技能,激起学生的学习热情和学习兴趣。
3.教学重点和难点教学重点是液压传动的工作原理,关于压力和流量的两个重要概念。
教学难点是液压系统的组成。
4.教学内容第一节液压与气压传动系统的工作原理1.液压与气压传动的工作原理2.液压与气压传动系统的组成3.液压与气压传动系统的职能符号第二节液压与气压传动的优缺点1.液压与气压传动的优点2.液压与气压传动的缺点第三节液压与气压传动的应用与发展1.液压与气压传动的应用2.液压与气压传动的发展第二章液压油与液压流体力学基础1.教学基本要求了解流体力学三个基本方程式:连续性方程、伯努利方程和动量方程的意义和计算;理解动力学基本概念:理想液体、恒定流动、迹线和流线等;掌握液体静力学基本方程及意义、压力、流量两个重要参数。
液压教材回路篇——方向控制回路
采用溢流阀的液压马达制动回路
在马达的回油路上串 联一溢流阀6。换向阀3 联一溢流阀 。换向阀 得电时, 得电时,马达由泵供油 旋转, 旋转,马达排油通过背 压阀4回油箱 回油箱, 压阀 回油箱,背压阀 ~ 调定压力一般为 0.3~
0.7MPa。 。
当电磁铁失电,切断马达回油,马达制动。 当电磁铁失电,切断马达回油,马达制动。由于惯性 负载作用,马达将继续旋转为泵工况,马达的最大出 负载作用,马达将继续旋转为泵工况, 口压力由溢流阀6 限定,即出口压力超过阀6 口压力由溢流阀6 限定,即出口压力超过阀6 的调定 压力时, 开启溢流,缓和管路中的液压冲击。 压力时,阀6开启溢流,缓和管路中的液压冲击。 泵在阀4 调定压力下低压卸载, 泵在阀4 调定压力下低压卸载,并在马达制动时实现 有压补油,不致吸空。溢流阀6 有压补油,不致吸空。溢流阀6 的调定压力一般等于 系统额定工作压力。溢流阀2 为系统安全阀。 系统额定工作压力。溢流阀2 为系统安全阀。
时间控制制动式 可以通过调节J 可以通过调节J1 、J2来控制工作 台的制动时间, 台的制动时间,以便减小换向冲 击或提高工作效率。 击或提高工作效率。主要用于工 作部件运动速度较大、 作部件运动速度较大、换向频率 换向精度要求不高的场合。 高、换向精度要求不高的场合。
行程控制制动式 工作台 预先制动到大致相同的低速后才开始 换向,换向精度高,冲出量较小, 换向,换向精度高,冲出量较小,易 用于工作部件运动速度不大但换向精 度要求较高的场合。 度要求较高的场合。
制动回路
功用 使液压执行元件平稳地由运动状态转换为静止 状态,制动快,冲击小, 状态,制动快,冲击小,制动过程中油路出现的异常 高压和负压能自动有效地被控制。 高压和负压能自动有效地被控制。
液压与气压传动 教材1
1 V p V
液体体积压缩系数的倒数被称为液体的体积弹性模量,简称体积模量, 用K表示。即:
V K p V
1
20/29
§1.5 液压与气压传动工作介质
液体的粘性和粘度
粘性指液体在外力作用下流动时,液体分子间 的内聚力(内摩擦力)阻碍其相对运动的性质,度 量单位称粘度。液体流动时相邻液层间的内摩擦 Ff 与液层接触面积 A 和液层间的速度梯度 du/dy 成正 比,即:
动力粘度 单位速度梯度上液层间单位面积上的内摩擦力;
du Ff A dy
τ
μ=
运动粘度
du / dy
单位:PaS
动力粘度与密度之比值,没有明确的物理意义,但是工 程实际中常用的物理量。 单位:m2/s
21/29
§1.5 液压与气压传动工作介质
液体的粘性和粘度
相对粘度 雷式粘度〞R——英国、欧洲 赛式粘度SSU——美国 恩式粘度oE——俄罗斯、德国、中国
16/29
§1.4 液压与气压传动图形符号
半结构式原理图
特点: 直观性强,容易理解 图形复杂,绘制麻烦
17/29
§1.4 液压与气压传动图形符号
职能式符号
职能 符号
职能符号:仅表示 元件的职能,不表 示结构和参数 特点:绘制方便
18/29
§1.4 液压与气压传动图形符号
简单的磨床工作台液压系统图
气力传动
6/29
§1.1 液压与气压传动系统的工作原理
液压与气动系统中能量转换和传递情况
7/29
§1.1 液压与气压传动系统的工作原理
液压传动系统的工作原理
◆分析结论
1、液压系统的压力是靠液压泵对液压油 的推动与负载对油的阻尼所产生。
液压传动综述
液压传动综述
办公地址:教材出版楼(9号楼)413 :(办公室)
Email:
液压与液力传动 (48学时)
液压传动 (22学时)
液力传动
实验
(20学时) (6学时)
第一章 概述
第二章 液压流体力学基础
第三章 液压动力元件-液压泵 液 第四章 液压执行元件-液压马达、液压缸 压
第五章 液压控制元件-液压阀 传 动 第六章 液压系统的辅助元件
➢第二次世界大战期间,液压传动技术得到了迅速发展,并在 战后转为民用
➢当代液压技术,一方面向高速、高压、大功率方面发展,另 一方面,与微电子、计算机技术结合,应用与控制领域…
、液压传动发展概况
路甬祥,中科院院长,流体传动及控制学家。在电液比 例控制新技术方面做出成绩。科研成果“电液比例新技 术”获1985年国家教委科学技术进步奖一等奖。 “二通插装式电液比例调速装置”等项目获联邦德国、 美国的专利发明。
挖掘机培训教材液压(川崎系统)
液压马达是液压系统中的执行元件,它通过将油液的压力能转化为机械能来驱动负载运动。
在液压马达中,油液经过叶片或活塞的挤压作用,将油液的压力能转化为旋转运动或直线运动的机械能。
液压马达的工作原理
油箱是液压系统中的油液储存和散热元件,它通常由金属板制成,内部装有隔板或滤网等,以实现油液的沉淀和过滤。
1
2
3
检查控制阀的安装是否正确,阀芯是否磨损,需要更换。
控制阀无法正常工作
检查控制阀的密封圈是否老化或损坏,需要更换。
控制阀泄漏
检查控制阀的润滑是否良好,需要添加润滑油。
控制阀噪音过大
控制阀常见故障及排除方法
03
液压马达噪音过大
检查液压马达的润滑是否良好,需要添加润滑油。
01
液压马达无法正常转动
挖掘机培统的工作原理 川崎液压系统的维护与保养 川崎液压系统常见故障及排除方法 挖掘机操作中的川崎液压系统应用
01
CHAPTER
川崎液压系统简介
川崎液压系统的特点
高效率
川崎液压系统采用先进的液压技术,具有高效率和低能耗的特点,能够提高挖掘机的作业效率和降低运营成本。
02
CHAPTER
川崎液压系统的工作原理
01
02
液压泵的工作原理
在液压泵中,油液经过叶片或活塞的挤压作用,将机械能转化为油液的压力能,从而实现油液的输出。
液压泵是液压系统的动力源,它通过机械能将油液从油箱中吸入,再通过压力将油液输出到系统中。
控制阀的工作原理
控制阀是液压系统中的控制元件,它通过改变油液的流向和流量来控制执行元件的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压原理图教材液压基础第1部分液压传原理动力装置:柴油机、汽油机、电动机传动装置:改变速度、方向、力矩工作装置:铲刀、挖掘斗、…动力装置---------传动装置----------工作装置一传动的分类与特点1(机械传动优点:古典、成熟、可靠、不易受负载影响缺点:笨重、体积大、自由度小、结构复杂、不好实现自动控制 2(电气传动优点:远距离控制、无污染、信号传递迅速、易于实现自动化等缺点:体积重量偏大、惯性大、调速范围小、易受外界负载的影响,受环境影响较大;3(气体传动优点:结构简单、成本低,易实现无级变速;气体粕性小,阻力损失小,流速可以很高,能防火、防爆,可在高温下工作。
缺点:空气易压缩,负载对传动特性的影响较大,不宜在低温下工作,只适于小功率传动。
二液压传动的工作原理1(液压传动:以液体作为工作介质来实现能量的传递和转换。
机械能---液压能----机械能v2 v1Fp1 p2 2A1 A2F1压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2 容积相等:W1=W2 A1L1=A2L2 或: L1/L2=A2/A1 2(力比和速比等压特性:帕斯卡定律“平衡液体内某一点的液体压力等值地传递到液体内各处”等体积特性:假设液压缸1让出的液体体积等于液压缸2吸纳的体积。
液压传动可传递力:力比等于二活塞面积之比液压传动可传递速度:速比等于二活塞面积之反比v2/v1=A1/A2可写成: A1v1=A2v2=Q(流量)这在流体力学中称为液流连续性原理,它反映了物理学中质量守恒这一现实。
F1v1=F2v2=N=pQ(功率)说明能量守恒。
综上所述,可归纳出液压传动的基本特征是:以液体为传动介质,靠处于密闭容器内的液体静压力来传递动力,其静压力的大小取决于外负载;负载速度的传递是按液体容积变化相等的原则进行的,其速度大小取决于流量。
因此采用液压传动可达到传递动力,增力,改变速比等目的,并在不考虑损失的情况下保持功率不变。
三液压传动的优点:(1)体积小、重量轻、惯性小、响应速度快(2)能够实现无级调速,调速范围广(3)可缓和冲击,运动平稳(4)容易实现过载保护(5)液压元件有自我润滑作用,使用寿命较长(6)容易实现自动控制液压传动的缺点:(1)泄露问题(可通过工艺克服)(2)控制复杂一些:非线性因素多、难于精确建模(3)能量经过两次转换,效率比其它两种传动方式低(4)液压元件的制造和维护要求均较高四液压技术的发展概况1650年帕斯卡提出了静止液体中的压力传播规律——帕斯卡原理,1686年牛顿揭示了粘性液体的内摩擦定律,18世纪流体力学的两个重要原理——连续性方程和伯努利能量方程相继建立,为液压技术的发展奠定了基础。
1795年英国制成世界上第一台水压机,液压传动开始进入工程领域, 1900年:德国科学家研制出第一台液压传动装置。
二次世界大战前后,液压传动在大型军事武器装备上得到广泛应用。
二战结束后,液压技术很快进入民用领域。
工程机械发展历程:1951年,法国波克兰——第一台全液压挖掘机日本:1966年:32%,1972年:72%我国:60年代引进,抚顺挖掘机厂,未成功,70年底:探索五液压传动系统的组成部分与图形符号 1、动力元件:将机械能转换成液压能,即液压泵。
2、执行元件:将液压能重新转换成机械能,克服负载,带动机器完成所需的运动,即油缸、马达。
3、控制元件:控制压力、流量及流动方向的装置,即各种阀类。
4、辅助元件:除上述装置以外的其它必不可少的装置,如:滤油器、油箱、管路及检测装置(压力表、温度计等)。
5、工作介质:即液压油。
六液压油1(密度:单位体积液体的质量称为该液体的密度2(可压缩性:液体受压力作用而发生体积减小的性质称为压缩性。
对于一般的液压系统可不考虑油的压缩性。
3(黏性:液体在外力作用下流动(或有流动趋势)时,分子间的内聚力阻止分子相对运动而产生的一种内摩擦力。
这种阻碍液体分子间相对运动的性质称为液体的黏性。
静止的液体是不会呈现黏性的。
液压油的黏性是用黏度来衡量的,它分为动力黏度、运动黏度、相对黏度三种。
液体的黏度随压力的增大而增大,但在的数值不大。
故在一般液压系统使用中一般忽略不计。
但黏度随温度的影响很大,随着温度的升高,黏度会下降。
这种关系称为液压油的黏—温特性,这种特性决定了液压油的使用场合。
在工作温度范围内闪点、燃点要高以满足防火要求。
凝固点和流动点要低以保证油液在较低的温度下正常工作。
没有腐蚀性,有良好的相容性。
液压系统的工作元件运动速度较高时宜选用黏度较小的液压油,以减小油液流动时的摩擦损失,运动速度较低时宜选用黏度较小的液压油。
工作压力较高时应选择黏度较大的液压油,以减少系统的泄漏。
工作压力较低时,宜选用黏度小些的液压油,以减少流动损失。
对于液压传动来说,在分析系统压力时,一般不考虑液体位置的高度对压力的影响。
4(帕斯卡原理在密闭的容器内的液体施加于静止液体上的压力将以等值同时传递到液体各点,这就是静压传递原理,俗称帕斯卡原理。
流量:单位时间内流过某通流截面的液体体积。
通用单位: m3/S、L/min 平均流速:由于流动液体黏性的作用,通流截面上的液体各点的流速不相等,因此计算比较困难,为方便起见,引入平均流速的概念。
即假设通流截面上各点的流速均匀分布,液体以此流速流过通流截面的流量等于以实际流速流过截面的流量。
当流量一定时,管子细的地方流速大。
当通流截面的面积一定时,流量越大流速也越大。
液体的流速越高,压力就越低。
在管道细处其截面积越小,流速越高,压力越低。
管道粗的地方其截面积越大,流速越小,压力较大。
七液压系统的流量和压力在液压系统中,由于某些原因使液体压力突然升高,形成很大的压力峰值现象被称为液压冲击。
系统中出现液压冲击时,压力可能比正常工作压力大好几倍,这样大的压力,会损坏系统的密封装置、管道、和液压元件,还会引起设备振动,产生哭声。
有时还会冲击液压元件(如:压力继电器、顺序阀等),产生误动作,影响系统的正常工作,甚至造成事故。
液压系统产生液压冲击的原因:1)流动液体突然停止运动。
例如:阀门突然关闭引起压力急剧升高产生液压冲击。
2)静止液体的突然流动和流动液体突然换向。
3)运动部件的突然制动和换向。
4)某些液压元件动作不灵敏。
防止和减少系统中的液压冲击的措施:1)减慢阀的关闭速度和延长运动部件的换向时间,使直接冲击变为间接冲击。
2)限制油液在管道中的流速,以减小油液的动能;减小系统中工作元件的运动速度以减小其惯性。
3)用橡胶软管代替金属管或在冲击源处安装蓄能器,以吸收液压冲击能量。
4)在易出现液压冲击的位置设置限压阀和设置缓冲装置。
绝大部分的压力损失将变成热能,造成系统温度升高,泄漏增大影响系统的工作性能,可采取以下措施减少管路系统的压力损失:1)尽可能缩短管道的长度,减少管道截面的突变和弯曲次数。
2)提高管道内壁的粗糙精度。
3)增大管路直径以增大通流面积,有效地降低流速。
4)选用适宜黏度的液压油。
液压系统还会产生泄漏,泄漏一般有内泄和外泄两种。
液压元件内部的高压腔与低压腔之间的泄漏称为内泄。
内部的油液漏到了外部称为外泄。
1、低压腔2、高压腔在流动的液体中,因某点处的压力低于空气分离压而形成 3、外泄漏4、内泄漏气泡的现象称为空穴现象,也称气穴现象。
出现气穴现象时管道中会出现大量气泡,破坏了液流的连续性,造成流量和压力脉动。
气泡如果随液流进入高压区后又急剧破灭,引起局部液压冲击并发出噪声和振动。
当附着在管壁等金属上的气泡破灭时,会产生局部高温和高压使金属剥蚀,造成液压元件的工作性能变坏,寿命缩短。
防止和减少空穴现象一般采取如下措施:1)减小阀口前后的压力差,一般使压力比为p1/p2,3.5。
2)正确设计管路,避免过多弯曲,急转和绕行,尽量保持平直。
3)提高系统各连接处的密封性能,严防空气侵入。
4)提高液压元件的抗蚀能力。
采用抗腐蚀能力强的材料,提高零件的机械强度和表面加工质量。
5)限制油压泵的吸油口处的真空度。
液压系统中活塞或液压缸运动速度等于液压缸内油液的平均流速,活塞或液压缸运动速度与活塞的有效作用面积和流入液压缸中的油液的流量有关,与油液的压力无关。
当活塞的有效作用面积一定时,活塞或液压缸的运动速度由流入液压缸中油液的流量决定。
因此在液压系统中执行元件的运动速度由进入执行元件油液的流量决定,改变流量就改变了运动速度。
在图A中如果负责为零,由液压泵输入油缸左腔的油液不受任何阻挡就能推动活塞向右运动,此时油液的压力为零。
活塞的运动是由于液压缸左腔内油液体积的增大而引起的。
图B中输入液压缸左腔的油液由于受到外界负载F的阻挡,不能立即推动活塞向左运动,而液压泵又在连续不断地供油,使液压缸左腔中的油液受到挤压,油液的压力从零开始由小到大升高,活塞有效作用面积A上承受的油液作用力也在增加从而推动活塞向右运动。
所以液压系统中油液的压力由负载决定。
且随负载大小的变化而变化。
液压传动中两个重要的原则:液体压力是由负载决定的;液体速度是由流量决定的。
第2部分液压元件及其基本参数与单元回路一液压泵和液压马达1、液压泵的主要性能参数:排量、流量和容积效率泵的排量qp:液压泵旋转一周所排出液体的体积。
单位为m3/r或ml/r。
泵的流量:泵在单位时间内排出液流的体积。
理论流量: QT=qp?np实际流量: Q=QT-ΔQ ,ΔQ:泵的泄露流量。
容积效率:泵的实际流量和理论流量之比。
即:,pv=Q/QT=(QT -ΔQ)/QT=1-ΔQ/QT 即:Q=QT?,pv 右图2-1是液压泵的工作原理图,当凸轮转动到直径最小端时封闭空间的容积变大形成真空,单向阀5被大气压推开,油箱中的油在大气压的作用下经管道进入容积增大的密封空间,这一过程称吸油,单向阀6则在负载和弹簧的压力下关闭。
当凸轮转动到直径最大端时右图2-2,密封容积逐渐减小,使密封腔中的油液受到挤压,压力升高。
当密封容积内的压力大于大气压时,单向阀7关闭,进油过程结束。
当密封腔内油液压力大于负载和弹簧时,单向阀6被推开,泵向系统供给压力油这一过程称压油。
由此可见油泵是靠密封工作腔的容积周期性的变化来工作的。
液压泵实现吸油、压油工作条件:1)具有密封容积。
2)密封容积的大小能周期变化,它吸进和输出的油液的多少由密封腔体积变化的大小频率决定。
3)要装备配流装置,它是泵能不断吸油、压油,即泵能连续工作的保证。
4)油箱必须与大气相通,这是吸油时打开进油路上单向阀的动力。
这种靠密封容积腔体积的周期性变化,实现吸油和压油的液压泵称为容积泵,目前,液压传动中的油泵一般都采用容积泵。
2、压力工作压力:指泵的输出压力,其数值决定于外负载。
额定压力:是指根据实验结果而推荐的可连续使用的最高压力,反映了泵的能力(一般为泵铭牌上所标的压力)。