MATLAB实现频域平滑滤波以及图像去噪代码
数字图像处理matlab代码
一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。
1、不同滤波器的频域降噪1.1 理想低通滤波器(ILPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况h=1; %通带变换函数else %点(i,j)在阻带内的情况h=0; %阻带变换函数ends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ILPF滤波后的图像(d=40)');运行结果:1.2 二阶巴特沃斯低通滤波器(BLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1/(1+(d/d0)^(2*n)); %BLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('BLPF滤波后的图像(d=40)');实验结果:1.3 指数型低通滤波器(ELPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=exp(log(1/sqrt(2))*(d/d0)^2);s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ELPF滤波后的图像(d=40)');运行结果:1.4 梯形低通滤波器(TLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=10;d1=160;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if (d<=d0)h=1;else if (d0<=d1)h=(d-d1)/(d0-d1);else h=0;endends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('TLPF滤波后的图像'); %为图像添加标题运行结果:1.5 高斯低通滤波器(GLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1*exp(-1/2*(d^2/d0^2)); %GLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('GLPF滤波后的图像(d=40)');运行结果:1.6 维纳滤波器[B,Cmap]=imread('eight.tif'); %读取MATLAB中的名为eight的图像I1=im2double(B);I2=imnoise(I1,'gaussian',0.01);I3=imnoise(I2,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I1) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I3) %加入混合躁声后显示图像title('加噪后的图像');I4=wiener2(I3);subplot(1,3,3);imshow(I4); %显示wiener滤波后的图像title('wiener滤波后的图像');运行结果:结论:理想低通滤波器,虽然有陡峭的截止频率,却不能产生良好的效果,图像由于高频分量的滤除而变得模糊,同时还产生振铃效应。
在Matlab中进行噪声抑制和降噪处理的方法
在Matlab中进行噪声抑制和降噪处理的方法引言:噪声是信号处理中的一个常见问题,它可以由多种因素引起,如传感器本身的噪声、电磁干扰等。
噪声的存在会影响到信号的质量和准确性,因此在许多应用中,我们需要进行噪声抑制和降噪处理。
对于Matlab来说,它提供了多种方法和工具来实现这一目标。
本文将介绍在Matlab中进行噪声抑制和降噪处理的方法。
一、频域滤波方法在Matlab中,频域滤波方法是一种常见且有效的噪声抑制和降噪处理方法。
该方法的基本思想是将信号从时域转换到频域,在频域中对信号进行滤波,并将滤波后的信号再转换回时域。
Matlab提供了丰富的频域滤波函数和工具,如fft、ifft、fftshift等。
通过这些函数,我们可以实现低通滤波、高通滤波、带通滤波等各种滤波操作,从而有效抑制和降噪信号。
二、时域滤波方法时域滤波方法是另一种常用的噪声抑制和降噪处理方法。
该方法的基本思想是在时域中对信号进行滤波,直接对信号进行抽样和滤波处理。
与频域滤波不同的是,时域滤波方法更加直观和易于理解。
在Matlab中,我们可以使用filter函数和fir1函数实现时域滤波。
其中,filter函数可以对信号进行FIR滤波,而fir1函数可以设计并生成FIR滤波器。
三、小波变换方法小波变换是一种非常有用的信号处理方法,它可以将信号在时间和频率上进行局部分析。
在噪声抑制和降噪处理中,小波变换可以帮助我们将信号分解成不同的频率成分,并对噪声进行抑制。
在Matlab中,我们可以使用wavelet函数和wdenoise函数来实现小波变换。
通过这些函数,我们可以选择不同的小波基函数,并设置适当的阈值来实现噪声抑制和降噪处理。
四、自适应滤波方法自适应滤波是一种根据信号特性自动调整滤波器参数的滤波方法。
它可以自动识别和适应信号中的噪声,并对其进行抑制和降噪处理。
在Matlab中,自适应滤波可以通过nlms函数和rls函数来实现。
这些函数基于LMS算法和RLS算法,可以快速、准确地对信号进行自适应滤波。
如何使用MATLAB进行频域滤波与去噪
如何使用MATLAB进行频域滤波与去噪使用MATLAB进行频域滤波与去噪引言:在数字信号处理领域,频域滤波与去噪是一项重要而常见的任务,在实际应用中有很多场景需要对信号进行去除噪声或者滤波处理。
MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具和函数,可以帮助我们完成频域滤波与去噪的任务。
本文将介绍如何使用MATLAB进行频域滤波与去噪,并给出一些实用的例子。
一、频域滤波频域滤波是一种常用的信号处理方法,它通过将信号从时域转换到频域,对频域上的信号进行滤波处理,再将滤波后的信号转换回时域得到最终结果。
MATLAB提供了丰富的函数和工具箱,可以方便地进行频域滤波。
1. FFT(快速傅里叶变换)傅里叶变换是将信号从时域转换到频域的一种数学方法,而快速傅里叶变换(FFT)是对离散信号进行傅里叶变换的一种快速算法。
在MATLAB中,可以使用fft函数完成FFT变换,如下所示:```matlabY = fft(X);```其中,X为输入信号,Y为傅里叶变换后的结果。
通过FFT变换,我们可以将信号转换到频域进行进一步的处理。
2. 频域滤波器设计MATLAB提供了fir1、fir2、butter等函数用于设计常见的滤波器,根据滤波器的需求选择合适的函数进行滤波器设计。
以fir1函数为例,它可以设计出一种FIR (有限脉冲响应)滤波器,实现对频域信号的滤波。
下面是一个示例代码:```matlaborder = 32; % 滤波器阶数cutoff = 0.2; % 截止频率b = fir1(order, cutoff); % FIR滤波器设计```在上述代码中,我们指定了滤波器的阶数和截止频率,通过调用fir1函数进行滤波器设计,并得到滤波器的系数b。
将滤波器系数应用到信号上,可以实现对信号的频域滤波。
3. 频域滤波器应用设计好滤波器后,我们可以将滤波器应用到信号上,实现频域滤波。
MATLAB 提供了fftfilt函数用于对信号进行频域滤波,如下所示:```matlabY = fftfilt(b, X);```其中,b为滤波器系数,X为输入信号,Y为滤波后的结果。
MATLAB中的信号降噪与滤波方法
MATLAB中的信号降噪与滤波方法概述:信号降噪和滤波是信号处理领域中的重要任务之一。
随着技术的发展,信号的采集和传输变得越来越容易,但同时也引入了噪声。
信号降噪和滤波方法可以用来抑制这些噪声,并提高信号质量。
在MATLAB中,有丰富的信号降噪和滤波函数和工具箱,为用户提供了便捷的信号处理工具。
1. 信号降噪方法1.1 均值滤波均值滤波是最简单和常用的信号降噪方法之一。
它通过计算信号中每个数据点周围一定邻域的均值来去除噪声。
MATLAB提供了函数`smoothdata`来实现均值滤波,用户可以根据自己的需求设定滤波窗口的大小。
1.2 中值滤波中值滤波也是一种常用的信号降噪方法,它通过将信号中每个数据点周围一定邻域的数据进行排序,然后选取中间值作为滤波结果。
MATLAB提供了函数`medfilt1`来实现中值滤波,用户可以指定滤波窗口的大小。
1.3 小波变换小波变换是一种多尺度分析方法,它可以将信号分解为不同尺度的频率成分。
小波变换在信号降噪中的应用非常广泛。
MATLAB提供了相关函数`wdenoise`来实现小波降噪,用户可以根据信号特点选择合适的小波基和降噪参数。
1.4 高斯滤波高斯滤波是一种线性、平滑的滤波方法,它通过卷积信号与一个高斯核函数来实现滤波。
MATLAB提供了函数`imgaussfilt`和`imgaussfilt2`来实现一维和二维高斯滤波。
2. 信号滤波方法2.1 低通滤波低通滤波器可以通过去除信号中高于一定频率的成分来实现滤波效果。
MATLAB中有多种低通滤波器的设计方法,比如巴特沃斯滤波器、切比雪夫滤波器等。
用户可以使用函数`butter`和`cheby1`来设计低通滤波器,并使用函数`filter`来应用滤波器。
2.2 高通滤波高通滤波器可以通过去除信号中低于一定频率的成分来实现滤波效果。
MATLAB中也提供了多种高通滤波器的设计方法,用户可以使用函数`butter`和`cheby1`来设计高通滤波器,并使用函数`filter`来应用滤波器。
matlab-空域和频域进行滤波处理
图像平滑处理的空域算法和频域分析1 技术要求对已知图像添加高斯白噪声,并分别用低通滤波器(频域法)和邻域平均法(空域法)对图像进行平滑处理(去噪处理),并分析比较两种方法处理的效果。
2 基本原理2.1 图像噪声噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。
实际获得的图像一般都因受到某种干扰而含有噪声。
引起噪声的原因有敏感元器件的内部噪声、相片底片上感光材料的颗粒、传输通道的干扰及量化噪声等。
噪声产生的原因决定了噪声的分布特性及它和图像信号的关系。
根据噪声和信号的关系可以将其分为两种形式:(1)加性噪声。
有的噪声与图像信号g(x,y)无关,在这种情况下,含噪图像f(x,y)可表示为f(x,y)=g(x,y)+n(x,y)(2)乘性噪声。
有的噪声与图像信号有关。
这又可以分为两种情况:一种是某像素处的噪声只与该像素的图像信号有关,另一种是某像点处的噪声与该像点及其邻域的图像信号有关,如果噪声与信号成正比,则含噪图像f(x,y)可表示为f(x,y)=g(x,y)+n(x,y)g(x,y)另外,还可以根据噪声服从的分布对其进行分类,这时可以分为高斯噪声、泊松噪声和颗粒噪声等。
如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声,一般为加性噪声。
2.2 图像平滑处理技术平滑技术主要用于平滑图像中的噪声。
平滑噪声在空间域中进行,其基本方法是求像素灰度的平均值或中值。
为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。
(1)空域法在空域中对图像进行平滑处理主要是邻域平均法。
这种方法的基本思想是用几个像素灰度的平均值来代替每个像素的灰度。
假定有一幅N*N 个像素的图像f(x,y),平滑处理后得到一幅图像g(x,y)。
g(x,y)由下式决定式中,x,y=0,1,2,…,N-1;S 是(x,y)点邻域中点的坐标的集合,但其中不包括(x,y)点;M 是集合内坐标点的总数。
MATLAB实现频域平滑滤波以及图像去噪代码
MATLAB实现频域平滑滤波以及图像去噪代码用MATLA实现频域平滑滤波以及图像去噪代码悬赏分:50 - 解决时间 :2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在 MATLAE t运行成功,必然给分。
具体的实验指导书上的要求如下 : 频域平滑滤波实验步骤1. 打开 Matlab 编程环境 ;2. 利用’imread '函数读入图像数据;3. 利用' imshow' 显示所读入的图像数据 ;4. 将图像数据由' uint8 ' 格式转换为' double ' 格式,并将各点数据乘以 (-1)x+y 以便 FFT 变换后的结果中低频数据处于图像中央;5. 用' fft2 ' 函数对图像数据进行二维 FFT 变换,得到频率域图像数据;6. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示频率域图像;7. 在频率图像上去除滤波半径以外的数据 (置 0);8. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示处理过的频域图像数据;9. 用' ifft2 ' 函数对图像数据进行二维 FFT 逆变换,并用' real '函数取其实部,得到处理过的空间域图像数据;10. 将图像数据各点数据乘以 (-1)x+y;11. 利用' imshow' 显示处理结果图像数据;12. 利用' imwrite '函数保存图像处理结果数据。
图像去噪实验步骤 :1. 打开 Matlab 编程环境;2. 利用' imread' 函数读入包含噪声的原始图像数据 ;3. 利用' imshow' 显示所读入的图像数据 ;4. 以 3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声图像进行滤波处理 ;5. 利用' imshow' 显示处理结果图像数据 ;6. 利用' imwrite ' 函数保存图像处理结果数据。
如何在MATLAB中进行信号降噪与滤波处理
如何在MATLAB中进行信号降噪与滤波处理信号降噪与滤波是信号处理领域中的重要课题,其中MATLAB作为一种强大的工具被广泛应用。
本文将介绍如何在MATLAB中进行信号降噪与滤波处理,并探讨其中的常用方法和技巧。
一、信号降噪的意义信号降噪是指通过一系列处理方法,将受到噪声污染的信号恢复到原始信号的过程。
在实际应用中,信号通常受到各种噪声干扰,如背景噪声、器件噪声等。
降噪处理可以提升信号的质量,提高信息的提取能力,对于提高系统的性能具有重要意义。
二、MATLAB中的信号降噪方法在MATLAB中,有很多常用的信号降噪方法,如均值滤波、中值滤波、小波降噪等。
1. 均值滤波均值滤波是一种简单而有效的滤波方法。
它通过取周围像素的平均值来抑制噪声。
在MATLAB中,可以使用`imfilter`函数来实现均值滤波。
下面是一个示例代码:```matlabimg = imread('image.jpg'); % 读入图像noise_img = imnoise(img,'salt & pepper',0.02); % 生成椒盐噪声图像filter_img = imfilter(noise_img, ones(3,3)/9); % 进行均值滤波imshow(filter_img); % 显示结果图像```2. 中值滤波中值滤波是一种非线性滤波方法,它通过取周围像素的中值来抑制噪声。
与均值滤波相比,中值滤波能更好地保留图像的边缘和细节。
在MATLAB中,可以使用`medfilt2`函数来实现中值滤波。
下面是一个示例代码:```matlabimg = imread('image.jpg'); % 读入图像noise_img = imnoise(img,'salt & pepper',0.02); % 生成椒盐噪声图像filter_img = medfilt2(noise_img, [3,3]); % 进行中值滤波imshow(filter_img); % 显示结果图像```3. 小波降噪小波降噪是一种基于小波分析的信号降噪方法。
10.matlab图像处理基础——图像滤波、图像裁剪、噪声
10.matlab图像处理基础——图像滤波、图像裁剪、噪声1、图像滤波 步骤1:使⽤fspecial函数创建⼆维滤波器 步骤2:使⽤函数imfilter进⾏滤波%% 滤波I = imread('cameraman.tif');subplot(3,3,1),imshow(I),title('原图像');% 均值滤波fs1 = fspecial('average');J1 = imfilter(I,fs1);subplot(3,3,2),imshow(J1),title('average');% 圆形领域fs2 = fspecial('disk');J2 = imfilter(I,fs2);subplot(3,3,3),imshow(J2),title('disk');% ⾼斯fs3 = fspecial('gaussian');J3 = imfilter(I,fs3);subplot(3,3,4),imshow(J3),title('gaussian');% ⾼斯-拉普拉斯fs4 = fspecial('log');J4 = imfilter(I,fs4);subplot(3,3,5),imshow(J4),title('log');% 拉普拉斯fs5 = fspecial('laplacian');J5 = imfilter(I,fs5);subplot(3,3,6),imshow(J5),title('laplacian');% motion模版fs6 = fspecial('motion');J6 = imfilter(I,fs6);subplot(3,3,7),imshow(J6),title('motion模版');% prewitt模版fs7 = fspecial('prewitt');J7 = imfilter(I,fs7);subplot(3,3,8),imshow(J7),title('prewitt模版');% sobel模版fs8 = fspecial('sobel');J8 = imfilter(I,fs8);subplot(3,3,9),imshow(J8),title('sobel模版');2、图像裁剪 处理结果 = imcrop(原始图像,裁剪区域) 裁剪区域:[xmin, ymin, width, height] %% 图像裁剪I = imread('cameraman.tif')[x,y] = size(I);subplot(2,3,1),imshow(I);% 裁剪左上⾓J1= imcrop(I,[0,0,100,100]);subplot(2,3,2),imshow(J1);% 裁剪右上⾓J2= imcrop(I,[156,0,100,100]);subplot(2,3,3),imshow(J2);% 裁剪左下⾓J3= imcrop(I,[0,156,100,100]);subplot(2,3,4),imshow(J3);% 裁剪右下⾓J4= imcrop(I,[156,156,100,100]);subplot(2,3,5),imshow(J4);% 裁剪中间J5= imcrop(I,[128,128,50,50]);subplot(2,3,6),imshow(J5);3、噪声(1)噪声 处理结果 = imnoise(原始图像,噪声类型)(2)⾼斯噪声%% ⾼斯噪声I = imread('lena.jpg');subplot(1,2,1),imshow(I);J = imnoise(I,'gaussian',0.01,0.1);subplot(1,2,2),imshow(J);(3)localvar噪声--类型1 ⽬标图像 = imnoise(原始图像,'localvar',V) 其中V是与原始图像⼤⼩相同的⼀个数组。
如何使用Matlab进行频域滤波
如何使用Matlab进行频域滤波频域滤波是一种常用的信号处理技术,它通过将信号从时域转换到频域,对频率响应进行调整,并将信号再转换回时域,以实现对信号的滤波处理。
在Matlab 中,我们可以利用其内置的函数和工具箱来实现频域滤波,本文将介绍如何使用Matlab进行频域滤波的基本步骤和常用方法。
一、频域滤波的基本原理频域滤波是基于傅里叶变换的信号处理技术,其基本原理是将信号从时域转换到频域,通过对频率响应进行调整,再将信号从频域转换回时域。
傅里叶变换是一种将信号从时域表示转换为频域表示的数学工具,它将一个信号表示为一系列正弦和余弦函数的线性叠加,可以将信号的频率特性和幅度特性直观地展示出来。
频域滤波通常包括两个步骤:频谱分析和滤波操作。
首先,我们需要对信号进行频谱分析,获取信号在频域的频率特性。
然后,根据需要对频谱进行调整,例如去除噪声、增强特定频率成分等。
最后,将调整后的频谱进行反变换,将信号从频域转换回时域,得到滤波后的信号。
二、利用Matlab进行频域滤波的基本步骤使用Matlab进行频域滤波的基本步骤包括信号读取、傅里叶变换、调整频谱、反变换和结果显示等过程。
下面将详细介绍每个步骤的操作方法。
1. 信号读取首先,我们需要将待处理的信号读取到Matlab中。
Matlab提供了多种函数用于读取不同格式的信号,例如`audioread()`用于读取音频文件、`imread()`用于读取图像文件等。
我们可以根据需要选择合适的函数进行信号读取。
2. 傅里叶变换在读取信号后,我们可以利用Matlab的内置函数`fft()`进行傅里叶变换。
该函数可以将信号从时域转换到频域,并返回频域表示的复数结果。
傅里叶变换后的结果通常包括实部和虚部两个部分,我们可以通过取模运算获取频谱的幅度特性。
3. 调整频谱在获取频谱后,我们可以根据需要对频谱进行调整。
常见的操作包括滤波、增强、降噪等。
例如,如果我们需要滤除一定频率范围内的噪声,可以将该频率范围内的频谱幅度设置为0;如果我们需要增强某个频率成分,可以将该频率对应的幅度进行放大。
使用MATLAB进行信号滤波和去除干扰
使用MATLAB进行信号滤波和去除干扰信号滤波是数字信号处理中一个重要的环节。
在实际应用中,信号经常会遭受到各种形式的干扰,例如噪声、其他信号的干扰等。
而滤波的目的就是从原始信号中去除干扰,提取出我们所关心的信号。
MATLAB作为一种功能强大的数学软件,提供了丰富的滤波函数和工具箱,以便我们方便地进行信号滤波操作。
下面将介绍一些常用的滤波方法和MATLAB中的应用。
首先,最常见的滤波方法之一是频率域滤波。
频率域滤波是将信号从时域转换到频域,通过操作频谱进行滤波。
在MATLAB中,我们可以使用fft函数对信号进行傅里叶变换,然后利用各种滤波器函数对频谱进行处理,最后再通过ifft函数将信号变换回时域。
常见的频率域滤波器有低通滤波器、高通滤波器、带通滤波器等。
我们可以根据信号的特点选择合适的滤波器类型和参数进行滤波操作。
除了频率域滤波,时域滤波也是常用的信号处理方法之一。
时域滤波是在时域上对信号进行直接处理,常见的时域滤波方法有移动平均滤波、中值滤波、卡尔曼滤波等。
在MATLAB中,我们可以使用filter函数对信号进行时域滤波。
例如,移动平均滤波可以通过设计一个移动窗口,然后将窗口内的数据取平均来平滑信号。
中值滤波则是通过将窗口内的数据排序,然后取其中位数值作为输出。
卡尔曼滤波则是一种递归滤波方法,可以用于估计信号的状态。
除了上述的常见滤波方法外,MATLAB还提供了一些高级滤波工具箱,例如信号处理工具箱、波形拟合工具箱等。
这些工具箱中包含了更多复杂和专业的滤波算法,可以用于处理特定领域的信号。
除了滤波方法之外,MATLAB还提供了一些降噪技术。
降噪是信号滤波中一个重要的任务,它的目标是将噪声从信号中去除,提高信号的质量。
MATLAB中常用的降噪技术有小波变换、奇异值分解等。
小波变换是一种多尺度的信号分析方法,它可以将信号分解成不同尺度的小波系数,然后通过处理小波系数来降低噪声。
奇异值分解则是将信号矩阵分解成三个矩阵的乘积,通过对奇异值进行阈值处理来降噪。
Matlab中的图像滤波方法与实例分析
Matlab中的图像滤波方法与实例分析引言图像滤波是数字图像处理中的一项重要技术,用于降低图像噪声、平滑图像以及增强图像细节。
在Matlab中,有多种图像滤波方法可供选择。
本文将对这些方法进行介绍和实例分析。
一、线性滤波方法1. 均值滤波均值滤波是一种最简单的线性平滑滤波方法。
其基本思想是用邻域内像素的平均值替代当前像素的值。
在Matlab中,可使用imfilter函数实现均值滤波。
下面是一个示例:```I = imread('example.jpg');filtered_img = imfilter(I, fspecial('average', 3));```2. 中值滤波中值滤波是一种非线性滤波方法,在处理含有椒盐噪声等图像时表现出较好的效果。
它的原理是用中值取代邻域内的元素值。
在Matlab中,使用medfilt2函数可以实现中值滤波。
下面是一个示例:```I = imread('example.jpg');filtered_img = medfilt2(I);```二、非线性滤波方法1. 双边滤波双边滤波是一种非线性滤波方法,可以同时平滑图像和保留边缘信息。
它的核心思想是考虑像素的空间距离和像素值的差异。
在Matlab中,可使用bfilter2函数实现双边滤波。
下面是一个示例:```I = imread('example.jpg');filtered_img = bfilter2(I, 3, 25, 10); % 参数可根据需要自行调整```2. 自适应中值滤波自适应中值滤波是一种根据像素邻域内像素值的分布特性动态调整滤波窗口大小的方法。
在Matlab中,可使用adpmedian函数实现自适应中值滤波。
下面是一个示例:```I = imread('example.jpg');filtered_img = adpmedian(I, 5); % 参数可根据需要自行调整```三、时域滤波方法1. Laplace滤波Laplace滤波是一种高频增强滤波方法,能够提取图像的细节信息。
matlab自适应高斯平滑算法滤除噪声
matlab自适应高斯平滑算法滤除噪声
在MATLAB中,可以使用自适应高斯平滑算法滤除噪声。
具体步骤如下:
1. 定义高斯滤波器大小:选择一个适当的高斯滤波器大小,该大小应该根据图像的大小和所需的平滑程度进行调整。
2. 创建高斯滤波器:使用MATLAB中的 `fspecial` 函数创建一个高斯滤波器。
例如,`h = fspecial('gaussian', [sizeX sizeY sigma])` 创建一个大小为 `[sizeX sizeY]`、标准差为 `sigma` 的高斯滤波器。
3. 应用高斯滤波器:使用MATLAB中的 `imfilter` 函数将高斯滤波器应用于图像。
例如,`filteredImage = imfilter(image, h)` 将高斯滤波器应用于名为 `image` 的图像。
4. 可选:调整输出图像的亮度:由于高斯滤波器可能会降低图像的亮度,因此可以使用MATLAB中的 `imadjust` 函数调整输出图像的亮度。
例如,`filteredImage = imadjust(filteredImage)`。
需要注意的是,自适应高斯平滑算法适用于去除噪声,但可能会导致图像细节的损失。
因此,在使用该算法时,应该根据实际情况进行权衡。
使用MATLAB进行图像滤波与去噪处理
使用MATLAB进行图像滤波与去噪处理引言:图像处理是现代科技中一个重要的领域,它在许多领域中发挥着关键作用,包括医学影像、遥感图像以及工业检测等。
图像滤波与去噪处理是图像处理中的一个核心问题,它能够提高图像质量、增强图像细节以及减少图像中的噪声。
MATLAB作为一个强大的科学计算软件,在图像处理领域也有着广泛的应用。
本文将介绍使用MATLAB进行图像滤波与去噪处理的方法和技巧。
一、图像滤波的基本概念和原理图像滤波是对图像进行平滑处理或者增强处理的一种方法。
其基本原理是通过在图像上应用一个滤波器,对图像的像素进行加权平均操作,以达到平滑或者增强的效果。
常见的滤波器包括均值滤波器、中值滤波器和高斯滤波器等。
其中,均值滤波器通过计算邻域像素的平均值来进行平滑操作,中值滤波器则通过计算邻域像素的中位数来进行平滑操作,而高斯滤波器则根据高斯函数来计算加权平均值。
在MATLAB中,可以使用imfilter函数来实现不同类型的图像滤波操作。
二、图像去噪的基本概念和原理图像噪声是由于图像获取、传输、存储或者显示等过程中引入的随机干扰信号。
去噪处理旨在恢复出原始图像并减少噪声的影响。
常见的图像去噪方法包括空域滤波方法和频域滤波方法。
其中,空域滤波方法是在图像的空间域上进行滤波操作,常用的方法有均值滤波、中值滤波和双边滤波等。
频域滤波方法则是在图像的频域上进行滤波操作,常用的方法有傅里叶变换和小波变换等。
在MATLAB中,可以使用medfilt2函数和wiener2函数来实现空域滤波方法。
三、MATLAB中的图像滤波和去噪函数MATLAB提供了多种用于图像滤波和去噪的函数,可以根据不同的需求选择合适的函数进行操作。
以下是对几个常用函数的简要介绍:1. imfilter函数:imfilter函数实现了各种图像滤波操作,包括线性和非线性滤波。
该函数可以接受多种滤波器类型,包括方形、圆形和自定义形状的滤波器。
用户可以根据具体需求选择不同的滤波器类型和参数。
MATLAB中的图像滤波和去噪方法
MATLAB中的图像滤波和去噪方法引言图像处理是计算机视觉和图像分析领域的一个重要组成部分。
在实际应用中,图像往往会受到各种噪声的干扰,因此需要对图像进行滤波和去噪处理,以提升图像的质量和清晰度。
MATLAB作为一款功能强大的科学计算软件,提供了多种图像滤波和去噪的方法,本文将介绍其中的几种方法及其原理和应用。
一、均值滤波均值滤波是一种常见的线性滤波方法,它可以降低图像中的噪声,同时也会导致图像的细节损失。
均值滤波的原理很简单,对于图像中的每个像素点,将其周围的邻域像素取平均值作为该像素的新值。
在MATLAB中,可以使用imfilter函数来实现均值滤波。
二、中值滤波与均值滤波不同,中值滤波是一种非线性滤波方法,它能够有效地去除图像中的椒盐噪声和脉冲噪声,同时保持图像的边缘细节。
中值滤波的原理是对每个像素点的邻域像素进行排序,然后选取排序后的中值作为该像素的新值。
在MATLAB 中,可以使用medfilt2函数来实现中值滤波。
三、高斯滤波高斯滤波是一种常见的线性滤波方法,它通过对图像进行加权平均来平滑图像,并且能够保持图像的边缘信息。
高斯滤波的原理是对图像中的每个像素点,计算其周围邻域像素的权重,并将其与对应的像素值相乘后求和得到新的像素值。
在MATLAB中,可以使用fspecial和imfilter函数来实现高斯滤波。
四、小波去噪小波去噪是一种基于小波变换的非线性滤波方法,它能够有效地降噪,并且能够保持图像的边缘和细节信息。
小波去噪的原理是将图像进行小波变换,然后根据小波系数的大小来过滤和修复图像。
在MATLAB中,可以使用wdenoise函数来实现小波去噪。
五、自适应滤波自适应滤波是一种非线性滤波方法,它能够根据图像的局部特征来自适应地调整滤波参数,从而实现更好的去噪效果。
自适应滤波的原理是对图像中的每个像素点,根据其邻域像素的方差来自适应地调整滤波器的参数,从而实现去噪。
在MATLAB中,可以使用adapthisteq和imfilter函数来实现自适应滤波。
如何使用Matlab进行信号滤波与降噪
如何使用Matlab进行信号滤波与降噪导言:信号处理是实际工程应用中一个非常重要的环节,而信号滤波与降噪是其中一个关键的步骤。
而Matlab作为一个功能强大的工具,提供了丰富的信号处理函数和工具箱,使得信号处理变得更加简单和高效。
本文将介绍如何使用Matlab进行信号滤波与降噪的方法和技巧。
一、信号滤波的基本概念信号滤波是指通过对信号进行一系列处理,将其中所含的噪声或者干扰减少到最小,使得信号更加清晰和有效。
在信号处理的应用中,信号滤波通常包括低通滤波、高通滤波和带通滤波等不同类型。
而Matlab提供了不同的函数和工具箱,可以方便地实现各种滤波操作。
二、信号滤波方法1. IIR滤波器IIR滤波器是一种广义的滤波器,包括了传统的巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
在Matlab中,通过使用`butter`、`cheby1`和`ellip`等函数可以方便地设计和实现IIR滤波器。
2. FIR滤波器FIR滤波器是一种常用的线性相位滤波器,具有稳定性和线性相位特点。
在Matlab中,可以使用`fir1`和`fir2`等函数设计和实现FIR滤波器。
此外,Matlab还提供了`fdesign`和`designfilt`等函数,使得滤波器的设计更加灵活和个性化。
三、信号降噪方法1. 经验模态分解(EMD)经验模态分解是一种非线性的信号分解方法,可以将信号分解成多个本征模态函数(IMFs),并通过选取合适的IMFs进行重构,从而实现信号的降噪。
在Matlab中,可以使用`emd`函数进行信号的EMD分解和重构。
2. 小波变换小波变换是一种基于时间-频率分析的方法,可以有效地将信号分解成时频域上的局部成分。
通过使用小波变换可以提取信号的特征,并对信号进行降噪处理。
在Matlab中,可以使用`wavedec`函数进行小波变换,使用`wthresh`函数进行小波系数的阈值处理,从而实现信号的降噪。
四、Matlab中的常用函数和工具箱除了上述提到的一些函数外,Matlab中还提供了许多用于信号滤波和降噪的函数和工具箱。
matlab频域滤波方法
matlab频域滤波方法Matlab频域滤波方法是一种处理数字信号的方法,可以有效地去除信号中的噪声,提高信号的质量。
在Matlab中,频域滤波方法可以通过快速傅里叶变换(FFT)算法实现。
下面是关于Matlab频域滤波方法的详细介绍和操作步骤:一、频域滤波方法简介频域滤波方法是一种将信号从时域转换到频域进行滤波的方法。
它将输入信号转换成频谱数据,通过对频域数据进行操作,最后再进行傅里叶逆变换(IFFT)得到原始信号的滤波结果。
频域滤波方法有两个主要的优点:第一,它可以采用更直观的方式来理解信号;第二,它可以通过简单地操作频域数据来实现滤波,大大降低了计算复杂度。
二、Matlab频域滤波方法实现步骤在Matlab中,实现频域滤波方法的步骤如下:步骤1:读取原始信号并进行FFT变换。
示例代码:x = wavread('original_signal.wav');N = length(x);X = fft(x);步骤2:生成一个滤波器(低通、高通或带通)并将其应用于频域数据。
生成滤波器的方法有多种,其中一种方法是利用Matlab中的fir1函数,示例代码如下:fc = 3000; % 设置截止频率fs = 44100; % 设置采样频率[b,a] = fir1(50, fc/(fs/2)); % 生成低通滤波器H = freqz(b,a,N/2); % 生成滤波器的频域响应Y = X.*H; % 将滤波器应用于频域数据步骤3:使用IFFT变换恢复滤波后的信号。
示例代码:y = ifft(Y);audiowrite('filtered_signal.wav', y, fs);三、总结Matlab频域滤波方法是一种处理数字信号的有效方法。
本文介绍了Matlab频域滤波方法的基本原理和操作步骤,让读者能够快速了解和掌握这种方法。
在实际应用中,还需要结合具体的信号处理需求来选择适当的滤波器和参数,以取得最佳的滤波效果。
MATLAB技术图像降噪教程
MATLAB技术图像降噪教程引言:图像降噪是数字图像处理中的重要任务之一,它旨在减少图像中的噪声和干扰,提高图像的质量和视觉效果。
MATLAB是一种广泛使用的工具,它提供了许多功能强大的工具箱和函数,用于数字图像处理和分析。
在本教程中,我们将介绍一些在MATLAB中进行图像降噪的常用技术和方法。
一、图像噪声简介图像噪声是由各种因素引起的图像中的不希望的非结构化信息。
噪声可以降低图像的质量,并影响后续的图像处理和分析。
主要的图像噪声类型包括高斯噪声、椒盐噪声和泊松噪声等。
了解图像噪声的类型和特点对于选择合适的降噪方法非常重要。
二、图像降噪方法1. 基于滤波器的降噪方法滤波器是一种常用的图像降噪方法。
MATLAB提供了许多经典的滤波器,如均值滤波器、中值滤波器和高斯滤波器。
这些滤波器通过对图像进行平滑或去除异常值的操作,来减少噪声的影响。
例如,可以使用MATLAB中的medfilt2函数来执行中值滤波,该函数可以有效地去除椒盐噪声。
2. 基于小波变换的降噪方法小波变换是一种多尺度分析方法,常用于图像降噪。
MATLAB提供了丰富的小波函数和工具箱,如wavedec2和waverec2。
通过对图像进行小波分解和重构,可以将噪声和信号分离,然后对噪声进行滤除。
使用小波变换进行图像降噪需要选择合适的小波基函数和阈值参数,以达到最佳的降噪效果。
3. 基于深度学习的降噪方法近年来,深度学习在图像处理领域取得了巨大的突破。
MATLAB提供了深度学习工具箱,可以用于训练和应用深度学习模型。
对于图像降噪任务,可以使用卷积神经网络(CNN)进行建模和训练。
通过使用大量的图像数据进行训练,深度学习模型可以自动学习图像中的噪声分布和特征,并实现高质量的图像降噪效果。
三、降噪实例演示我们将通过一个具体的图像降噪实例来演示MATLAB中的图像降噪技术。
假设我们有一张受到高斯噪声干扰的图像,我们将使用不同的方法对其进行降噪。
1. 基于滤波器的降噪方法首先,我们将使用均值滤波器对图像进行降噪。
频域滤波的matlab程序 -回复
频域滤波的matlab程序-回复频域滤波的MATLAB程序是一种图像处理技术,可以在频域上操作图像数据,以改善图像质量。
在本文中,我将一步一步详细解释频域滤波的原理和MATLAB程序的实现方法。
一、频域滤波简介频域滤波是一种图像处理方法,通过将图像从空域转换到频域,然后在频域中进行滤波操作,最后再将图像转换回空域,从而改善图像的质量。
频域滤波常用于图像去噪、边缘增强和图像增强等应用领域。
频域滤波的原理是基于信号处理的频谱分析理论,它利用图像中各个频率的成分之间的相互关系,通过在频域中对频率成分进行操作,可以达到对图像的滤波效果。
二、频域滤波的步骤频域滤波的步骤通常包括以下几个主要步骤:1. 载入图像数据:首先需要通过MATLAB的图像处理工具箱载入需要处理的图像数据。
可以使用`imread()`函数来读取图像数据,将其存储为一个`uint8`类型的矩阵。
2. 将图像转换到频域:使用`fft2()`函数将图像数据从空域转换到频域,得到一个复数矩阵,表示图像在频域中的频谱分布。
频率变换可以通过离散傅里叶变换(DFT)来实现。
3. 中心化频谱:将频谱矩阵的中心点移动到图像数据的中心,可以使用`fftshift()`函数来实现,这一步骤是为了后续的滤波操作做准备。
4. 设计滤波器:选择适合的滤波器类型和参数,可以根据具体的应用需求来选择。
常见的滤波器包括低通滤波器、高通滤波器和带通滤波器等。
5. 滤波器的应用:将滤波器应用于频谱矩阵,可以使用矩阵相乘的方式实现。
首先需要将滤波器与频谱矩阵进行点乘,然后再将结果乘以`fftshift()`函数得到的中心化频谱矩阵。
6. 还原图像:将滤波后的频域图像转换回空域,可以使用`ifft2()`函数将频域数据转换为空域数据。
这一步骤得到的是一个复数矩阵,可以使用`abs()`函数计算其绝对值,然后使用`uint8()`函数将其转换为`uint8`类型的矩阵。
7. 结果显示:最后将处理后的图像通过`imshow()`函数显示出来,以便观察滤波效果。
MATLAB滤波程序
1线性平滑滤波器用MA TLAB实现领域平均法抑制噪声程序:I=imread(' c4.jpg ');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title(' 添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3 模板平滑滤波');subplot(234),imshow(k2);title('5*5 模板平滑滤波');subplot(235),imshow(k3);title('7*7 模板平滑滤波');subplot(236),imshow(k4);title('9*9 模板平滑滤波');2.中值滤波器用MA TLAB实现中值滤波程序如下:I=imread(' c4.jpg ');I=rgb2gray(I);J=imnoise(I,'salt&pepper',0.02);subplot(231),imshow(I);title('原图像');subplot(232),imshow(J);title('添加椒盐噪声图像');k1=medfilt2(J); %进行3*3模板中值滤波k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波subplot(233),imshow(k1);title('3*3模板中值滤波');subplot(234),imshow(k2);title('5*5模板中值滤波');subplot(235),imshow(k3);title('7*7模板中值滤波');subplot(236),imshow(k4);title('9*9 模板中值滤波');3状态统计滤波器:ordfilt2函数Y=ordfilt2(X,order,domain)由domain中非0元素指定邻域的排序集中的第order个元素代替X中的每个元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
figure ;
imshow(LNoise) ;
title('image before fitlering') ;
figure
imshow(L)
title('filtered image') ;
imwrite(FilePath, 'filtered image.bmp', bmp)
filt = SF > k0;
A_filtered = filt .* A; % SF filtering
L_filtered = real(ifft2(ifftshift(A_filtered))); % IFFT
L_filtered = L_filtered(1: size(L, 1), 1: size(L, 2));
A = abs(A);
A = log10(A);
% spectral amplitude
subplot(2, 2, 2);
imagesc(fx, fy, A);
axis xy;
axis square;
set(gca, 'TickDir', 'out');
title('amplitude spectrum');
fy = ((m: -1: 1) - f0(1) + 1) / m;
fx = ((1: n) - f0(2)) / n;
[mfx mfy] = meshgrid(fx, fy);
% calculate radius
SF = sqrt(mfx .^ 2 + mfy .^ 2);
% SF-bandpass and orientation-unselective filter
悬赏分:50 - 解决时间:2008-11-8 14:21
是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。具体的实验指导书上的要求如下:
频域平滑滤波实验步骤
1. 打开Matlab 编程环境;
2. 利用’imread’ 函数读入图像数据;
imagesc(fx, fy, filt);
axis xy;
axis square;
set(gca, 'TickDir', 'out');
title('filter in the SF domain');
xlabel('fx (cyc/pix)');
ylabel('fy (cyc/pix)');
13回答者: 820802461
%%%%%%%%%%need to add (-1)x + y to L_filtered
% show
figure(1);
clf reset;
colormap gray;
% plot image
subplot(2, 2, 1);
imagesc(L);
colorbar;
axis square;
set(gca, 'TickDir', 'out');
title('original image');
xlabel('x');
ylabel('y');
imwrite(L, fullfile(FilePath, 'original image.bmp'), 'bmp') ;
% plot amplitude
fftsize = 2 .^ ceil(log2(size(L)));
% 2d fft
Y = fft2(X, fftsize(1), fftsize (2));
Y = fftshift(Y);
% obtain frequency (cycles/pixel)
f0 = floor([m n] / 2) + 1;
% the SF filter is unselective to orientation (doughnut-shaped in the SF
% domain).
[FileName,PathName,FilterIndex] = uigetfile ;
filename = fullfile(PathName, FileName) ;
title('filtered image');
xlabel('x');
ylabel('y');
imwrite(filtered, fullfile(FilePath, 'filtered image.bmp'), 'bmp');
%%%%%%%%%%%%%%%%%median filter%%%%%%%%%%%%%%%%
3. 利用’imshow’ 显示所读入的图像数据;
4. 将图像数据由’uint8’ 格式转换为’double’ 格式,并将各点数据乘以
(-1)x+y 以便FFT 变换后的结果中低频数据处于图像中央;
5. 用’fft2’ 函数对图像数据进行二维FFT 变换,得到频率域图像数据;
6. 计算频率域图像的幅值并进行对数变换,利用’imshow’ 显示频率域图
11. 利用’imshow’ 显示处理结果图像数据;
12. 利用’imwrite’函数保存图像处理结果数据。
图像去噪实验步骤:
1. 打开Matlab 编程环境;
2. 利用’imread’ 函数读入包含噪声的原始图像数据;
3. 利用’imshow’ 显示所读入的图像数据;
4. 以3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声
[X map] = imread(filename, fmt); % read image
L = double(X); % transform to double
%%%%%%%%%%%%% need to add (-1)x+y to L
% calculate the number of points for FFT (power of 2)
[FileName,PathName,FilterIndex] = uigetfile ;
filename = fullfile(PathName, FileName) ;
[LNoise map] = imreage
L = medfilt2(LNoise, [3 3]); % remove the noise with 3*3 block
imwrite(filt, fullfile(FilePath, 'filter in SF.bmp'), 'bmp') ;
% filtered image
subplot(2, 2, 4);
imagesc(L_filtered);
colorbar;
axis square;
set(gca, 'TickDir', 'out');
图像进行滤波处理;
5. 利用’imshow’ 显示处理结果图像数据;
6. 利用’imwrite’ 函数保存图像处理结果数据。
即使不是按这些步骤来的也没关系,只要是那个功能,能实现就OK,谢谢大家
%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%%
像;
7. 在频率图像上去除滤波半径以外的数据(置0);
8. 计算频率域图像的幅值并进行对数变换,利用’imshow’ 显示处理过的
频域图像数据;
9. 用’ifft2’ 函数对图像数据进行二维FFT 逆变换,并用’real’函数取其实
部,得到处理过的空间域图像数据;
10. 将图像数据各点数据乘以(-1)x+y;
xlabel('fx (cyc/pix)');
ylabel('fy (cyc/pix)');
imwrite(A, fullfile(FilePath, 'amplitude spectrum.bmp'), 'bmp') ;
% filter in the SF domain
subplot(2, 2, 3);