机械设计课程设计(二级齿轮减速器)
二级减速器课程设计(详细完整样版)
二级减速器课程设计(样版)一、课程简介●介绍二级减速器的基本概念、原理和应用领域。
强调其在机械传动系统中的重要性和作用。
二、原理与结构●详细介绍二级减速器的工作原理,并讲解其内部结构和组成部件。
包括齿轮的种类、齿轮传动的工作原理等。
三、齿轮计算与设计●介绍齿轮传动的计算方法,包括模数、齿轮比、啮合角等概念,并讲解如何进行齿轮的选型和设计。
四、二级减速器的优缺点●分析二级减速器的优势和限制,探讨其适用范围和特点。
同时介绍其他类型减速器的比较。
五、二级减速器的应用案例●展示二级减速器在各种机械传动系统中的实际应用案例,包括工业生产、交通运输、航空航天等领域。
六、选材与制造工艺●介绍二级减速器的常用材料选择原则,以及制造工艺和加工方法。
包括热处理、表面处理等关键技术。
七、维护与故障排除●详细讲解二级减速器的维护方法和注意事项,以及常见故障的排除方式。
强调定期检查和润滑的重要性。
八、创新发展趋势●探讨当前二级减速器领域的创新发展趋势,包括数字化技术的应用、轻量化设计和绿色制造的趋势等。
九、实践操作与实验●提供实际的二级减速器实验环节,让学生能够亲自操作和观察,加深对课程内容的理解和应用能力。
十、课程评估与学习成果●设计课程评估方式,包括考试、实验报告、项目作业等形式,以评估学生对二级减速器知识的掌握和应用能力。
十一、参考资料和资源●提供相关的参考书籍、学术论文和网上资源,供学生进一步学习和深入了解二级减速器的相关知识。
十二、学习支持与辅导●提供学生在学习过程中的支持和辅导,包括答疑时间、学习小组、实验室指导等形式,以促进学生的学习效果。
以上是关于二级减速器课程设计的详细完整版内容。
通过学习这门课程,学生将掌握二级减速器的原理与结构、齿轮计算与设计、应用案例、制造工艺等相关知识,培养他们在机械传动领域中的专业能力和实践技能。
同时,通过实践操作和实验环节,能够加深对所学知识的理解并培养解决问题的能力。
希望以上内容对您有所帮助。
二级减速器课程设计完整版
二级减速器课程设计完整版1. 引言减速器是机械传动系统中常见的关键部件之一,用于降低传动装置的转速并提高扭矩输出。
二级减速器作为一种常见的减速器类型,具有广泛的应用范围。
本文旨在通过设计一个完整的二级减速器课程,介绍二级减速器的原理、设计和应用。
2. 二级减速器原理介绍2.1 主要结构组成二级减速器通常由输入轴、输出轴、两级齿轮传动系统和壳体组成。
其中,输入轴将动力源的旋转运动传递给第一级齿轮组,第一级齿轮组再将运动传递给第二级齿轮组,最终通过输出轴输出。
2.2 工作原理当输入轴旋转时,第一级齿轮组将动力传递给第二级齿轮组,通过齿轮的啮合关系实现速度的减速和输出转矩的增大。
第一级齿轮组的齿比用于实现初级减速,第二级齿轮组的齿比则用于实现次级减速。
3. 二级减速器设计步骤3.1 确定设计参数根据具体的应用需求和要求,确定二级减速器的输入转速、输出转矩、减速比等设计参数。
3.2 齿轮选择和设计根据确定的设计参数,选择适当的齿轮材料和规格,并进行齿轮的设计计算。
考虑到齿轮的强度和耐久性,要确保齿轮的模数和齿数满足设计要求,并进行齿形的优化设计。
3.3 轴的设计根据齿轮的参数和要求,设计输入轴和输出轴,并选择适当的材料和尺寸。
在轴的设计过程中,要考虑到扭矩传递和轴的刚度等因素,确保轴能够稳定运行并传递足够的扭矩。
3.4 壳体设计根据齿轮和轴的尺寸,设计适当的壳体结构和外形,并考虑到装配、润滑和散热等因素。
壳体的设计需要保证齿轮和轴可以正确安装和定位,同时提供良好的密封性和机械强度。
4. 二级减速器应用案例以工业搅拌机为例,介绍二级减速器在实际应用中的情况。
工业搅拌机通常需要较大的转矩和较低的转速,因此二级减速器是一种理想的传动选择。
通过连接电动机和搅拌机装置,二级减速器能够将高速低扭矩的电动机输出转换为低速高扭矩的搅拌机运动。
5. 总结通过对二级减速器的课程设计,我们全面了解了二级减速器的原理、设计和应用。
机械课程设计【二级减速器】
一、设计题目:二级直齿圆柱齿轮减速器1. 要求:拟定传动关系:由电动机、V 带、减速器、联轴器、工作机构成。
2. 工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。
3. 知条件:运输带卷筒转速49r/min , 减速箱输出轴功率p=3.25马力, 二、 传动装置总体设计:1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V 带设置在高速级。
其传动方案如下:η2η3η5η4η1I IIIIIIVPdPw三、 选择电机1. 计算电机所需功率dP : 查手册第3页表1-7:1η-带传动效率:0.952η-每对轴承传动效率:0.99 3η-圆柱齿轮的传动效率:0.984η-联轴器的传动效率:0.993 5η—卷筒的传动效率:0.96说明:η-电机至工作机之间的传动装置的总效率:4212345ηηηηηη=∙∙∙∙=0.829 45w P P ηη=⨯⨯ P电=2.8826362确定电机转速:查指导书第7页表1:取V 带传动比i=2-4二级圆柱齿轮减速器传动比i=840所以电动机转速的可选范围是: N 电=N 卷筒*i 总=37*(2-4)*(8-40)=592-5920r/min 符合这一范围的转速有:750、1000、1500、3000根据电动机所需功率和转速查手册第155页表12-1有4种适用的电动机型号,因此有4种传动比方案如下:方案 电动机型号额定功率同步转速r/min 额定转速r/min重量 总传动比1 Y112M-2 4KW 3000 2890 45Kg 78.10 2 Y112M-44KW1500 1440 43Kg 38.91 3 Y132M1-6 4KW 1000 960 73Kg 25.94 4Y160M1-8 4KW750720118K 19.45g综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y112M-4.四 确定传动装置的总传动比和分配传动比:总传动比:i 总=N 电/N 卷筒=1440/49=29.18 分配传动比:取i 带=3.2 则i 减=i 总/i 带=9.11 取i 1=1.45i 2经计算i 1齿=3.644,i 2齿=2.5注:i 带为带轮传动比,1i 为高速级传动比,2i 为低速级传动比。
机械设计课程设计二级减速器
机械设计课程设计二级减速器一、教学目标本节课的教学目标是使学生掌握二级减速器的基本设计原理和方法,能够运用所学的知识进行简单的减速器设计。
具体目标如下:1.知识目标:(1)了解二级减速器的结构和工作原理;(2)掌握减速器的设计方法和步骤;(3)熟悉减速器设计中常用的标准和规范。
2.技能目标:(1)能够运用CAD软件进行减速器零件的绘制;(2)能够根据设计要求,计算并选择合适的齿轮模数、齿数等参数;(3)能够完成一级减速器的设计计算和图纸绘制。
3.情感态度价值观目标:(1)培养学生的团队合作意识和能力;(2)激发学生对机械设计的兴趣和热情;(3)培养学生的创新精神和实践能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.二级减速器的结构和工作原理;2.减速器的设计方法和步骤;3.减速器设计中常用的标准和规范;4.CAD软件在减速器设计中的应用;5.减速器设计实践操作。
三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:通过讲解二级减速器的结构、工作原理、设计方法和步骤等基本知识,使学生掌握基本概念和理论。
2.案例分析法:通过分析具体的减速器设计案例,使学生了解减速器设计的过程和注意事项。
3.实验法:安排学生进行减速器设计实验,让学生动手实践,巩固所学知识。
4.讨论法:学生进行小组讨论,培养学生的团队合作意识和能力。
四、教学资源为了保证本节课的教学质量,将准备以下教学资源:1.教材:《机械设计基础》;2.参考书:相关减速器设计手册和论文;3.多媒体资料:减速器设计原理和步骤的PPT;4.实验设备:计算机、CAD软件、减速器设计实验器材。
以上教学资源将有助于实现本节课的教学目标,提高学生的学习效果。
五、教学评估本节课的评估方式将包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和积极性。
2.作业:布置相关的减速器设计作业,要求学生在规定时间内完成,通过评估作业的质量来评估学生的理解和掌握程度。
机械设计课程设计二级减速器链传动
机械设计课程设计---二级减速器链传动1传动简图的拟定1.1技术参数:输送链的牵引力: 9 kN ,输送链的速度:0.35 m/s,链轮的节圆直径:370 mm。
1.2 工作条件:连续单向运转,工作时有轻微振动,使用期10年(每年300个工作日,小批量生产,两班制工作,输送机工作轴转速允许误差±5%。
链板式输送机的传动效率为95%。
1.3拟定传动方案传动装置由电动机,减速器,工作机等组成。
减速器为二级圆锥圆柱齿轮减速器。
外传动为链传动。
方案简图如图。
方案图2 电动机的选择2.1 电动机的类型:三相交流异步电动机(Y 系列) 2.2 功率的确定2.2.1 工作机所需功率w P (kw):w P =w w v F /(1000w η)=7000×0.4/(1000×0.95)= 3.316kw2.2.2 电动机至工作机的总效率η:η=1η×32η×3η×4η×5η×6η=0.99×399.0×0.97×0.98×0.96×0.96=0.841(1η为联轴器的效率,2η为轴承的效率,3η为圆锥齿轮传动的效率,4η为圆柱齿轮的传动效率,5η为链传动的效率,6η为卷筒的传动效率) 2.2.3 所需电动机的功率d P (kw): d P =w P /η=3.316Kw/0.841=3.943kw 2.2.4电动机额定功率:d m P P ≥2.4 确定电动机的型号因同步转速的电动机磁极多的,尺寸小,质量大,价格高,但可使传动比和机构尺寸减小,其中m P =4kN ,符合要求,但传动机构电动机容易制造且体积小。
由此选择电动机型号:Y112M —4 电动机额定功率m P =4kN,满载转速=1440r/min工作机转速筒n =60*V/(π*d)=18.0754r/min电动机型号 额定功率 (kw) 满载转速 (r/min) 起动转矩/额定转矩 最大转矩/额定转矩Y112M1-4414402.22.3选取B3安装方式caP=AKzK3P=1.0×2.5×3.61=9.025kW5.3 选择链条型号和节距根据caP9.025kW和主动链轮转速3n=95.681(r/min),由图9-11得链条型号为24A,由表9-1查得节距p=38.1mm。
机械设计课程设计二级减速器设计说明书
机械设计课程设计二级减速器设计说明书一、设计任务设计一个二级减速器,用于将电动机的高转速降低到所需的工作转速。
减速器的技术参数如下:输入轴转速:1400rpm输出轴转速:300rpm减速比:4.67工作条件:连续工作,轻载,室内使用。
二、设计说明书1.总体结构二级减速器主要由输入轴、两个中间轴、两个齿轮、输出轴和箱体等组成。
输入轴通过两个中间轴上的齿轮与输出轴上的齿轮相啮合,从而实现减速。
2.零件设计(1)齿轮设计根据减速比和转速要求,计算出齿轮的模数、齿数、压力角等参数。
选择合适的齿轮材料和热处理方式,保证齿轮的强度和使用寿命。
同时,要进行轮齿接触疲劳强度和弯曲疲劳强度的校核。
(2)轴的设计根据齿轮和轴承的类型、尺寸,计算出轴的直径和长度。
采用适当的支撑方式和轴承类型,保证轴的刚度和稳定性。
同时,要进行轴的疲劳强度校核。
(3)箱体的设计箱体是减速器的支撑和固定部件,应具有足够的强度和刚度。
根据减速器的尺寸和安装要求,设计出合适的箱体结构。
同时,要考虑到箱体的散热性能和重量等因素。
3.装配图设计根据零件设计结果,绘制出减速器的装配图。
装配图应包括所有零件的尺寸、配合关系、安装要求等详细信息。
同时,要考虑到维护和修理的方便性。
4.设计总结本设计说明书详细介绍了二级减速器的设计过程,包括总体结构、零件设计和装配图设计等部分。
整个设计过程严格遵循了机械设计的基本原理和规范,保证了减速器的性能和使用寿命。
通过本课程设计,提高了机械设计能力、工程实践能力和创新思维能力。
机械设计课程设计二级减速器(详细版)
计算说明
题 目设计带式运输机传动装置两级圆锥-圆柱齿
轮减速器
专业班级
机械设计制造及其自动化专业X班
XXXXX
指导教师
XXXXXXXXX
XXXXX
西安文理学院
机械设计课程设计任务书
学生姓名
田银红
专业班级机械设计制造及其自动化专业08级
一班
指导教师
周毓明
何斌锋
教研室
机电系机电教研室
题目
异步电动机。它为卧式封闭结构。
1.2
(1)工作机的输出功率
Pw
Fv
1000w
空也斗
10000.96
(2)电动机输出功率Pd
Pd
Pw
传动装置的总效率
依次确定式中各效率:
个联轴器n=0.99、4个滚动轴承
n=0.98、圆柱齿轮传动
n=0.97、圆锥齿轮传动n=0.96。
n“、107.01r/min
co
n=0.99
n=0.98
n3=0-97
n=0.96
n0.84
n0.992
0.9840.970.960.84
•
3计算传动装置的运动和动力参数
3.1各轴转速•…
3.2各轴输入功率
3.3各轴转矩•…
4传动件的设计计算
6
4.1圆锥直齿轮设计
4.1.1选定齿轮齿轮类型、精度等级、材料及齿数
4.1.2按齿面接触强度设计
4.1.3校核齿根弯曲疲劳强度
4.1.4几何尺寸计算
•
4.2圆柱直齿齿轮设计
4.2.1选定齿轮精度等级、材料及齿数
设计带式运输机传动装置
传动系统图:
图一
机械设计课程设计 二级减速器
计 算 及 说 明结 果第一章 电动机的选择及功率的计算1电动机的选择(1)选择电动机的类型按工作要求选用Y 系列三相异步电动机,鼠笼式结构。
电源的电压为380V 。
(2)选择电动机功率根据已知条件,工作机所需要的有效功率为:6200 1.559.6110001000W FV P kw kw ⨯=== 其中 F: 运输带工作拉力V: 运输带工作速度电动机所需要的功率d P 为: wd p P η=式中η为传动系统的总功率:123ηηηηηη=带齿轮齿轮联轴器滚子轴承由[1]表2-5确定各部分效率为:轴承传动效率0.99η=球轴承,0.97η=高齿1,0.97η=低齿工作机传动效率0.97η=滚筒,联轴器效率,V 带效率0.96η=带代入上式得:0.868η= 电动机所需要的功率为:96111910868η===...wd p P kw kw9.61w P kw =0.868η=3.57d P kw =0.99η=联轴器计 算 及 说 明结 果因载有轻微振动,电动机额定功率ed P 应该大于d P .选电动机功率ed P 为15kw.(3)确定电动机转速 卷筒轴工作转速:601000601000 1.5563.02min min 470w V rr n D ππ⨯⨯⨯⨯===⨯⨯ 选取电动机型号为Y160L-4,其主要参数见表1: 额定功率/kw满载转速/r/m同步转速/r/m1514601500第二章 传动比的分配及参数的计算1.总传动比146023.1763.02m a n i n ω=== 2.分配传动装置各级传动比2=D i 231711592===减..a D i i i 因为选用同轴式减速器,高速级和低速级传动比相等, 所以 121159340====减..i i i得出 高速级传动比:1340=.i低速级传动比: 2340=.i102.37/min w n r =23.17a i =1340=.i 2340=.i计 算 及 说 明结 果3.传动装置的运动和动力参数计算传动系统各轴的转速,功率和转矩计算如下: (1) Ⅰ轴(高速轴)/730/min D m n n i r I ==1150961440η==⨯=带..ed p p kw kw1111449550955018838730==⨯=...p T N m n (2) Ⅱ轴(中间轴)1730214.71/min 3.40n n r i I ∏=== 1440990971383ηη∏I ==⨯⨯=1轴轴承高齿轮....p p kw 32138395509550106151421471∏∏==⨯⨯=⋅...p T N m n (3) Ⅲ轴(低速轴)2214.7163.15/min 3.40III III n n r i ===13830990971328ηη∏==⨯⨯=2轴轴承低齿轮....III p p kw 1328955095502008306315==⨯=⋅...III III III p T N m n 将上述计算结果列表2-1中,以供查询1730=/min n r 1144=.p kw118838=⋅.T N m21471∏=./min n r 1383∏=.P kw 61514∏=⋅.T N m6315=./min III n r 1328=.III p kw200830=⋅.III T N m计 算 及 说 明结 果传动系统的运动和动力参数参数 Ⅰ轴(高速轴)Ⅱ轴(中间轴) Ⅲ轴(低速轴) 转速 n r/min 730 214.71 63.15 功率 P (kw) 14.4 13.83 13.28 转矩 T (N.m) 188.38 615.142008.30 传动比i3.403.40---第三章 V 带传动设计1.确定计算功率ca P15ed P kw =,1460/min m n r =,查《机械设计》表8-8得工作情况系数K A =1.3,则 1.31519.5ca P kw =⨯=。
二级减速器课程设计完整版
二级减速器课程设计完整版一、课程背景在机械设计领域中,减速器是一种常见的机械传动装置,用于调节机械设备的输出转速,实现输出力矩的放大或减小。
二级减速器作为减速器的一种,具有结构复杂、传动效率高等特点,广泛应用于各种工业领域。
因此,对于二级减速器的设计原理和结构特点有着重要的研究意义。
本课程将详细介绍二级减速器的设计原理和计算方法,帮助学习者深入了解二级减速器的工作原理和设计过程。
二、课程内容1. 二级减速器的分类和工作原理- 正斜齿轮传动、斜齿轮传动和蜗杆传动的特点和适用范围- 二级减速器的传动比计算方法和选择原则2. 二级减速器的结构设计- 二级减速器的零部件设计要点和特点- 主要零部件的材料选择和加工工艺3. 二级减速器的热处理和装配- 热处理对二级减速器性能的影响和作用- 二级减速器的装配步骤和注意事项4. 二级减速器的性能测试和调试- 对二级减速器进行性能测试的方法和工具- 二级减速器的调试原则和步骤三、课程目标通过本课程的学习,学生将能够掌握二级减速器的设计原理和计算方法,了解二级减速器的结构特点和制造工艺,具备二级减速器的设计和调试能力。
同时,通过实际操作和案例分析,提高学生对于机械设计的实践能力和解决问题的能力,为将来从事机械设计相关工作打下坚实的基础。
四、课程教学安排- 第一阶段:介绍二级减速器的分类和工作原理,包括传动比的计算和选择方法。
学生需要通过课堂理论学习和案例分析,掌握相关理论知识。
- 第二阶段:实践操作,包括二级减速器结构设计、材料选择和加工工艺的实际操作。
学生将根据教师指导,完成二级减速器零部件的设计和制作。
- 第三阶段:实验室测试和调试,学生将在实验室进行二级减速器的性能测试和调试操作。
通过实验数据的分析和处理,学生将掌握二级减速器的调试原则和方法。
五、课程评估本课程的评估方式将采用学习报告、设计作业和实验成绩相结合的方式。
学生需要完成相关的作业和实验报告,通过对课程内容的掌握和实践操作的表现,来评估学生的学习效果和能力提升情况。
机械设计课程设计(二级减速器)
目录一、设计任务书……………………………………………………二、电动机的选择…………………………………………………三、计算传动装置的运动和动力参数……………………………四、传动件设计(齿轮)…………………………………………五、轴的设计………………………………………………………六、滚动轴承校核…………………………………………………七、连接设计………………………………………………………八、减速器润滑及密封……………………………………………九、箱体及其附件结构设计………………………………………十、设计总结………………………………………………………十一、参考资料……………………………………………………设计内容计算及说明结果设计任务书一、设计任务书设计题目4:带式运输机传动系统中的展开式二级圆柱齿轮减速器1、系统简图2、工作条件一班制,连续单向运转,载荷平稳,室内工作,有粉尘使用期限:10年生产批量:20台生产条件:中等规模机械厂。
可加工七到八级齿轮及涡轮动力来源:电力,三相交流380/220伏输送带速度容许误差为±5%。
3、题目数据已知条件题号D1 D2 D3 D4 D5 D6 D7 D8 D9输送带拉力F(N)1500 2200 2300 2500 2600 28003300 4000 4800输送带速度v(m/s)1.1 1.1 1.1 1.1 1.1 1.41.2 1.6 1.4滚筒直径D(mm)220 240 300 400 220 350350 400 500注:班级成员按学号选题,本设计所选题号为D3。
4、传动方案的分析带式输送机由电动机驱动。
电动机通过连轴器将动力传入减速器,再经联轴器将动力传至输送机滚筒,带动输送带工作。
传动系统中采用两级展开式圆柱齿轮减速器,其结构简单,但齿轮相对轴承位置不对称,因此要求轴有较大的刚度,高速级和低速级都采用直齿圆柱齿轮传动。
电动机的选择二、电动机的选择1、类型选择电动机的类型根据动力源和工作条件,选用Y系列380V封闭式三相异步电动机。
机械设计基础课程设计--二级齿轮减速器
机械设计基础课程设计--二级齿轮减速器机械设计基础课程设计说明书题目:二级齿轮减速器院系:机电工程系专业:材料成型及控制工程班级:B100304学号:B1030618姓名:李鹏辉指导教师:张旦闻日期:2013年06月28日目录一、机械设计课程设计任务书 .............................................................................. - 2 -1、设计题目: ................................................................................... - 2 -2、设计参数 ....................................................................................... - 2 -3、工作条件 .................................................................................... - 2 -4、加工条件 .................................................................................... - 3 -5、设计工作量................................................................................ - 3 -二、前言 .................................................................................................................. - 4 -三、运动学与动力学计算 ...................................................................................... - 5 -1、电动机的选择............................................................................... - 5 -2、各级传动比................................................................................... - 6 -3、计算各轴转速、功率、转矩....................................................... - 6 -四、传动零件的设计计算 ...................................................................................... - 9 -1、带传动的设计............................................................................... - 9 -2、齿轮的设计计算......................................................................... - 12 -五、轴的设计计算及校核 (20)1、轴的结构设计: (20)2、轴的校核 (25)3、计算轴上的作用力 (27)4、计算支反力 (27)5、绘转矩、弯矩图 (28)6、弯矩合成强度校核 (29)六、键的选择和校核 (30)七、滚动轴承的选择与校核。
二级减速器(机械课程设计)(含总结)_2
江西农业大学工学院机制104机械设计课程设计任务书专业班级姓名设计题号题目1: 设计带式运输机传动装置1—输送带鼓轮2—链传动3—减速器4—联轴器5—电动机题号 1 2** 3 4 5 6 F(kN) 2.1 2.2 2.4 2.7 2 2.3 v(m/s) 1.4 1.3 1.6 1.1 1.3 1.4 D(mm)450 390 480 370 420 480 题号7 8 9 10 11 12 F(kN) 2.5 2.6 2.2 2.5 2.7 2.4 v(m/s) 1.5 1.2 1.4 1.3 1.6 1.2 D(mm)450 390 460 400 500 400表中: F—输送带的牵引力 V—输送带速度D—鼓轮直径注: 1.带式输送机用以运送谷物、型砂、碎矿石、煤等。
2.输送机运转方向不变, 工作载荷稳定。
3.输送带鼓轮的传动效率取为0.97。
一、4、输送机每天工作16小时, 寿命为10年。
二、设计工作量:三、编写设计计算说明书1份。
二、绘制减速器装配图1张(1号图纸)。
三、绘制减速器低速轴上齿轮零件图1张(3号图纸)。
四、绘制减速器低速轴零件图1张(3号图纸)。
目录1.设计目的 (2)2.设计方案 (3)3.电机选择 (5)4.装置运动动力参数计算 (7)5.带传动设计 (9)6.齿轮设计 (18)7.轴类零件设计 (28)8.轴承的寿命计算 (31)9.键连接的校核 (32)10.润滑及密封类型选择 (33)11.减速器附件设计 (33)12.心得体会 (34)13.参考文献 (35)1.设计目的机械设计课程是培养学生具有机械设计能力的技术基础课。
课程设计则是机械设计课程的实践性教学环节, 同时也是高等工科院校大多数专业学生第一次全面的设计能力训练, 其目的是:(1)通过课程设计实践, 树立正确的设计思想, 增强创新意识, 培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。
机械课程设计二级减速器设计教程
二、课程设计任务书
名称:带式输送机传动装置(二级圆柱齿轮减速器)。
要求:有轻微冲击,工作经常满载,原动机为电动机,齿轮 单向传动,单班制工作(每班8小时),运输带速度误差为 ±5%,减速器使用寿命5年,每年按300天计,小批量生产,启 动载荷为名义载荷的1.5倍。
三、设计任务量 四、参考资料
传动系统简图 原始数据
1、 中间轴和齿轮(低速级大齿轮) 2、要求:标出全部尺寸、公差值、形 位置公差、粗糙度、材料及热处理方法 技术要求等。
轴的键槽处要有移出剖面,
齿轮轴列出参数表。
编写设计计算说明书
1、包括封面,目录,内容,参考文献。 2、轴的弯扭矩图在同一张纸上。
(内容和格式见书47页)
评分依据
1、草图、正式装配图、零件图 2、论文 3、答辩 以上均要求独立完成,如有雷同视为作弊。
II轴:
n II =nI/i高
……
2)各轴输入功率
电动机轴: I轴: II轴:
Pd=Pw/ŋ总 P I = Pd ŋ (ŋ联轴器效率)
P I I= P I * ŋ12 ŋ12——I轴至 II轴效率
3)各轴扭矩T
电动机轴: Td=9550*Pd/nm(Nm) I轴: TI= Td II轴:TII= TI*ŋ12*I高
η 卷筒效率 2_________
η3_________低速级联轴器效率
η4_________ III轴轴承效率
η5_________低速级齿轮啮合效率
η6__________ II轴轴承效率
η7_________高速级齿轮啮合效率
η I轴轴承效率 8__________
η9_________高速级联轴器效率
(1)A4图纸一张,比例自订,手绘
机械设计课程设计二级减速器
机械设计课程设计二级减速器1. 简介二级减速器是一种常见的机械传动装置,通过一系列的齿轮传递转矩和降低转速。
它主要由两对齿轮组成,其中一对为驱动齿轮,另一对为从动齿轮。
本文将介绍机械设计课程中关于二级减速器的设计过程。
2. 设计过程2.1 确定传动比在设计二级减速器之前,我们首先需要确定所需的传动比。
传动比决定了驱动齿轮和从动齿轮的直径比例。
传动比的选择通常基于所需的转速和转矩输出。
2.2 选取齿轮材料齿轮材料的选择非常重要,它直接影响到减速器的寿命和性能。
常用的齿轮材料有钢、铸铁和铜合金。
在选择齿轮材料时需要考虑其机械性能、耐磨性和成本等因素。
2.3 计算齿轮参数根据所需的传动比和输入齿轮的参数,可以计算出从动齿轮的参数,包括模数、齿数、齿宽等。
通过计算可以得到合适的齿轮尺寸,以满足转矩和转速要求。
2.4 齿形设计齿形设计是二级减速器设计过程中的关键环节。
它确定了齿轮的齿形和齿廓参数,直接影响到齿轮的传动效率和噪音产生。
常用的齿形有圆弧齿、直齿和斜齿等。
在齿形设计中,需要考虑到齿轮的强度和对齿轮的加工要求。
2.5 强度计算强度计算是确保减速器在工作过程中不发生断裂或损坏的重要步骤。
在强度计算中,需要考虑到齿轮的转矩、齿宽、弯曲应力和接触应力等参数,以确定齿轮的强度是否足够。
2.6 附件设计除了齿轮外,二级减速器还需要相应的轴、轴承和润滑系统等附件。
轴的设计需要考虑到其强度和刚度,轴承的选择需要满足齿轮的转速和负载要求,润滑系统的设计需要确保齿轮运转平稳和寿命长。
3. 结论通过以上的设计过程,我们可以得到一套满足转矩和转速要求的二级减速器设计。
在实际应用中,还需要进行加工制造、装配和调试等工序,以确保减速器的正常运行。
机械设计课程中的二级减速器设计是一个综合应用多学科知识的过程,需要综合考虑力学、材料和制造等方面的知识。
机械课程设计二级减速器
机械课程设计二级减速器一、课程目标知识目标:1. 让学生掌握二级减速器的结构原理,理解其工作过程及在各领域中的应用。
2. 使学生了解并掌握减速器设计中涉及的计算方法,如齿轮传动、轴承寿命等。
3. 帮助学生掌握机械设计的基本流程,包括设计要求分析、方案设计、计算校核等。
技能目标:1. 培养学生运用CAD软件进行二级减速器零部件的绘制和装配能力。
2. 培养学生运用相关计算公式和软件进行二级减速器参数计算和校核的能力。
3. 提高学生实际操作能力,能够根据设计要求完成二级减速器的组装和调试。
情感态度价值观目标:1. 激发学生对机械设计的兴趣,培养其创新意识和实践能力。
2. 培养学生严谨的科学态度和团队协作精神,使其在设计和制作过程中体验到合作与分享的快乐。
3. 增强学生的环保意识,使其在设计过程中注重节能和可持续发展。
课程性质:本课程为机械设计实践课程,结合理论知识,注重培养学生的实际操作能力和创新能力。
学生特点:学生已具备一定的机械基础知识,具有较强的求知欲和动手能力,但缺乏实际设计经验。
教学要求:教师应结合学生特点,采用任务驱动、分组合作等教学方法,引导学生主动参与,注重理论与实践相结合,提高学生的综合能力。
通过本课程的学习,使学生能够将理论知识应用于实际工程设计中,达到学以致用的目的。
二、教学内容1. 理论知识:- 二级减速器的基本结构、原理及其应用领域。
- 齿轮传动原理,齿轮参数的计算与选择。
- 轴承类型及选用,轴承寿命计算。
- 减速器设计中涉及的力学知识,如强度计算、刚度计算等。
2. 实践操作:- 利用CAD软件进行二级减速器零部件的绘制、装配。
- 根据设计要求,进行二级减速器的参数计算和校核。
- 二级减速器的组装、调试及性能测试。
3. 教学大纲:- 第一周:二级减速器基本结构、原理学习,了解其应用领域。
- 第二周:齿轮传动原理学习,进行齿轮参数计算与选择。
- 第三周:轴承类型及选用,轴承寿命计算方法学习。
机械课程设计二级减速器设计
二、电动机的选择:(1)电动机型号的选择:根据电动机转速P 电=5.5kw ,传动不逆转,则同步转速n=1500rpm;选择电动机型号Y132S-4,P 额=7.5KW ,满载电流I=11.6A ,效率η=85.5%,功率因数cos φ=0.84;堵转电流/额定电流=7.0A;堵转转矩/额定转矩=2.2;最大转矩/额定转矩=2.2(2)电动机主要外形和安装尺寸如下: 三、确定传动装置的总传动比和分配传动比1. 确定总传动比:4286.2735960===总电总n n i 电n 为电动机满载转速;总n 为盘磨机主轴转速;总i 为传动装置总传动比2.分配传动比:锥总i i i i ⋅⋅=21;21i i 分别为两对斜齿轮的传动比;3~2=锥i ,取5.2=锥i ,则有97.105.24286.2721===⋅锥总i i i i21)3.1~2.1(i i = 63.31=∴i 02.32=i四、计算传动装置的运动和动力参数为进行传动件的设计计算,要推算出各轴的转速和转矩(或功率),如将传动装置各轴由高速至低速依次定为1轴、2轴……同时每对轴承的传动效率η1=0.99 圆柱齿轮的传动效率η2=0.96 联轴器的传动效率η3=0.99 圆锥齿轮的传动效率η4=0.95则可按电动机到工作机运动传递路线推算,得到各轴的运动和动力参数。
1.计算各轴转速:m in /9601r n n m == m in /9602r n n m ==min /46.26463.3960123r i n n ===min /57.8702.346.264234r i n n ===min /57.8745r n n == min /03.355.257.8756r i n n ===锥 m n 为电动机满载转速;654321n n n n n n 分别为轴1至轴6的转速;2.各轴输入功率:kw P P d 5.51==kw P P d 39.599.099.05.5122=⨯⨯=⋅=η 3112ηηη⨯= kw P P 12.596.099.039.52323=⨯⨯=⋅=η 2123ηηη⨯= kw P P 87.496.099.012.53434=⨯⨯=⋅=η 2134ηηη⨯= kw P P 77.499.099.087.44545=⨯⨯=⋅=η 3145ηηη⨯= kw P P 49.495.099.077.45656=⨯⨯=⋅=η 4156ηηη⨯=5645342312ηηηηη分别为相邻两轴间的传动效率 3.各轴输出功率:kw P P d 5.5'1==kw P P 34.599.039.512'2=⨯=⋅=η kw P P 76.299.079.213'3=⨯=⋅=ηkw P P 82.499.087.414'4=⨯=⋅=η kw P P 72.499.077.415'5=⨯=⋅=η kw P P 45.499.049.416'6=⨯=⋅=η4.各轴输入转矩:m N n P T d ⋅=⨯=⨯=71.549605.595509550电电m N T T d ⋅==71.541m N T T ⋅=⨯⨯=⋅=62.5399.099.071.541212ηm N i T T ⋅=⨯⨯⨯=⋅⋅=99.18496.099.063.362.5323123η m N i T T ⋅=⨯⨯⨯=⋅⋅=96.53096.099.002.399.18434234η m N T T ⋅=⨯⨯=⋅=39.52099.099.096.5304545η m N i T T ⋅=⨯⨯⨯=⋅⋅=57.122395.099.05.239.5205656η锥5.各轴输出转矩:m N T T d ⋅==71.54'1m N T T ⋅=⨯=⋅=08.5399.062.5312'2η m N T T ⋅=⨯=⋅=14.18399.099.18413'3ηm N T T ⋅=⨯=⋅=65.52599.096.53014'4η m N T T ⋅=⨯=⋅=19.51599.039.52015'5η m N T T ⋅=⨯=⋅=33.121199.057.122316'6η根据上述运算过程,运动和动力参数计算结果整理于下表:五、传动零件的设计计算1.高速齿轮的计算注:参考资料未标表示机械设计第八版,机原为机械原理表1 高速级圆柱斜齿轮1传动参数表2.低速齿轮的计算表2 低速级圆柱斜齿轮传动参数表3.锥齿轮的计算注:课设-机械设计课程设计指导书表3锥齿轮传动参数表六、轴的计算计算及说明结果1.轴的初选:材料45钢 []55~35=t τ 97~1120=Amm n P A d n 7.7719605.391003302==≥ 66.1805.117.77=⨯ mm n P A d 26.8564.4625.12100333303==≥ 19.2805.126.85=⨯ mm n P A d 38.1787.574.87100334404==≥ 4005.138.17=⨯ mm n P A d 37.9187.574.77100335505==≥ mm n P A d 50.4235.034.49100336606==≥ 对于直径100mm d ≤的轴,轴径增大5%至7%2.轴的校核P362表15-1P370表15-3 P371 P371材力第3章切向力N d T F t 87.394674.931099.18422333=⨯⨯==P231七、键联接的选择和计算1.键的选择键2 10 8 0.4-0.6 42 0.063 5.0 3.3 0.25-0.4键3 10 8 0.4-0.6 62 0.063 5.0 3.3 键41490.4-0.6700.1555.03.32.键的校核:计算及说明结果低速轴上键4的校核:[]MPa p 120~100=σ[]p p dkl T σσ<=⨯⨯⨯==6.856245096.5302000200082==hk机械手册P581表7-3机械手册P580八、滚动轴承的选择和计算1.轴承的选择序号轴承代号基本尺寸基本额定负荷KN 极限转速 安装尺寸 质量 dDBCC脂润滑 r dDrkg1 7305AC 25 62 17 21.5 15.8 9500 19.1 32 55 1 0.23 2 7306AC 30 72 19 25.2 18.5 8500 31.1 37 65 1 0.35 3 7310AC 50 110 27 55.5 44.556003360 100 2 1.32计算及说明结果2.轴承的校核 查表可知,68.0=e派生轴向力N F V d 34.120944.177868.068.0F 11=⨯==N F V d 126.19595.28668.068.0F 22=⨯==34.1209116.1297126.19599.110112=>=+=+d d a F F F左边为放松边,右边为压紧边N F F F d a a 116.1297126.19599.110121=+=+=P322表13-7N F F d a 126.19522==e F F V a >==73.044.1778116.129711,则41.01=X ,87.01=Y e F F V a ===68.095.286126.19522,则12=X ,02=Y 轴承受轻微冲击,则载荷系数2.1=p fNF F f P a V p 18.2229)116.129787.044.177841.0(2.1)(11111=⨯+⨯⨯=Y +X =N F F f P a V p 34.344)95.2861(2.1)(22222=⨯⨯=Y +X =左轴承h P C n L h 636161094.218.22295550057.8760106010⨯=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⨯=ε左h h L L >左 ,符合要求。
二级减速器课程设计完整版
二级减速器课程设计完整版一、课程设计的目的二级减速器课程设计是机械设计课程中的重要实践环节,其目的在于通过对二级减速器的设计,让我们更深入地理解机械传动系统的工作原理和设计方法,培养我们综合运用所学机械知识进行工程设计的能力,包括结构设计、强度计算、绘图表达等方面。
同时,也有助于提高我们的创新思维和解决实际问题的能力。
二、设计任务与要求本次设计的任务是设计一个用于特定工作条件下的二级减速器。
给定的工作条件包括输入功率、输入转速、工作机的转速要求以及工作环境等。
具体要求如下:1、选择合适的传动方案,确定各级传动比。
2、对齿轮、轴、轴承等主要零部件进行设计计算和强度校核。
3、绘制减速器的装配图和主要零件图。
4、编写设计说明书,清晰阐述设计思路和计算过程。
三、传动方案的选择在选择传动方案时,需要考虑多种因素,如传动效率、结构紧凑性、成本等。
常见的二级减速器传动方案有圆柱齿轮减速器、圆锥齿轮减速器、蜗杆减速器等。
经过比较分析,我们选择了圆柱齿轮减速器,因为它具有传动效率高、结构简单、成本较低等优点。
四、主要参数的计算1、确定总传动比根据输入转速和工作机转速要求,计算出总传动比。
2、分配各级传动比考虑到齿轮的齿数和模数等因素,合理分配两级齿轮的传动比。
3、计算各轴的转速、功率和转矩五、齿轮的设计计算1、选择齿轮材料根据工作条件和使用要求,选择合适的齿轮材料。
2、按齿面接触疲劳强度计算确定齿轮的主要参数,如齿数、模数、分度圆直径等。
3、按齿根弯曲疲劳强度校核六、轴的设计计算1、初步估算轴的直径根据传递的转矩和转速,初步估算轴的最小直径。
2、轴的结构设计根据安装零件的要求,确定轴的各段直径和长度,以及轴上的键槽等结构。
3、轴的强度校核对轴进行弯扭合成强度校核和疲劳强度校核。
七、轴承的选择与校核根据轴的受力情况,选择合适的轴承类型,并进行寿命计算和校核。
八、键的选择与校核选择合适的键连接,并对其强度进行校核。
九、减速器的润滑与密封确定减速器的润滑方式和润滑油的种类,以及选择合适的密封方式和密封件。
课程设计二级斜齿轮减速器
课程设计二级斜齿轮减速器一、课程目标知识目标:1. 让学生掌握二级斜齿轮减速器的基本结构及其工作原理;2. 使学生理解并掌握齿轮传动的基本计算方法;3. 让学生了解并掌握二级斜齿轮减速器的装配及调试方法。
技能目标:1. 培养学生运用齿轮传动原理解决实际问题的能力;2. 提高学生运用计算方法进行二级斜齿轮减速器参数设计的技能;3. 培养学生动手操作、团队协作进行二级斜齿轮减速器装配与调试的能力。
情感态度价值观目标:1. 激发学生对机械设计及制造的兴趣,培养其热爱专业、钻研技术的精神;2. 培养学生严谨认真、一丝不苟的工作态度,强化质量意识;3. 增强学生的团队合作意识,提高沟通与协作能力。
课程性质:本课程为机械设计制造及其自动化专业课程,以实践性、应用性为主。
学生特点:学生已具备一定的机械基础知识和齿轮传动原理,具备初步的动手操作能力。
教学要求:结合学生特点,采用理论教学与实验相结合的方式,注重培养学生的实践能力和创新意识。
通过本课程的学习,使学生能够将理论知识与实际应用相结合,达到学以致用的目的。
教学过程中,将目标分解为具体的学习成果,便于后续的教学设计和评估。
二、教学内容1. 理论教学:a. 二级斜齿轮减速器的基本结构及其工作原理(对应教材第3章第2节);b. 齿轮传动的基本计算方法及二级斜齿轮减速器参数设计(对应教材第4章第1-3节);c. 二级斜齿轮减速器的装配与调试方法(对应教材第6章第2节)。
2. 实践教学:a. 二级斜齿轮减速器拆装与观察(实验1,对应教材附录A);b. 二级斜齿轮减速器参数设计及计算(实验2,对应教材附录B);c. 二级斜齿轮减速器装配与调试(实验3,对应教材附录C)。
教学进度安排:1. 理论教学:共计12课时,分配如下:a. 第1-4课时:二级斜齿轮减速器基本结构及工作原理;b. 第5-8课时:齿轮传动基本计算方法及二级斜齿轮减速器参数设计;c. 第9-12课时:二级斜齿轮减速器装配与调试方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v .. . ..机械设计课程设计计算说明书设计题目:带式输送机班级:07机械5班学号:2设计者:李健立指导老师:卿艳梅目录1.题目及总体分析 (3)2.各主要部件选择 (4)3.电动机选择 (4)4.分配传动比 (5)5.传动系统的运动和动力参数计算 (6)6.设计高速级齿轮 (7)7.设计低速级齿轮 (12)8.链传动的设计 (16)9.减速器轴及轴承装置、键的设计 (18)1轴(输入轴)及其轴承装置、键的设计 (18)2轴(中间轴)及其轴承装置、键的设计 (24)3轴(输出轴)及其轴承装置、键的设计 (29)10.润滑与密封 (34)11.箱体结构尺寸 (35)12.设计总结 (36)13.参考文献 (36)一.题目及总体分析题目:设计一个带式输送机的减速器给定条件:由电动机驱动,输送带的牵引力4000F N =,运输带速度0.8/v m s =,运输机滚筒直径为315D mm =。
单向运转,载荷平稳,室内工作,有粉尘。
工作寿命为10年,每年300个工作日,每天工作12小时,具有加工精度8级(齿轮)。
减速器类型选择:选用展开式两级圆柱齿轮减速器。
特点及应用:结构简单,但齿轮相对于轴承的位置不对称,因此要求轴有较大的刚度。
高速级齿轮布置在远离转矩输入端,这样,轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯曲变形可部分地互相抵消,以减缓沿齿宽载荷分布不均匀的现象。
高速级一般做成斜齿,低速级可做成直齿。
整体布置如下:图示:5为电动机,4为联轴器,3为减速器,2为链传动,1为输送机滚筒,6为低速级齿轮传动,7为高速级齿轮传动,。
辅助件有:观察孔盖,油标和油尺,放油螺塞,通气孔,吊环螺钉,吊耳和吊钩,定位销,启盖螺钉,轴承套,密封圈等.。
二.各主要部件选择三.电动机的选择四.分配传动比五.传动系统的运动和动力参数计算目的过程分析结论传动系统的运动和动力参数计算设:从电动机到输送机滚筒轴分别为1轴、2轴、3轴、4轴;对应于各轴的转速分别为、、、;对应各轴的输入功率分别为、、、;对应各轴的输入转矩分别为、、、;相邻两轴间的传动比分别为、、;相邻两轴间的传动效率分别为、、。
轴号电动机两级圆柱减速器工作机1轴2轴3轴4轴转速n(r/min)n0=1440 n1=1440 n2=400 n3=145.45 n4=48.48 功率P(kw)P=4.0 P1=3.96 P2=3.764 P3=3.758 P4=3.366 转矩T(N·m)T1=26.263 T2=89.866 T3=246.743 T4=663.063 两轴联接联轴器齿轮齿轮链轮传动比i i01=1 i12=3.6 i23=2.75 i34=3传动效率ηη01=0.99 η12=0.97 η23=0.97 η34=0.96六.设计高速级齿轮1.选精度等级、材料及齿数,齿型1)确定齿轮类型.两齿轮均为标准圆柱斜齿轮2)材料选择.小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。
3)运输机为一般工作机器,速度不高,故选用7级精度4)选小齿轮齿数Z1=24,大齿轮齿数Z2=i1·Z1=3.6×24=86.4,取Z 2=87。
5)选取螺旋角。
初选螺旋角14=β 2.按齿面接触强度设计按式(10-21)试算,即321)][(12H E H d t t t Z Z u u T k d σεα+⋅Φ≥1)确定公式内的各计算数值 (1)试选6.1=t K(2)由图10-30,选取区域系数433.2=H Z (3)由图10-26查得78.01=αε 20.87αε= 12 1.65αααεεε=+= (4)计算小齿轮传递的转矩55411195.510/95.510 3.96/1440 2.626210T P n =⨯=⨯⨯=⨯ N mm ⋅(5)由表10-7选取齿宽系数1=Φd(6)由表10-6查得材料的弹性影响系数2/18.189MPa Z E =(7)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限MPa H 6001lim =σ,大齿轮的接触疲劳强度极限lim2550H MPa σ=(8)由式10-13计算应力循环次数91606014401(2830010) 4.147210h N njL ==⨯⨯⨯⨯⨯⨯=⨯ 992 4.147210/3.6 1.15210N =⨯=⨯(9)由图10-19查得接触疲劳强度寿命系数90.01=HN K 95.02=HN K (10)计算接触疲劳强度许用应力取失效概率为1%,安全系数为S=1,由式10-12得 MPa MPa S K H HN H 5406009.0][1lim 11=⨯==σσMPa MPa SK H HN H 5.52255095.0][2lim 22=⨯==σσMPa MPa H H H 25.5312/)5.522540(2/])[]([][21=+=+=σσσ2)计算(1)试算小齿轮分度圆直径t d 1,由计算公式得130.58t d mm ==(2)计算圆周速度 1130.5814402.30/601000601000t d n v m s ππ⨯⨯===⨯⨯(3)计算齿宽b及模数nt m1130.5830.58d t b d mm =Φ=⨯=11cos 30.58cos14 1.2424t nt d m mm Z β⨯===2.25 2.25 1.24 2.79/30.58/2.7910.96nt h m mm b h ==⨯===(4)计算纵向重合度βε903.114tan 241318.0tan 318.01=⨯⨯⨯=Φ=βεβZ d (5)计算载荷系数K 已知使用系数1=A K根据 2.30/v m s =,7级精度,由图10-8查得动载荷系数 1.11V K =由表10-4查得2232231.120.18(10.6)0.23101.120.18(10.61)10.231037.10 1.417H d d K bβ--=++ΦΦ+⨯=++⨯⨯+⨯⨯=由图10-13查得 1.34F K β= 假定100/A tK F N mm b<,由表10-3查得4.1==ααF H K K 故载荷系数11.111.4 1.42 2.21A V H H K K K K K αβ==⨯⨯⨯= (6)按实际的载荷系数校正所算得的分度圆直径,由式10-10a得1134.06d d mm ===(7)计算模数n m 11cos 34.06cos141.3824n d m mm Z β⨯=== 3.按齿根弯曲强度设计 由式10-17 32121][cos 2F S F d n Y Y Z Y KT m σεβαααβ⋅Φ≥ 1)确定计算参数(1)计算载荷系数11.111.4 1.34 2.08A V F F K K K K K αβ==⨯⨯⨯=(2)根据纵向重合度903.1=βε,从图10-28查得螺旋角影响系数 88.0=βY (3)计算当量齿数113322332426.27cos cos 148795.24cos cos 14V V Z Z Z Z ββ======(4)查取齿形系数由表10-5查得592.21=Fa Y 2 2.172Fa Y = (5)查取应力校正系数由表10-5查得596.11=Sa Y 2 1.798Sa Y =(6)由图10-20c查得,小齿轮的弯曲疲劳强度极限MPa FE 5001=σ大齿轮的弯曲疲劳强度极限MPa FE 3802=σ (7)由图10-18查得弯曲疲劳强度寿命系数 85.01=FN K 88.02=FN K(8)计算弯曲疲劳许用应力取弯曲疲劳安全系数S =1.4,由式10-12得MPa S K FE FN F 57.3034.150085.0][111=⨯==σσMPa S K FE FN F 86.2384.138088.0][222=⨯==σσ(9)计算大小齿轮的][F SaFa Y Y σ111222 2.592 1.5960.01363[]303.572.172 1.7980.01635[]238.86Fa Sa F Fa Sa F Y Y Y Y σσ⨯==⨯==大齿轮的数据大2)设计计算1.159n m mm ≥=对比计算结果,由齿面接触疲劳强度计算的法面模数n m 大于由齿根弯曲疲劳强度计算的法面模数,取n m =1.5mm ,已可满足弯曲强度。
但为了同时满足接触疲劳强度,须按接触疲劳强度算得的分度圆直径134.06d mm =来计算应有的齿数。
于是有11cos 34.06cos1422.031.5n d Z m β⨯=== 取122Z =,则211 3.62279.2Z i Z ==⨯= 取280Z =4.几何尺寸计算 1)计算中心距12()(2280) 1.578.842cos 2cos14n Z Z m a mm β++⨯===⨯将中心距圆整为79mm2)按圆整后的中心距修正螺旋角12()(2280) 1.5arccosarccos 14.452279n Z Z m a β++⨯===⨯因β值改变不多,故参数αε、βK 、H Z 等不必修正。
3)计算大、小齿轮的分度圆直径1122222 1.534.07cos cos14.4580 1.5123.92cos cos14.45n Z m d mm Z m d mmββ⨯===⨯===4)计算大、小齿轮的齿根圆直径1122 2.534.07 2.5 1.530.322.5123.92 2.5 1.5120.17f n f n d d m mm d d m mm=-=-⨯==-=-⨯=5)计算齿轮宽度1134.0734.07d b d mm =Φ=⨯=圆整后取235B mm =;140B mm = 5.验算1122262621541.634.07t T F N d ⨯=== 11541.645.24/100/34.07A t K F N mm N mm b ⨯==< 合适七.设计低速级齿轮1.选精度等级、材料及齿数,齿型1)确定齿轮类型.两齿轮均为标准圆柱直齿轮2)材料选择.小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。
3)运输机为一般工作机器,速度不高,故选用7级精度4)选小齿轮齿数Z1=24,大齿轮齿数Z2=i1·Z1=2.75×24=66。
2.按齿面接触疲劳强度设计由设计计算公式10-9a进行试算,即 3211)][(132.2H E d t t Z u u T k d σ+⋅Φ≥ 1)确定公式各计算数值 (1) 试选载荷系数3.1=t K (2) 计算小齿轮传递的转矩55421295.51095.510 3.768.97710400P T N mm n ⨯⨯⨯===⨯⋅(3) 由表10-7选取齿宽系数1=d φ(4) 由表10-6查得材料的弹性影响系数2/18.198MPa Z E = (5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限MPa H 6001lim =σ 大齿轮的接触疲劳强度极限lim2550H MPa σ=(6)由式10-13计算应力循环次数92160604001(2830010) 1.15210h N n jL ==⨯⨯⨯⨯⨯⨯=⨯ 992 1.15210/2.750.418910N =⨯=⨯(7)由图10-19查得接触疲劳强度寿命系数96.01=HN K 05.12=HN K(8)计算接触疲劳强度许用应力取失效概率为1%,安全系数为S=1,由式10-12得 MPa MPa S K H HN H 57660096.0][1lim 11=⨯==σσMPa MPa SK H HN H 5.57755005.1][2lim 22=⨯==σσ2)计算(1) 试算小齿轮分度圆直径t d 1,代入][H σ中的较小值160.00t d mm ≥=(2) 计算圆周速度v 1260.00400 1.256/601000601000t d n v m s ππ⨯⨯===⨯⨯ (3) 计算齿宽b1160.0060.00d t b d mm =Φ=⨯= (4) 计算齿宽与齿高之比b/h模数1160.00 2.524t nt d m mm Z === 齿高2.25 2.25 2.5 5.625/60.00/5.62510.67nt h m mm b h ==⨯===(5) 计算载荷系数K根据 1.256/v m s =,7级精度,由图10-8查得动载荷系数07.1=V K 假设mm N b F K t A /100/<,由表10-3查得1H F K K αα==由表10-2查得使用系数1=A K由表10-4查得2232231.120.18(10.6)0.23101.120.18(10.61)10.231063.39 1.422H d d K bβ--=++ΦΦ+⨯=++⨯⨯+⨯⨯=由图10-23查得35.1=βF K故载荷系数11.0711.422 1.522A V H H K K K K K αβ==⨯⨯⨯=(6)按实际的载荷系数校正所算得的分度圆直径,由式10-10a得1163.24d d mm ===(7)计算模数m11/63.24/24 2.63m d Z ===3.按齿根弯曲强度设计由式10-5得弯曲强度的设计公式为3211][2F S F d n Y Y Z KT m σαα⋅Φ≥ 1)确定公式内的计算数值(1) 由图10-20c查得小齿轮的弯曲疲劳强度极限MPa FE 5001=σ 大齿轮的弯曲疲劳强度极限MPa FE 3802=σ(2) 由图10-18查得弯曲疲劳寿命系数 85.01=FN K 88.02=FN K(3) 计算弯曲疲劳许用应力取失效概率为1%,安全系数为S=1.4,由式10-12得 1110.85500[]303.571.4FN FE F K MPa MPa S σσ⨯=== 2220.88380[]238.861.4FN FE F K MPa MPa S σσ⨯===(4) 计算载荷系数1 1.071 1.35 1.4445A V F F K K K K K αβ==⨯⨯⨯=(5)查取齿形系数由表10-5查得65.21=Fa Y 2 2.212Fa Y =(6)查取应力校正系数由表10-5查得58.11=Sa Y 2 1.774Sa Y =(7)计算大小齿轮的][F SaFa Y Y σ,并比较111222 2.65 1.580.01379[]303.572.212 1.7740.01643[]238.86Fa Sa F Fa Sa F Y Y Y Y σσ⨯==⨯==大齿轮的数据大2)设计计算1.95m mm ≥=对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,可取有弯曲强度算得的模数1.95,并就近圆整为标准值m=2.0mm。