新北师大版八年级数学第一章《勾股定理》单元测试卷
北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)
八年级数学上册第1章勾股定理单元检测试题班级:__________姓名:__________一、单选题(共10题;共30分)1.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,D. 5,12,22.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25B. 14,C. 7D. 7或253.已知a、b、c是三角形的三边长,如果满足(a-6)2+=0,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯最大升长为13m,则云梯可以达到该建筑物的最大高度是()A. 12mB. 13mC. 14mD. 15m5.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为()A. 60B. 30C. 24D. 126.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A. 1B. 2C. 3D. 47.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A. 4B.C.D.8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A. 12B. 14C. 16D. 189.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.10.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:2:3C. a2=c2﹣b2D. a:b:c=3:4:6二、填空题(共8题;共24分)11.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.12.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.13.一直角三角形的一条斜边和一直角边的长度分别是4和3,则它的另一直角边长是________.14.已知直角三角形的两边的长分别是3和4,则第三边长为________.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是________ .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________17.要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________ .18.如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有________米.三、解答题(共66分)19.已知:如图,在△ABC 中,∠C=90°,D 是BC 的中点,AB=10,A C=6.求AD 的长度.20.求如图的Rt△ABC的面积.21.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?23.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D 两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.24.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B 测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?25.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。
新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)
D C B A FE D C B A 新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)一、填空题(1. 如图,在长方形ABCD 中,已知BC=10cm ,AB=5cm ,则对角线BD= cm 。
2. 如图,在正方形ABCD 中,对角线为22,则正方形边长为 。
3. 把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的 。
4. 三角形中两边的平方差恰好等于第三边的平方,则这个三角形是 三角形。
5. 飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行 千米。
6. 在Rt △ABC 中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
7. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。
8. 如图所示,在矩形ABCD 中,AB=16,BC=8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么AF= 。
9. 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是 。
10. 如图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。
11. 一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后两船相距 海里。
12. 所谓的勾股数就是指使等式a 2+b 2=c 2成立的任何三个自然数。
我国清代数学家罗士林钻研出一种求勾股数的方法,即对于任意正整数m 、n (m >n ),取a=m 2-n 2,b=2mn ,c=m 2+n 2,则a 、b 、c 就是一组勾股数。
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)一、选择题(每题4分,共40分)1. 下列说法中,正确的是()A. 在任意三角形中,最长边的平方等于另外两边平方和B. 在直角三角形中,最长边的平方等于另外两边平方和C. 在直角三角形中,最长边的平方小于另外两边平方和D. 在直角三角形中,最长边的平方大于另外两边平方和答案:B2. 已知直角三角形两直角边长分别为6cm和8cm,那么它的斜边长是()A. 10cmB. 14cmC. 12cmD. 16cm答案:A3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB 的长度是()A. 5B. 6C. 7D. 8答案:A4. 下列三角形中,能构成直角三角形的是()A. 3, 4, 5B. 5, 6, 7C. 8, 9, 10D. 10, 11, 12答案:A5. 一个三角形的三边长分别是3cm、4cm和5cm,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B6. 下列关于勾股定理的说法,错误的是()A. 勾股定理的适用范围是直角三角形B. 勾股定理可以用来求直角三角形的斜边长C. 勾股定理可以用来判断一个三角形是否为直角三角形D. 勾股定理只适用于直角三角形的直角边答案:D7. 如果一个三角形的两边长分别为5cm和12cm,那么第三边的长度可能是()A. 13cmB. 14cmC. 15cmD. 16cm答案:A8. 在直角三角形中,如果最长边的长是10cm,那么另外两边长的可能取值是()A. 6cm和8cmB. 5cm和12cmC. 3cm和4cmD. 2cm和3cm答案:B9. 已知直角三角形的斜边长为10cm,其中一条直角边长为6cm,那么另一条直角边长为()A. 4cmB. 8cmC. 10cmD. 12cm答案:B10. 下列图形中,不能用勾股定理求解的是()A. 正方形B. 矩形C. 等腰三角形D. 直角三角形答案:C二、填空题(每题4分,共40分)11. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB=__________。
北师大版数学八年级上册第一章勾股定理单元测试卷(含答案)
八(上)第一章 勾股定理单元检测班级_______ 姓名_______ 分数________一、填空题(每题3分,共24分)1.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( )A.338B.24C.26D.303.若等腰△ABC 的腰长AB =2,顶角∠BAC =120°,以 BC 为边的正方形面积为( ) A.3 B.12 C.427 D.3164.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A.42 B.32 C.42 或32 D.37 或 335.直角三角形三条边的比是3∶4∶5.则这个三角形三条边上的高的比是( )A.15∶12∶8B. 15∶20∶12C. 12∶15∶20D.20∶15∶126.在△ABC 中,∠C =90°,BC =3,AC =4.以斜边AB 为直径作半圆,则这个半圆的面积等于( )A.258π B. 254π C. 2516πD.25π 7.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cmB.3 cmC.4 cmD.5 cm图1D 18cm图2B8.如图2,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cmB.30cmC.40cmD.50cm二、填空题(每小题3分,共24分)9.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是___.10.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为___.11.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA→AB→BC的路径再回到C点,需要___分的时间.12.如图3,一艘船由岛A正南30海里的B处向东以每小时20海里的速度航行2小时后到达C处.则AC间的距离是___.13.在△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,则这个距离是___.14.已知两条线段长分别为5cm、12cm,当第三条线段长为___时,这三条线段可以组成一个直角三角形,其面积是___.15.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;图3 列举:7、24、25,猜想:72=24+25;…………列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=___,c=___.16.已知:正方形的边长为1.(1)如图4(a ),可以计算出正方形的对角线长为2;如图(b),两个并排成的矩形的对角线的长为___;n个并排成的矩形的对角线的长为___.(2)若把(c)(d)两图拼成如图5“L”形,过C作直线交DE于A,交DF于B .若DB =53,则 DA 的长度为___.三、解答题(共58分)17.如图6,折叠长方形一边AD ,点D 落在BC 边的点F 处,BC =10cm ,AB =8cm ,求:(1)FC 的长;(2)EF 的长.18.为了丰富少年儿童的业余生活,某社区要在如图7所示AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB =25km ,CA =15km ,DB =10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?19.一艘渔船正以30海里/时的速度由西向东追赶渔群,在A 处看见小岛C 在船北偏东 60°.40分钟后,渔船行至 B 处,此时看见小岛 C 在船的北偏东30°,已知小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续航行(追赶鱼群),是否有进入危险区的可能?图5EF BCAD图4(a ) (b ) (c ) (d )图6图7E DCBA20.在Rt△ABC中,AC=BC,∠C=90°,P、Q在AB上,且∠PCQ=45°试猜想分别以线段AP、BQ、PQ为边能组成一个三角形吗?若能试判断这个三角形的形状.21.如图8,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:图8①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.参考答案一、1.A 2.D 3.B 4.C 5.D.提示:由三角形面积公式,可得12·AB ·CD =12·BC ·AC .设BC =3k ,AC =4k ,AB =5k ,则5k ·CD =2k ·4k .所以CD =135k .所以AC ∶BC ∶CD =4k ∶3k ∶125k =20∶15∶12;6.A.提示:在Rt △ABC 中,由勾股定理可以得到AB 2=42+32=25,所以AB =5.所以半圆的面积S =12π252⎛⎫ ⎪⎝⎭=258π;7.B 8.B.二、9.108 10.13 11.12 12.由勾股定理,可以得到AB 2+BC 2=AC 2,因为AB=30,BC =20×2=40,所以302+202=AC 2,所以AC =50,即AC 间的距离为50海里;13.314.13cm ,30cm 2或522 15.84、85 16、52. 三、17.(1)在Rt △ABC 中,由勾股定理可以得到AF 2=AB 2+BF 2,也就是 102=82+BF 2.所以BF =6,FC =4(cm) (2)在Rt △ABC 中,由勾股定理,可以得到EF 2=FC 2+(8-EF )2.也就是EF 2=42+(8-EF )2.所以EF =5(cm)18.10米;19.设小岛C 与AB 的垂直距离为a ,则易求得a 2=300>102,所以这艘渔船继续航行不会进入危险区;20.能组成一个三角形,且是一个以PQ 为斜边的直角三角形.理由是:可将△CBQ 绕点C 顺时针旋转90°,则CB 与CA 重合,Q 点变换到Q ′点,此时,AQ ′=BQ ,△APQ ′是直角三角形,即AP 2+AQ ′2=PQ ′2,另一方面,可证得△CPQ ′≌△CPQ (SAS ),于是,PQ ′=PQ ,则AP 2+BQ 2=PQ 2.21.①能.设AP =x 米,由于BP 2=16+x 2,CP 2=16+(10-x )2,而在Rt △PBC 中,有BP 2+ CP 2=BC 2,即16+x 2+16+(10-x )2=100,所以x 2-10x +16=0,即(x -5)2=9,所以x -5=±3,所以x =8,x =2,即AP =8或2,②能.仿照①可求得AP =4.第一章勾股定理单元检测题班级_____ 姓名_____ 分数_____一、选择题(每小题3分,共30分)1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍 3.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3则△ABC 为直角三角形 C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形 D .在△ABC 中,若a ∶b ∶c =2∶2∶4,则△ABC 为直角三角形4.四组数:①9,12,15;②7,24,25;③32,42,52;④3a ,4a ,5a (a >0)中,可以构成直角三角形的边长的有( )A .4组B .3组C .2组D .1组5.三个正方形的面积如图1,正方形A 的面积为( ) A . 6 B . 36 C . 64 D . 86.一块木板如图2所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A .60B .30C .24D .127.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( ) A .6cm B .8.5cm C .1330cm D .1360cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm10.在△ABC 中,∠ACB =90°,AC =40,CB =9,M 、N 在AB 上且AM =AC ,BN =BC ,则MN 的长为( )A .6B .7C .8D .9 二、填空题(每小题3分,共30分)A DBC图211.在△ABC中,∠C=90°,若a=5,b=12,则c=___.12.在△ABC中,∠C=90°,若c=10,a∶b=3∶4,则ab=.13.等腰△ABC的面积为12cm2,底上的高AD=3cm,则它的周长为___.14.等边△ABC的高为3cm,以AB为边的正方形面积为___.15.直角三角形三边是连续整数,则这三角形的各边分别为___.16.在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2=___.17.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.18.一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶___m.19.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___.20.在Rt△ABC中,∠C=90°,中线BE=13,另一条中线AD2=331,则AB=___.三、解答题(每小题8分,共40分)21.某车间的人字形屋架为等腰△ABC,跨度AB=24m,上弦AC=13m.求中柱CD (D为底AB的中点).22.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.23.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.图3OB′图4BAA′24.如图4所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离为3m,同时梯子的顶端B下降到B′,那么BB′也等于1m吗?25.在△ABC中,三条边的长分别为a,b,c,a=n2-1,b=2n,c=n2+1(n>1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?与同伴一起研究.参考答案:A卷:一、1.B2.B3.D4.B5.B6.C7.D8.B9.C10.C二、11.1312.4813.1814.1215.3、4、516.817.518.1319.2400 20.20三、21.5米22.设门高为x尺,则竹杆长为(x+1)尺,依题意由勾股定理,得x2+42=(x+1)2,解得x=7.5,所以门高为7.5尺,则竹杆长为8.5尺.23.设旗杆在离底部x m位置断裂,则根据题意,得(x+1)2-x2=64,解得x=6,即旗杆在离底部6m位置断裂.cb a cba ED CBACABcb a24.在Rt △ABO 中,梯子AB 2=AO 2+BO 2=22+72=53.在Rt △A ′B ′O 中,梯子A ′B ′2=53=A ′O 2+B ′O 2=32+B ′O 2,所以,B ′O>2×3=6.所以BB ′=OB -OB ′<1.25.因为a 2=n 4-2n 2+1,b 2=4n ,c 2=n 4+2n 2+1,a 2+b 2=c 2,所以△ABC 是直角三角形,∠C 为直角.北师大版八年级数学上册第一章 勾股定理 提高培优讲义:勾股定理、逆定理及应用 基础知识梳理模块一:勾股定理及证明 1.勾股定理:如果直角三角形的两直角边分别是a ,b ,斜边为c ,那么222a b c +=. 即直角三角形中两直角边的平方和等于斜边的平方. 注:勾——较短的边、股——较长的直角边、弦——斜边. 2.勾股定理的证明: (1)弦图证明DC BAGF E H内弦图 外弦图221()42ABCD S a b c ab =-=+⨯正方形 221()42EFGH S c a b ab ==-+⨯正方形∴222a b c += ∴222a b c += (2)“总统”法(半弦图)如图所示将两个直角三角形拼成直角梯形:2()()112222ABCD a b a b S ab c +-==⨯+梯形∴222a b c += 3.勾股数:满足222a b c +=的三个正整数,称为勾股数.(1)3、4、5;6、8、10;9、12、15;12、16、20;15、20、25等.(2)(,,)a b c 是组勾股数,则(,,)ka kb kc (k 为正整数)也是一组勾股数. (3)3、4、5;5、12、13;7、24、25;9、40、41;11、60、61等 (4)21a n =+,222b n n =+,2221c n n =++(n 为大于1的自然数) (5)22a m n =-,2b mn =,22c m n =+(m n >,且m 和n 均为正整数) 模块二:勾股定理逆定理及应用 1.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么前两边的夹角一定是直角.即在ABC △中,如果222AC BC AC +=,那么ABC △是直角三角形.2.勾股定理的常见题型. 模块三:例题精讲(1)勾股证明的方法成百上千种,其中《几何原本》中的证法非常经典,是在一个我们非常熟悉的几何图形中实现的(如图所示),如果直角三角形ABC 的三边长为a ,b ,c (c 为斜边),以这三边向外作三个正方形,试利用此图证明222a b c +=.cbaNMHFE DCBAABCEFHMNP(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为__________.【解析】(1)如上图可知:ACF ADB △△≌,2ACED ADB S S =正方形△,2AFGP ACF S S =矩形△,∴2AFGP b S =矩形,同理2GHBP a S =矩形,∴222a b c +=. (2)49cm 2.(1)若把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ). A .1倍 B .2倍 C .3倍 D .4倍(2)若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为________.(3)下面几组数:①7,8,9;②12,9,15;③22m n +,22m n -,2mn (m ,n 均为正整数,m n >);④2a ,21a +,22a +.其中能组成直角三角形的三边长的是( ).A .①②B .②③C .①③D .③④【解析】(1)B ;(2)可知三边为3,4,5,所以周长为12; (3)B ;容易知道①错误②正确,对于③,由2224224()2m n m m n n -=-+,222(2)4mn m n =,2224224()2m n m m n n +=++所以2222422422222()(2)(2)4()m n mn m m n n m n m n -+=-++=+. 所以,以这三条线段的长为边的三角形是直角三角形.答案选B .ABC △中,BC a =,AC b =,AB c =.若90C ∠=︒,如图3-1,根据勾股定理,则222a b c +=.若ABC △不是直角三角形,如图3-2,90C ∠<︒;如图3-3,90C ∠<︒.请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1a b c a b c cb a A BCA B C C B Aa bca bcA ABC C Ba bcABC B图3-1 图3-2 图3-3【解析】图2猜想:222a b c +>.证明:过点A 作AD BC ⊥于D ,设CD x =,222AD b x =-, 22222222()()2c a x b x a ax x b x =-+-=-++-, 即22220a b c ax +-=>,故222a b c +>. 图3猜想:222a b c +<.证明:过B 作BD AC ⊥,交AC 的延长线于D . 设CD 为x ,则有222BD a x =-.根据勾股定理,得2222()b x a x c ++-=. 即2222a b bx c ++=,∵0b >,0x >,∴20bx >,∴222a b c +<.(1)如果直角三角形的两边长为4、5,则第三边长为________.(2)如果直角三角形的三边长为10、6、x ,则最短边上的高为________.(3)若|1|0a b --=,则以a 、b 为边的直角三角形的第三边为________.在ABC △中,15AB =,13AC =,高12AD =,则三角形的周长是_________.【解析】32或42.DabcACBDa bcABC【提示】题型:已知三角形的两边及第三边高求第三边,B 卷填空必考题,一般题目无图,为易错题,切记要分类讨论,分形内高和形外高.(1)如图6-1,四边形ABCD 中,AB BC ⊥,1AB =,2BC =,2CD =,3AD =,求四边形ABCD 的面积.(2)如图6-2,在四边形ABDC 中,BD CD ⊥,6BD =,8CD =,24AB =,26AC =,求该四边形面积.ABC DDCB A图6-1 图6-2(2)96.四边形ABDC 的面积为96. 连接BC ,根据勾股定理可得10BC =,因为222BC AB AC +=,所以ABC △为直角三角形,故四边形ABDC 的面积1202496ABC BCD S S S =-=-=△△.(1)如图,梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 位置,BD 长0.5米,则梯子顶端A 下落了________米.(2)梯子靠在墙上,梯子的底端A 到墙根O 的距离2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端向外移动到C ,使梯子底端C 到墙根O 的距离等于3米,同时梯子的顶端B 下降至D ,那么BD ( )A .等于1米B .大于1米C .小于1米D .以上结果都不对(3)如图,梯子AB 斜靠在墙面上,AC BC ⊥,AC BC =,当梯子的顶端A 沿AC 方向下滑x 米时,梯子B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y >C .x y <D .不确定【解析】(1)0.5;(2)C ;(3)选B ,设AC BC a==米,化简得222()0a x y x y -=+>,x y >.EAB CD(1)若直角三角形斜边长为4,周长为432+,则三角形面积等于________.(2)如图,ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,若455AD =,25BC =,请求出ABC △的周长.【解析】(1)12; (2)222(25)45255AB AC AB AC ⎧+=⎪⎨⨯=⨯⎪⎩,解得6AB BC +=,625ABC C =+△.(1)已知9-1,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果8cm AB =,10cm BC =,求EC 的长.(2)如图9-2,已知矩形ABCD 沿着直线BD 折叠,使点C 落在'C 处,'BC 交AD 于E ,16AD =,8AB =,则DE 的长度为________.(3)如图9-3,矩形纸片ABCD 的长9cm AD =,宽3cm AB =,沿EF 将其折叠,使点D 与点B 重合,则折痕EF 的长为________cm .EDC'C BA图9-1 图9-2 图9-3【解析】(1)由题意得,10cm AF AD ==.在ABF △中,应用勾股定理得,6cm BF =. 所以1064FC BC BF cm =-=-=.在CEF △中,应用勾股定理,设cm EC x =, 得222(8)4x x -=+.解得3x =,即3cm EC =. (2)设ED x =,因为CBD EBD EDB ∠=∠=∠, 则EB ED x ==,16AE AD ED x =-=-, 在Rt E AB △中,由勾股定理可得:222(16)8x x +=-,∴10x =,即10DE =.(3)设AE x =,因为BEF DEF BFE ∠=∠=∠, 则9BE DE B x F ===-,根据勾股定理得:222AB AE BE +=,即222239(9)x x x +=+=-,解得:4x =;∴4AE =,∴5DE BF ==,∴4CF DM ==,∴1EM =,根据勾股定理得:EF ==;若0x >,0y >且12x y +=【解析】如下图,不妨设12AB =,AC AB ⊥,BD AB ⊥,2AC =,3BD =,y 2+9x 2+432y xPDC B AD CA P为线段AB 上的动点,AP x =,于是PB y =,PC,PD 问题转化为求点C ,D 之间距离的最小值.当P ,C ,D 三点不共线时,有PC PDCD +>;当P ,C ,D 共线时,PC PD CD +=. 于是点C ,D 13.【教提示】数形结合,几何构造,将军饮马.模块四:课后作业设计1、如图1-1,分别以直角三角形A 、B、C 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,则不难证明123S S S =+.) (1)如图1-2,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,那么1S 、2S 、3S 之间有什么关系?(不必证明)(2)如图1-3,分别以直角三角形A 、B 、C 三边为边向外作三个正三角形,其面积分别用1S 、2S 、S 表示,请你确定S 、S 、S 之间的关系并加以证明.B C S 1S 2图图图1A B C S 1S 3S 2图图2A BCS 1S 3S 2图3图1-1图1-2图1-3【解析】(1)设BC 、CA 、AB 长分别为a 、b 、c ,则222c a b =+,123S S S =+;(2)123S S S =+.证明如下:显然,21S =,22S =,23S ,AB D C∴22223133()44S S a b c S +=+==. 【点评】分别以直角三角形ABC 三边为一边向外作“相似形”,其面积对应用1S 、2S 、3S 表示,则123S S S =+(设斜边所做图形面积为1S ).2、已知a ,b ,c 是三角形的三边长,222a n n =+,21b n =+,2221c n n =++(n 为大于1的自然数),试说明ABC △为直角三角形.【解析】因为222212221n n n n n ++>+>+,222222(221)(22)441(21)n n n n n n n ++-+=++=+.所以22222(21)(22)(221)n n n n n +++=++,所以ABC △为直角三角形.3、如图,四边形ABCD 中,6cm AB =,8cm BC =,24cm CD =,26cm DA =,且90ABC ∠=︒,则四边形ABCD 的面积是( )cm 2.A .336B .144C .102D .无法确定【解析】答案:B .连接AC ,运用勾股定理逆定理.4、如图,一根长5米的竹篙AB 斜靠在与地面垂直的墙上,顶端A 距离墙根4米,若竹篙顶端A 下滑1米,则底端B 向外滑行了多少米?【解析】设竹篙顶端下滑1米到1A 点,底端向外滑行到1B 点.由题意得AA 1=1m ,113m AC AC AA =-=, 在11Rt ACB △中:2211114m B C A B AC -, 在Rt ABC △中:223m BC AB AC =-=, 111BB B C BC m =-=,即竹篙顶端A 下滑1米,则底端B 向外滑行了1米.5、(1)(在ABC △中15AB =,13AC =,高12AD =,则ABC S =△_______.(2)如图,ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,若3AD =,23BC =ABC △的周长为________.【解析】(1)24或84(分类讨论:行外高和行内高,对应例5)ABC(2)423+.(对应例8考查直角三角形与知二推二综合).6、(1)如图6-1,已知ABC △是直角边长为1的等腰直角三角形,以Rt ABC △的斜边AC 为直角边,画第二个等腰Rt ACD △,再以Rt ACD △的斜边AD 为直角边,画第三个等腰Rt ADE △,……,依此类推,第n 个等腰直角三角形的斜边长是________.(2)如图6-2,矩形ABCD 中,5cm AB =,3cm BC =,如图所示折叠矩形纸片ABCD ,使D 点落在边AB 上一点E 处,折痕端点G 、F 分别在边AD 、DC 上,则当折痕端点F 恰好与C 点重合时,AE 的长为________cm .GFED CB A图6-1 图6-2(3)若0x >,0y >且15x y +=2264144x y ++________.【解析】(1)由题意可得:第1个等腰直角三角形,ABC △中,斜边长1AB BC ==,22112AC+==; 第2个等腰直角三角形,ACD △中,斜边长2222(2)AD AC CD =+==; 第3个等腰直角三角形,ADE △中,斜边长22322(2)AE AD DE =+=; 依此类推,……第n 个等腰直角三角形中,斜边长为(2)n . (2)F 点与C 点重合时(如图),∵在矩形ABCD 中,5AB =,3BC =, ∴5CD AB ==,90B ∠=︒,由折叠的性质可得:5CE CD ==, ∴224CE BE BC -=, ∴1AE AB BE =-=.(3)答案:25(对应例题10,几何构造).北师大版八年级数学上册 第一章 勾股定理 章末培优卷一、选择题:(共30分)1、一个圆柱形铁桶的底面半径为12cm ,高为32cm ,则桶内所能容下的木棒最长为( )A .20cmB .50cmC .40cmD .45cm2、已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为A. 4B. 16C.D. 4或3、如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的平方为( )A 2524 B. 8 C. 25196 D.5 4、如图,一棵大树被大风刮断后,折断处离地面8m ,树的顶端离树根6m ,则这棵树在折断之前的高度是( ) A.18mB .10mC .14mD .24m5、如图,在4×4方格中作以AB 为一边的Rt △ABC ,要求点C 也在格点上,这样的Rt △ABC 能作出( ) A .2个 B .3个 C .4个D .6个二、填空题(共24分)11、ABC ∆的三边长c b a ,,满足:03018)602(2=-+-+-+c b b a ,则ABC ∆是 三角形;12、如图,在平行四边形A BCD 中,C A ⊥A B ,若A B=3,BC=5,则平行四边形A BCD 的面积为 。
北师大版八年级上册数学《勾股定理》单元测试卷含答案
第一章《勾股定理》单元测试卷班别:姓名:__________一、选择题(本题共10小题,每小题3分,满分30分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5B.7C.5或7D.5或63.如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个7.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形8.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45°D.60°9.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .3cm 2B .4cm 2C .6cm 2 D.12cm 210.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港 口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .35海里D . 40海里二、填空题(本题共8小题,每小题3分,满分24分)11.一个三角形三边长度之比为1∶2∶3 ,则这个三角形的最大角为_______度.12.如图,等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 .13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为 m .14.小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走到B 点时,当两人相距为15米,则小红向东走了 米.15.一个三角形三边满足22()2a b c ab +-=,则这个三角形是 三角形.16.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这个桌面 (填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.三、解答题(共46分)19.在RtΔABC中,∠A CB=90°,AB=5,AC=3,CD⊥AB于D,求CD的长.21.(7分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC 的值.22.(8分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河23.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10小题,每小题3分,满分30分)1. C .2. C .3. D .4. C .5. D .6. A .7. D .8. C .9. C .10. D .二、填空题(共8小题,每小题3分,满分24分)11. 900 . 12. 10 . 13. 480 m . 14. 12 米.15. 直角 . 16. 合格 . 17. 30 cm 2. 18. 25 .三、解答题(共46分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC 2 = AB 2 -AC 2 =42,∴BC=4,∵CD ⊥AB ,∴21AB·CD=21AC·BC,∴5CD=12,∴CD=512. .21.解:∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD 2=AB 2﹣BD 2=5∵DC=1,∴AC 2=AD 2+DC 2=5+1=6.∴AC= 22.解:设矩形的长是a ,宽是b ,根据题意,得:, (2)+(1)×2,得(a+b )2=196,即a+b=14,所以矩形的周长是14×2=28m .23. 如图,作出A点关于MN的对称点A′,则A′A=8 km,连接A′B交MN 于点P,则A′B就是最短路线.在Rt△A′DB中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17km24.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,。
第一章 勾股定理 单元测试卷(解析版)
初中数学北师大版八年级上学期第一章测试卷一、单选题1.长度分别如下的四组线段中,可以构成直角三角形的是()A. 1.5,2,2.5B. 4,5,6C. 1,,3D. 2,3,42.由下列条件不能判定△ABC为直角三角形的是( )A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:3:2C. (b+c)(b-c)=a2D. a=3+k,b=4+k,c=5+k(k>0)3.如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )A. 4B. 15C. 16D. 184.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B.C. D.5.如图,一只蚂蚁沿棱长为的正方体表面从顶点爬到顶点,则它走过的最短路程为().A. B.C. D.6.如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG的面积和为()A. 16B. 32C. 160D. 256二、填空题7.在△ABC中,∠C=90°,若b=7;c=9,则a=________,8.在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是________。
9.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有________cm.10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为________.11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了________ cm.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,……按照此规律继续下去,则S2019的值为________.三、解答题13.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线L上一动点,请你探索当C离B 多远时,△ACD是一个以CD为斜边的直角三角形?14.如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,15.由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图,其树恰好落在另一棵树乙的根部C处,已知AB=1米,BC=5米,已知两棵树的水平距离为3米,请计算出这棵树原来的高度(结果保留根号)答案解析部分一、单选题1. A解析:A、∵1.52+22=2.25+4=6.25=2.52,可以构成直角三角形,符合题意;B、42+52=41>36=62, 可以构成锐角三角形,不符合题意;C、12+2=3<32=9, 可以构成钝角三角形,不符合题意;D、22+32=13<42=16,可以构成钝角三角形,不符合题意;故答案为:A.【分析】根据勾股定理判断,如果最大边的平方等于较小两边的平方和就是直角三角形。
北师大版八年级数学上册第一章《勾股定理》单元测试卷
C.a2+c2=b2
D.c2-a2=b2
2A..在5Rt△ABC 中,∠C=9B0.°,6A0B=13,AC=12,C则.△45ABC 的面积为(
) D. 30
3.下列各组数据分别为三角形的三边长,不能组成直角三角形的是( )
A.9,12,15
B.7,24,25
C.6,8,10
D.3,5,7
4.已知直角三角形中 30°角所对的直角边的长是 2 3 cm,则另一条直角边的长是( )
a=m(m为偶数且m 4),则
另一条直角边b=(
m 2
)2
−1,弦c=(
m 2
)2
+
1
12分(各2分)
25.(1)设OA=x,则OB=OA=x
在 AOB中,
BOA = 90
OB2 + OA2 = AB2
1分
又 AB = 4 2
x2 + x2 = (4 2)2
2分
x =4
3分
A、B两点分别在x、y轴的正半轴上
易得△CDE 是等腰直角三角形,所以 DE=CE= 3 xcm,则 CD= 6 xcm…………………………4 分
∴AD=AE+CE= 6 x+ 3 x=4…………………………………………………………………………5 分
解得 x= 4 ……………………………………………………………………………………7 分 6+ 3
则 BD 的长为( )
A.3.2
B.4
C.4.8
D.5
10.如图,在 2×2 的正方形网格中,每个小正方形边长为 1,点 A,B,C 均为格点,以点 A 为圆心,
AB 长为半径作弧,交格线于点 D,则 CD 的长为( )
第一章 勾股定理单元测试卷(含答案与解析)
【新北师大版八年级数学(上)单元测试卷】第一章《勾股定理》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是()A.100 B.28 C.14 D.28或1002.下列说法不能得到直角三角形的()A.三个角度之比为1:2:3的三角形 B.三个边长之比为3:4:5的三角形C.三个边长之比为8:16:17的三角形 D.三个角度之比为1:1:2的三角形3.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25 C.斜边长为25 D.三角形的面积为204.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形5.若线段a,b,c组成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.4:6:7 D.7:24:256.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B.800米 C.1000米 D.不能确定7.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm8.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()A.18 B.9 C.6 D.无法计算9.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()A.a2+b2=c2 B.a2+c2=b2 C.b2+c2=a2 D.以上关系都有可能10.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.5111.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米 C.12米 D.14米12.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定二、填空题:(每小题3分,共12分)13.如图(1)、(2)中,(1)正方形A的面积为.(2)斜边x= .14.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.15.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC= .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .三.解答题:(共52分)17.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;18.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,NC= m,BN=m,AC=4.5m,MC=6m,求MA的长.19.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.21.有一只蚂蚁要从一个圆柱形玻璃杯的点A爬到与A相对的点B处,如图,已知杯子高8cm,点B 距杯口3cm,杯子底面半径为4cm.蚂蚁从A点爬到B点的最短距离为多少?(π取3)22.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.23.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.含答案与解析一.选择题:(每小题3分,共36分)1.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是()A.100 B.28 C.14 D.28或100【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解即可.【解答】解:(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2,解得:x2=100;(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x2=28.故选:D.2.下列说法不能得到直角三角形的()A.三个角度之比为1:2:3的三角形B.三个边长之比为3:4:5的三角形C.三个边长之比为8:16:17的三角形D.三个角度之比为1:1:2的三角形【分析】A、根据角的比值求出各角的度数,便可判断出三角形的形状;B、根据比值并结合勾股定理的逆定理即可判断出三角形的形状;C、根据比值并结合勾股定理的逆定理即可判断出三角形的形状;D、根据角的比值求出各角的度数,便可判断出三角形的形状.【解答】解:A、最大角=180°×=90°,故为直角三角形;B、32+42=52,故为直角三角形;C、82+162≠172,故不为直角三角形;D、最大角=180°×=90°,故为直角三角形.故选:C.3.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25【分析】利用勾股定理求出后直接选取答案.【解答】解:两直角边长分别为3和4,∴斜边==5;故选A.4.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.5.若线段a,b,c组成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.4:6:7 D.7:24:25【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、因为22+32≠42,所以不能组成直角三角形,故选项错误;B、因为32+42≠62,所以不能组成直角三角形,故选项错误;C、因为42+62≠72,所以不能组成直角三角形,故选项错误;D、因为72+242=252,所以能组成直角三角形,故选项正确;故选D.6.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.不能确定【分析】两人的方向分别是东南方向和西南方向,因而两人的家所在点与学校的连线正好互相垂直,OA=40×20=800m.OB=40×15=600m.在直角△OAB中,AB=1000米.故选C.7.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm【分析】设此直角三角形的斜边是c,根据勾股定理及已知不难求得斜边的长.【解答】解:设此直角三角形的斜边是c,根据勾股定理知,两条直角边的平方和等于斜边的平方.所以三边的平方和即2c2=1800,c=±30(负值舍去),取c=30.故选B.8.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()A.18 B.9 C.6 D.无法计算【分析】利用勾股定理将AB2+AC2转化为BC2,再求值.【解答】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×32=18.故选A.9.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上关系都有可能【分析】根据勾股定理,分∠C是直角,∠B是直角,∠A是直角,三种情况讨论可得a,b,c之间的关系.【解答】解:在Rt△ABC中,a,b,c为△ABC三边长,∠C是直角,则有a2+b2=c2;∠A是直角,则有b2+c2=a2.故选:D.10.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.51【分析】根据勾股定理先求出直角边的长度,再根据长方形的面积公式求出带阴影的矩形面积.【解答】解:∵ =15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.11.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B.12.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定【分析】先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.【解答】解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.二、填空题:(每小题3分,共12分)13.如图(1)、(2)中,(1)正方形A的面积为.(2)斜边x= .【分析】(1)由勾股定理可求出正方形A的边长的平方,而正方形的面积=边长×边长,正好为所求出的值.(2)由勾股定理可得:斜边的平方=两直角边的平方和,将两直角边代入即可求出x的值.【解答】解:(1)设A的边长为a,如图(1)所示:在该直角三角形中,由勾股定理可得:所以正方形A的面积为a2=36.(2)如图(2)所示:在该直角三角形中,由勾股定理可得:x2=52+122,所以,斜边x=13.14.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.【分析】要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm可以满足要求,其中5cm、12cm为直角边,13cm为斜边.【解答】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.15.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC= 24 .【分析】直接利用勾股定理结合已知得出关于b的等式,进而求出答案.【解答】解:∵a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,∴a=14﹣b,则(14﹣b)2+b2=c2,故(14﹣b)2+b2=102,解得:b1=6,b2=8,则a1=8,a2=6,即S△ABC=ab=×6×8=24.故答案为:24.16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题:(共52分)17.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?【分析】(1)在Rt△ABD和Rt△ACD中,先根据勾股定理求出AB和AC的长,继而即可求出△ABC 的周长;(2)根据勾股定理的逆定理,看△ABC的三边是否符合勾股定理,即可判断出△ABC是否是直角三角形.【解答】解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,∴AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.18.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,NC= m,BN=m,AC=4.5m,MC=6m,求MA的长.【分析】先根据勾股定理的逆定理判断出△BCN的形状,再由勾股定理即可得出结论.【解答】解:∵BC=1m,NC= m,BN=m,∴BC2=1,NC2=,BN2=,∴BC2+NC2=BN2,∴AC⊥MC.在Rt△ACM中,∵AC=4.5m,MC=6m,MA2=AC2+CM2=56.25,∴MA=7.5 m.19.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.20.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.【分析】证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,化简整理得到勾股定理.【解答】解:由图可得:正方形ACFD的面积=四边形ABFE的面积=Rt△BAE和Rt△BFE的面积之和,即S正方形ACFD=S△BAE+S△BFE,∴b2=c2+,整理得:a2+b2=c2.21.有一只蚂蚁要从一个圆柱形玻璃杯的点A爬到与A相对的点B处,如图,已知杯子高8cm,点B 距杯口3cm,杯子底面半径为4cm.蚂蚁从A点爬到B点的最短距离为多少?(π取3)【分析】从点A处竖直向上剪开,此圆柱体的侧面展开图如图,其中AC为圆柱体的底面周长,再由勾股定理进行解答即可.【解答】解:从点A处竖直向上剪开,此圆柱体的侧面展开图如图,其中AC为圆柱体的底面周长,则AC=2πr≈2×3×4=24(cm),则E′B=E′D′=AC=×24=12(cm).又∵EA=8cm,EE′=3cm,∴AE′=EA﹣EE′=8﹣3=5(cm).在Rt△ABE′中,AB2=AE′2+E′B2=52+122=132,∴AB=13(cm),∵两点之间,线段最短,∴蚂蚁从A点爬到B点的最短距离为13cm.22.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【分析】(1)由图形翻折变换的性质可知,AD=AF=10,在Rt△ABF中利用勾股定理即可求解BF,再由BC=12厘米可得出FC的长度;(2)将CE的长设为x,得出DE=10﹣x=EF,在Rt△CEF中,根据勾股定理列出方程求解即可.【解答】解:(1)∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴82+BF2=102,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)设EC的长为xcm,则DE=(8﹣x)cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8﹣x)2,即16+x2=64﹣16x+x2,化简,得16x=48,∴x=3,故EC的长为3cm.23.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【分析】(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.【解答】解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD=30m,故BC=2×30=60米,即重型运输卡车在经过BC时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BC时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.。
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D.2步2、如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.2B.4C.D.53、下列数组中,是勾股数的是()A.1,2,3B.6,8,9C.5,11,12D.9,40,414、∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A. B. C. D.5、如图,□ABCD的对角线AC与BD相交于点0,AB⊥AC,若AB=4,AC=6,则BD的长是( )A.8B.9C.10D.116、如图,在中,,,,则的长为()A. B. C.3 D.157、在中,D是直线上一点,已知,,,,则的长为()A.4或14B.10或14C.14D.108、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是()A. B. C.9 D.69、下列四组线段中,可以构成直角三角形的是( )A.1,,3B.3,4,5C.4,5,6D.6,7,810、如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6,E是BD的中点,则CE 的长为( )A. B.2 C. D.311、如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有()A.9个B.8个C.7个D.6个12、下列四组线段中,不能组成直角三角形的是()A.a=3,b=4,c=3B.a= ,b= ,c=C.a=3,b=4,c=D.a=1,b= ,c=313、一个等腰三角形的底边长是6,腰长是一元二次方程的一根,则此三角形的外接圆的半径是()A.3.2B.C.3.5D.414、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A.4B.8C.16D.815、如图,在中,,以点为圆心,长为半径画弧,交于点和点,再分别以点为圆心,大于长为半径画弧,两弧相交于点,作射线交于点.若,则的长度是()A.2B.3C.D.二、填空题(共10题,共计30分)16、如图,每个方格都是边长为1的小正方形,则AB+BC=________.17、如图,在中,弦,点在上移动,连结,过点作交于点,则的最大值为________.18、一个直角三角形的两条直角边长分别为3,4,则第三边为________.19、如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________20、一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为________ cm2.21、如图,四边形ABCD是圆O的内接四边形,AC⊥BD交于点P,半径R=6,BC=8,则tan∠DCA=________.22、在中,,,,则a的值是________.23、如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E 是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=________.24、如图,菱形的边长为2,,点Q是的中点,点P是对角线上一动点,则最小值为________.25、菱形的周长为,对角线与相交于点,点E为边的中点,以为边作正方形,连接,则的面积为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=13cm,BC=12cm,求四边形ABCD的面积.28、如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.29、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(≈1.732)30、如图,在△ABC中,∠A=90°,点D为BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,试写出线段BE,EF,FC之间的数量关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、D6、C7、A8、A9、B10、C11、A12、B13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
2023-2024学年北师大版八年级上册数学第一章《勾股定理》单元测试题(含答案)
2023-2024学年八年级上册数学北师大版
第一章《勾股定理》单元测试题
A.1
12.我国古代数学家赵爽巧妙地用四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形.直角三角形的斜边长为5,则小正方形的面积的大小为15.如图,在中,,点为中点.,交于,两点.下列结论:①;终为等腰直角三角形.其中正确答案的序号有 .ABCD Rt ABC V AC BC =D AB AC BC E F AE BF AC +=
16.如图,在等腰△ABC中,AB=AC
20
.如图,马路一边有一根长的电线杆被一辆货车从离地面
处撞断裂,倒下的电线杆顶部是否会落在
离它底部远的快车道上?说明理由.
21.如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)
22.如图所示,一艘快艇和一艘渔政船分别从B 处出发执行任务.快艇沿北偏东60°方向以每小时40海里的速度向M 岛前进,渔政船沿南偏东30°方向以每小时30海里的速度向P 岛前进,半小时后到达各自目的地,则M 岛与P 岛之间的距离是多少?
5.4m 1.5m 1C 3.8m 8BC 1717D
参考答案:。
北师大版八年级上册《第一章勾股定理》单元测试(含答案)
北师大版八年级上册《第一章勾股定理》单元测试(含答案)八年级数学勾股定理单元测试(时间:100分钟总分:120分)班级学号姓名得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C .①③ D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是()A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D .a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是() A .5 B .25 C .7 D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是()A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A .600米B . 800米C . 1000米D. 不能确定二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______第10题图第13题图第14题图第15题图米.14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .三、认真解答,一定要细心哟!(共72分)17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b =2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。
北师大数学八年级上册第1章《勾股定理》单元测试卷含答案解析
2022-2023北师大版数学八年级上册第1章《勾股定理》单元测试卷考试范围:第1章《勾股定理》;考试时间:100分钟;满分:120分题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题30分)1.以下列各组线段为边作三角形,能构成直角三角形的是()A.2,3,4 B.6,8,10 C.5,8,13 D.12,13,142.用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2 B.c2=a2+2ab+b2C.c2=a2﹣2ab+b2D.c2=(a+b)2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都是矩形KLMJ的边上,则矩形KLMJ的面积为()A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC 的距离为()A.B.C.D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题30分)11.已知直角三角形的三边分别为6、8、x,则x=.12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积=cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.评卷人得分三.解答题(共6小题60分)21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB=,BC=,AC=;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1,=2,=3,=4,=5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是:=2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题(共10小题)11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB ﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a 2+b 2=c 2,∵三角形的三边长a ,b ,c 满足2ab=(a +b )2﹣c 2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD ,根据勾股定理求出BD ,根据勾股定理的逆定理求出△CBD 是直角三角形,分别求出△ABD 和△CBD 的面积,即可得出答案.【解答】解:连结BD ,在△ABD 中,∵∠A=90°,BC=3cm ,DC=4cm ,∴BD==5(cm ),S △BCD =BC•DC=×3×4=6(cm 2),在△ABD 中,∵AD=13cm ,AB=12cm ,BD=5cm∴BD 2+AB 2=AD 2,∴△ABD 是直角三角形,∴S △ABD =AB•BD=×12×5=30(cm 2),∴四边形ABCD 的面积=S △ABD +S △BCD =6+30=36(cm 2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
北师大版八年级上册数学第一章《勾股定理》单元试卷(含答案)
北师大版八年级上册数学第一章《勾股定理》单元试卷时间:100分钟 满分:120分班级____________姓名____________成绩________________题号 一二三总分得分一.选择题(本大题共12小题,共36分,每小题只有一个正确选项)1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )A. 9B.6C. 4D.32.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.我国南宋著名数学家秦久韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米 4.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕EF 交BC 于点F .已知23EF ,则BC 的长是( ) A .223 B . 23 C .3 D . 33 5.如图满足下列条件的△ABC ,不是直角三角形的是( )A.b 2=c 2-a 2B.a ∶b ∶c=3∶4∶5C.∠C=∠A -∠BD.∠A ∶∠B ∶∠C=12∶13∶15 6. 如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么A.△ABC 是直角三角形,且斜边长为m 2+1B.△ABC是直角三角形,且斜边长2mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形7.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.238.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B. C.D.9.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.810.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.11.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C 恰好在网格图中的格点上,那么△ABC中BC的高是()A .210 B .410 C .510 D .5 12.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为( )A .12.5尺B .13.5尺C .14.5尺D .15.5尺二.填空题(本大题共6小题,每题4分,共24分)13. 如图,在△ABC 中,∠ABC=90°,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为S 1、S 2、S 3,若S 2=4,S 3=6,则S 1=______.14.如图,在Rt △ABC 中,∠ B =90°,AB =3 cm ,AC =5 cm ,将△ABC 折叠,使点C 与点A 重合,得折痕DE ,则△ABE 的周长等于________.15.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,这第三根木棒要取的长度是 .16.如图,在等腰三角形ABC 中,AB =AC ,AD 是底边上的高,若AB =5 cm ,BC =6 cm ,则AD =__________.17.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A 处到内壁B处的最短距离为cm(杯壁厚度不计).18.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为.三.解答题(共7小题共60分)19.(6分)某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.(6分)某广场内有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=6m,BC=8m,CD=26m,AD=24m.求四边形ABCD空地的面积.21.(8分)如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?22.(8分)若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.(1)a2+b2+c2+200=12a+16b+20c(2)a3-a2b+ab2-ac2+bc2-b3=023. (8分)在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.24.(12分)有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).25.(12分)如图1,Rt△ABC中,∠ACB=90。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
2023-2024学年八年级数学上册《第一章 勾股定理》单元测试卷有答案-北师大版
2023-2024学年八年级数学上册《第一章勾股定理》单元测试卷有答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果把直角三角形的两条直角边长同时扩大到原来的3倍,那么斜边长扩大到原来的()A.3倍B.4倍C.6倍D.9倍2.在△ABC中,a,b,c分别是,和的对边,下列不能确定为直角三角形的是()A.B.C.D.3.如图,有两棵树,一棵高12m,另一棵高4m,两树相距15m,一只鸟从一棵树的树梢飞到另一棵树的树梢,至少飞行()A.8m B.10m C.13m D.17m4.如图,等边三角形ABC的周长为18,则BC边上的高AD的长为()A.3 B.3 C.6 D.65.如图,在△ABC中,AB=8,AC=6,BC边的垂直平分线交AB于E,交BC于点D,若CD=5,则AE 的长为()A.B.2 C.D.46.如图,在△ABC中,∠C=90°,M是AB的中点,点N在AC上,MN⊥AB,若AC=8,BC=4,则NC的长为()A.5 B.4 C.3 D.27.如图,的两边和的垂直平分线分别交于D,E两点,垂足分别为M,N,若,则的周长为()A.B.C.D.8.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一条直线上,若AB= ,则CD的长为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.一棵垂直于地面的大树在离地面6m处折断,树的顶部落在离大树底部8m处,大树折断之前的高度是.10.如图,点A在直线上,点B、C在直线上,如果和那么平行线、之间的距离为.11.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为.12.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:),计算两圆孔中心A和B的距离为mm.13.如图,台阶阶梯每一层高,宽,长 .一只蚂蚁从点爬到点,最短路程是.三、解答题:(本题共5题,共45分)14.在中,D是BC上一点,AC=10,CD=6,AD=8,AB=17,求BC的长.15.如图,已知在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AB的垂直平分线交AB于点D,交BC于点E,连结AE,求BE的长.16.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?17.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.18.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.(1)求证:AC∥BD;(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.1.A 2.B 3.D 4.B 5.A 6.C 7.B 8.C9.16m10.311.212.15013.130cm14.解:∵∴∵∴∴∴∴∴.15.解:在Rt△ABC中,由勾股定理得AB==15∵DE垂直平分线AB∴AE=BE设BE=AE=x,则CE=12﹣x在Rt△ACE中,由勾股定理得AE2=AC2+CE2即x2=92+(12﹣x)2解得x=即BE的长为.16.(1)解:根据勾股定理:所以梯子距离地面的高度为:AO 米;(2)解:梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米根据勾股定理:OB′=2米所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.17.(1)解:∵AC⊥BC,AB=17,BC=8∴AC= = =15(2)解:∵122+92=152∴CD2+AD2=AC2∴四边形ABCD的面积为:×8×15+ 12×9=60+54=11418.(1)证明:∵AD是∠BAC的平分线∴∠CAD=∠BAD∵AB=BD∴∠BDA=∠BAD∴∠CAD=∠BDA∴AC∥BD;(2)解:作FG⊥AB于G在Rt△ABE中,AE=2,AB=3∴BE∴FE=BE﹣BF∵AD是∠BAC的平分线,BE⊥AC,FG⊥AB,∴FG=FE,即△ABF中AB边上的高为。
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图在矩形ABCD中,AB=2 ,BC=10,E、F分别在边BC,AD上,BE=DF将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE、△CHF,若AG分别平分∠EAD,则GH的长为( )A.3B.4C.5D.72、在下列四组线段中,能组成直角三角形的是()A.a=3 2, b=4 2, c=5 2B.a=11,b=12,c=13C.a=9,b=40,c=41D.a:b:c=1:1:23、四边形中,,则的值为()A.15B.C.D.204、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.5、若一个三角形的三边长为,则使得此三角形是直角三角形的的值是()A. B. C. D. 或6、如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A.6B.3C.D.7、如图,已知直线与与双曲线交于A、B两点,连接OA,若,则k的值为A. B. C. D.8、如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为8;③S四边形AOBO′=24+12;④S△AOC+S△AOB=24+9;⑤S△ABC=36+25;其中正确的结论有()A.1个B.2个C.3个D.4个9、如图,AB为⊙O的直径,AB=10cm,弦CD⊥AB,垂足为E,且AE︰EB=2︰3,则AC=()A. B. C. D.10、下列说法中正确的是()A.已知是三角形的三边,则B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以D.在Rt△中,∠°,所以11、如上图⊙O的直径垂直于弦,垂足是,,,的长为()A. B.4 C. D.812、若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或B.13或15C.13D.1513、如图,在中,,,,垂足为D,,则BD的长为()A. B.2 C. D.314、中,的对边分别是,且,则下列说法正确的是()A. 是直角B. 是直角C. 是直角D. 是锐角15、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是( )A.1.5B.2.5C.D.3二、填空题(共10题,共计30分)16、如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在距离根部4m 处,这棵大树在折断前的高度为________m.17、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是边AC的中点,点E,F在边AB上,当△DEF是等腰三角形,且底角的正切值是时,△DEF腰长的值是________.18、一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于________ m.19、如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于________ .20、如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC 的长为两根的一元二次方程是________.21、如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为________.22、在矩形ABCD中,AB=5,AD=12,P是AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF=________ .23、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是________.24、如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是________.25、一个三角形的三边BC,AC,AB有如下关系:BC2=AC2+AB2,则Rt△ABC中的直角是________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图:AB是半圆的直径,O是圆心,C是半圆上一点,E是弧AC的中点,OE交弦AC 于D,若AC=8cm,DE=2cm,求OD的长。
新北师大版八年级数学第一章《勾股定理》单元测试卷
2017-2018北师大版八年级上册数学评价检测试卷第一章 勾股定理班级姓名座号成绩一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是()(A )4cm ,8cm ,7cm (B )2cm ,2cm ,2cm(C )2cm ,2cm ,4cm (D )13cm ,12cm ,5cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为()(A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是()(A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为()(A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是()(A )直角三角形(B )锐角三角形(C )钝角三角形(D )以上结论都不对6.在△ABC 中,AB =12cm ,AC =9cm ,BC =15cm ,下列关系成立的是()(A )B C A ∠+∠>∠(B )B C A ∠+∠=∠(C )B C A ∠+∠<∠(D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为()(A )2m (B )2.5cm (C )2.25m (D )3m8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是()(A )直角三角形(B )等腰直角三角形(C )等腰三角形(D )以上结论都不对9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动()(A )150cm (B )90cm(C )80cm (D )40cm 10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是()(A )直角三角形(B )等腰直角三角形(C )等腰三角形(D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018北师大版八年级上册数学评价检测试卷
第一章 勾股定理
班级 姓名 座号 成绩
一、选择题
1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm
2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm
3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或7
4.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为( )
(A )1个 (B )2个 (C )3个 (D )4个
5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对
7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ) (A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(2
2
=-+,则这个三角形是( )
(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm
(B )90cm
(C )80cm
(D )40cm
10.三角形三边长分别为12+n 、n n 222+、1222
++n n (n 为自然数),则此三角形是( )
(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对
二、填空题
11.写四组勾股数组.
______,______,______,______.
12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
13.如图,某宾馆在重新装修后,准备在大厅的主楼梯上铺 上红色地毯,已知这种地毯每平方米售价20元,主楼梯宽2 米。
则购地毯至少需要 元.
14.有一个长为l2cm ,宽为4cm ,高为3cm 的长方形铁盒,在其内
部要放一根笔直的铅笔,则铅笔最长是 cm
15.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为________。
三、解答题
16.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)
17.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB =3,BC =4,CD =12,AD =13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?
18.如图是一块地,已知AD=8m ,CD=6m ,∠D=0
90,AB=26m ,BC=24m ,求这块地的面积。
(提示:添加辅助线)
19.“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时,如图5,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪问的距离变为50米。
这辆小汽车超速了吗?
C D A B
(图5)
20、如图,长方形ABCD中,AB=4,BC=5,F为CD上一点,将长方形沿折痕AF折叠,点D恰好落在BC上的点E处,求CF的长.
21、如图一个长方体盒子的长,宽,高分别为2cm、2cm、3cm,一只蚂蚁想从盒子底部的A点沿盒子表面爬到盒子顶部的B点,你能帮助蚂蚁设计一条最短的路线吗?这个最短距离是多少?
B
A。