由自然光获得左旋和右旋偏振光的研究
【大学物理实验(含 数据+思考题)】偏振光的特性研究实验报告
实验3.4 光的偏振特性研究一、实验目的(1)了解自然光和偏振光的定义及特性。
(2)观察光的偏振现象,了解偏振光的产生方法和检验方法。
(3)了解波片的作用和用波片产生椭圆和圆偏振光及其检验方法。
二、实验仪器GSZ-Ⅱ光学平台(配有光具座、氦氖激光器及电源、扩束镜、偏振片、波片、观察屏等)。
三、实验原理1.自然光和偏振光的定义自然光:由普通光源所发射的光波,在光的传播方向上,任意一个场点,光矢量既有空间分布的均匀,又有时间分布的均匀性。
偏振光:光矢量相对于光的传播方向分布的非对称性。
部分偏振光:光波光矢量的振动在传播过程中只是在某一确定的方向上占有相对优势。
平面偏振光:光在传播的过程中光矢量的振动只限于某一特定的平面内。
圆偏振光:在光的传播方向上,任意一个场点光矢量以一定的角速度转动它的方向,但大小不变,其光矢量的末端在垂直于光传播方向的平面内的投影是一个圆。
椭圆偏振光:在光的传播方向上,任意一个场点光矢量即改变它的大小,又以一定的角速度转动它的方向,其光矢量的末端在垂直于光传播方向的平面内的投影是一个椭圆。
2.偏振光的产生及检验方法(1)平面偏振光的产生和检验方法:产生:本次实验中我们利用偏振片来生成平面偏振光。
偏振片是由具有二向色性的晶体制作成的,这些晶体对不同方向振动的光矢量具有不同的吸收本领,当自然光入射到这些晶体上时,透射光的光矢量仅在某一个特定的方向上,形成了平面偏振光。
检验:线性偏振光通过检偏器后,按照马吕斯定律,强度为I0的线偏振光通过检偏器,透射光的强度为I=I0cos2α,α=0/π时,透射光的强度最大,当α= (π/2)/(3π/2)时,透射光的强度为0,出现消光现象。
所以偏振器旋转一周,透射光的强度将发生强弱变化,并且消光两次,根据这个特点可以检测是否有平面偏振光。
(2)椭圆和圆偏振光的产生和检验方法:产生:波片是光轴平行于晶面的各向异性晶体薄片。
双折射是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。
偏振光的研究实验报告
偏振光的研究班级:物理实验班21学号:2120909006姓名:黄忠政光的偏振现象是波动光学的一种重要现象,它的发现证实了光是横波,即光的振动垂直于它的传播方向。
光的偏振性质在光学计量、光弹技术、薄膜技术等领域有着重要的应用。
一.实验目的:1.了解产生和检验偏振光的原理和方法;2.了解各种偏振片和波片的作用。
二.实验装置;计算机,格兰陵镜,1/2、1/4波片,调节支架,光电接系统,激光器。
三.实验原理:1.偏振光的概念和基本规律(1)偏振光的种类光波是一种电磁波,根据电磁学理论,光波的矢量E、磁矢量H和光的传播方向三者相互垂直,所以光是横波。
通常人们用电矢量E代表光的振动方向,而电矢量E和光的传播方向所构成的平面称为光波的振动面。
普通光源发出的光是由大量原子或分子的自发辐射所产生的,它们所发射的光的电矢量在各个方向振动的几率相同,称为自然光。
电矢量的振动方向始终沿某一确定方向的光,称为线偏振光或平面偏振光。
若电矢量在各个方向都振动,但在某个固定方向占绝对优势,这种光称为部分偏振光,电矢量的末端在垂直于光传播方向的任一平面内做椭圆(或圆)运动的光,称为椭圆(或圆)偏振光。
各种偏振光的电矢量E如图1所示,注意光的传播方向垂直于纸面。
(2)偏振光、波片和偏振光的产生通常的光源都是自然光,研究光的偏振性质,必须采用一些物理方法将自然光变成偏振光,这一转变过程称为起偏,获得线偏振光的器件称为起偏器。
线偏振光可用人造偏振片获得,如:某些有机化合物晶体具有二向色性,用这些材料制成的偏振片,能吸收某一方向振动的光,与此方向垂直振动的光则能通过,从而产生线偏振光;还可以利用光的反射和折射起偏的平行玻璃片堆;利用晶体的双折射特性起偏的尼科尔棱镜等。
椭圆偏振光、圆偏振光可用波片来产生,将双折射晶体割成光轴与表面平行的晶片,就制成波片了。
当波长为λ线偏振光垂直入射到厚度为d波片时,线偏振光在此波片中分成o光和e光,二者的电矢量E分别垂直于和平行于光轴,它们的传播方向相同,但在波片中的传播速度v0、v e却不同。
偏振光实验
偏振光实验一、实验目的1、通过产生和观察光的偏振状态,掌握产生与检验偏振光的原理和方法;2、验证布儒斯特定律,了解产生与检验偏振光的元件及仪器。
二、实验原理光是一种电磁波,而电磁波是横波,,它有电矢量E和磁矢量H,习惯上我们总是用电矢量E来代表光波。
光波中的电矢量与波的传播方向垂直,光的偏振现象清楚得显示了光的横波性。
光大体上有五种偏振状态,即线偏振光、圆偏振光、椭圆偏振光、自然光和部分偏振光。
其中线偏振光和圆偏振光由可看作椭圆偏振光的特例。
椭圆偏振光可视为两个沿同一方向传播的振动方向相互垂直的线偏振光(如图1所示,一个为电矢量,一个为)的合成:(1)式中A 表示振幅,为二光波的圆频率,表示时间,为波矢的数值,是两波的相对相位差。
合成矢量的端点在波面内描绘的轨迹为一椭圆。
椭圆的形状、取向和旋转方向,由,和决定。
当和时,椭圆偏振光变为圆偏振光;当,或者(或)=0时,椭圆偏振光变为线偏振光(图2)。
本实验着重观察的是光的各种偏振态的改变。
1、光的偏振态凡是电振动只限于某一确定方向和该方向的负方向的光称为线偏振光(亦称平面偏振光)。
在垂直于光传播方向的任一确定平面内,光波电矢量端点随时间作椭圆运动的光称作椭圆偏振光;作圆运动的称作圆偏振光。
以上三种统称完全偏振光,若在垂直于光传播方向的平面(简称迎光平面)内,电矢量的取向与大小都随时间作无规则变化,且各方向的取向几率相同,彼此之间没有固定的位相关系,则称为自然光。
自然光和线偏振光、圆偏振光、椭圆偏振光三者的任一个组合起来,就成为部分偏振光。
2、线偏振光的获得(1)反射起偏及透射起偏一束单色自然光从不同角度入射到介质表面,其反射光和折射光一般是部分偏振光。
当以特定角度即布儒斯特(Brewster)角入射时,不管入射光的偏振状态如何,反射光将成为线偏振光,其电矢量垂直于入射面。
空气中相对于玻璃界面的偏化角约为。
若使自然光以偏化角入射并通过一叠表面平行的玻璃片堆,由于自然光可以被等效为两个振动方向互相垂直、振幅相等且没有固定位相关系的线偏光,又因为光通过玻璃片堆中的每一个界面,都要反射掉一些振动垂直于入射面的线偏光,经多次反射,最后从玻璃片堆透射出来的光一般是部分偏振光,如果玻璃片数目较大,则透过玻璃片堆的就成为振动平行于入射面的线偏光了,这就是透射起偏法。
偏振光实验报告
偏振光实验报告实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图1、图2所示:图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光振幅为0A (图2所示),光强为I 0。
2P 与1P 夹角为θ,因此经2P 后的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==,此式为马吕斯定律。
实验数据及图形:从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o 光)和非常光(e 光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分解为o 光和e 光,最后投影在N 上,形成干涉。
P 1 P 2 图1 P A 0 θ 图2 波片 偏振片 偏振片考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-=⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:)cos cos sin 2cos sin 21(222220//δθθθθ+-=I I 。
其中θ为波片光轴与M 透振方向的夹角,δ为o 光和e 光的总相位差(同波晶片的厚度成正比)。
改变θ、δ中的任何一个都可以改变屏幕上的光强。
当δ=(2k+1)π(1/2波片)时,cos δ=-1,θ22sin 20I I =⊥,出射光强最大,2)21(sin 20//θ-=I I ,出射光强最小;当δ=[(2k+1)π]/2(1/4波片)时,cos δ=0,)2(sin 420θI I =⊥,)2sin 2(420//θ-=I I 。
光的偏振与光的旋光性质的分析
光的偏振与光的旋光性质的分析光是一种电磁波,具有多种性质。
其中,光的偏振和旋光性质是光的关键特征之一。
本文将对光的偏振和旋光性质进行详细分析,以便更好地了解光的行为和应用。
一、光的偏振性质光的偏振是指光波振动方向的特性。
在自然光中,光波振动方向是随机分布的,即各种方向上的光波振动都存在。
然而,通过适当的方法可以使光波振动只在某个特定方向上进行,这种光称为偏振光。
1. 偏振光的产生方法偏振光可以通过多种方法产生。
一种常见的方法是使用偏振片,它具有特殊的结构,只能允许一个方向的光通过,而其他方向的光则被阻挡。
另一种方法是利用干涉现象,通过让两束光发生干涉,并调整到合适的条件下,可以得到偏振光。
2. 偏振光的特性偏振光具有一些独特的特性。
首先,偏振光的振动方向是确定的,不会发生改变。
其次,偏振光只有振动方向与偏振方向相同的分量经过偏振片后才能透过,其他方向上的分量则被阻挡。
此外,偏振光的强度会随着观察位置的改变而发生变化。
二、光的旋光性质光的旋光性质是指光波通过某些物质时会发生的现象。
当光波穿过具有旋光性质的物质时,光波的振动方向会随着传播路径旋转,这种现象称为光的旋光。
1. 旋光现象的产生旋光现象可以通过手性分子或某些晶体引起。
手性分子具有非对称性,它们的结构中存在左旋和右旋两种形式。
当偏振光穿过这些分子时,会发生光的旋转现象。
此外,某些晶体由于晶格结构的非对称性也具有旋光性质。
2. 旋光现象的性质光的旋光现象有一些独特的性质。
首先,旋光现象与物质的旋转方向相关。
当旋光物质旋转方向为顺时针时,称为右旋光;反之,旋转方向为逆时针时,称为左旋光。
其次,旋光的角度与物质的性质、物质的浓度以及光波的波长有关。
三、光的偏振和旋光的应用光的偏振和旋光性质在现实生活和科学研究中具有广泛的应用。
1. 光学器件偏振光可用于各种光学器件,如偏振片、偏振镜、偏振板等。
这些器件在光的调制、滤波、检测等方面起到重要作用。
2. 生物化学分析光的旋光性质可用于生物化学分析,例如测定物质的含量和浓度,研究有机化合物的结构等。
偏振光检测及其研究论文
偏振光检测及其研究论文偏振光检测是一种利用光的偏振性质来检测和分析样品或光源性质的技术方法。
它广泛应用于物质的光学性质表征、生物体的显微镜成像以及通信和光子学领域等。
本文将介绍偏振光检测的原理、方法和应用,并介绍一些相关的研究论文。
偏振光是指具有特定振动方向的光。
光的偏振状态可以通过光的电场矢量的方向来描述。
常见的偏振状态有水平偏振、垂直偏振、左旋偏振和右旋偏振等。
偏振光的检测主要通过测量其偏振状态来实现。
常用的偏振光检测方法包括偏振片法、偏振电荷耦合器法、全息偏振显微术等。
偏振片法是一种最简单且常用的偏振光检测方法。
它利用偏振片对入射光进行滤波,只允许特定振动方向的光通过,并通过旋转或叠加多个偏振片来改变或确定入射光的偏振状态。
偏振电荷耦合器(Pockels cell)法是一种利用偏振电荷耦合器来调控光的偏振状态的方法。
通过改变偏振电荷耦合器的电场来调节光的偏振状态,实现快速精确的偏振光控制和检测。
全息偏振显微术是一种结合全息显微术和偏振光技术的方法。
它通过记录样品在特定偏振状态下的干涉图像来获得样品的偏振信息,并通过数字图像处理和分析来重建样品的偏振性质。
偏振光检测在许多领域中都有重要的应用。
在物质科学中,偏振光检测可以用于测量样品的光学常数、折射率、吸收系数等光学性质的研究。
在生物显微镜成像中,偏振光检测可以用于观察和分析生物组织的细胞结构和分子方向性的改变。
在通信和光子学领域,偏振光检测可以用于检测、控制和调节光信号的偏振状态,提高光通信和光子学器件的性能。
以下是一些关于偏振光检测的研究论文的简要介绍:1. "Polarization characteristics of light scattered by random media",作者:V. A. Feigin,发表于 Journal ofExperimental and Theoretical Physics Letters,1997年。
偏振光实验
偏振光实验一、实验目的1、通过产生和观察光的偏振状态,掌握产生与检验偏振光的原理和方法;2、验证布儒斯特定律,了解产生与检验偏振光的元件及仪器。
二、实验原理光是一种电磁波,而电磁波是横波,,它有电矢量E和磁矢量H,习惯上我们总是用电矢量E来代表光波。
光波中的电矢量与波的传播方向垂直,光的偏振现象清楚得显示了光的横波性。
光大体上有五种偏振状态,即线偏振光、圆偏振光、椭圆偏振光、自然光和部分偏振光。
其中线偏振光和圆偏振光由可看作椭圆偏振光的特例。
椭圆偏振光可视为两个沿同一方向传播的振动方向相互垂直的线偏振光(如图1所示,一个为电矢量,一个为)的合成:(1)式中A表示振幅,为二光波的圆频率,表示时间,为波矢的数值,是两波的相对相位差。
合成矢量的端点在波面内描绘的轨迹为一椭圆。
椭圆的形状、取向和旋转方向,由,和决定。
当和时,椭圆偏振光变为圆偏振光;当,或者(或)=0时,椭圆偏振光变为线偏振光(图2)。
本实验着重观察的是光的各种偏振态的改变。
1、光的偏振态凡是电振动只限于某一确定方向和该方向的负方向的光称为线偏振光(亦称平面偏振光)。
在垂直于光传播方向的任一确定平面内,光波电矢量端点随时间作椭圆运动的光称作椭圆偏振光;作圆运动的称作圆偏振光。
以上三种统称完全偏振光,若在垂直于光传播方向的平面(简称迎光平面)内,电矢量的取向与大小都随时间作无规则变化,且各方向的取向几率相同,彼此之间没有固定的位相关系,则称为自然光。
自然光和线偏振光、圆偏振光、椭圆偏振光三者的任一个组合起来,就成为部分偏振光。
2、线偏振光的获得(1)反射起偏及透射起偏一束单色自然光从不同角度入射到介质表面,其反射光和折射光一般是部分偏振光。
当以特定角度即布儒斯特(Brewster)角入射时,不管入射光的偏振状态如何,反射光将成为线偏振光,其电矢量垂直于入射面。
空气中相对于玻璃界面的偏化角约为。
若使自然光以偏化角入射并通过一叠表面平行的玻璃片堆,由于自然光可以被等效为两个振动方向互相垂直、振幅相等且没有固定位相关系的线偏光,又因为光通过玻璃片堆中的每一个界面,都要反射掉一些振动垂直于入射面的线偏光,经多次反射,最后从玻璃片堆透射出来的光一般是部分偏振光,如果玻璃片数目较大,则透过玻璃片堆的就成为振动平行于入射面的线偏光了,这就是透射起偏法。
偏振光干涉实验报告
偏振光干涉实验报告偏振光实验报告实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图 P1、图2所示:P1 P2 图1 图2 θA 0 图1中靠近光源的偏振片P1为起偏器,设经过P1后线偏振光振幅为A0(图2所示),光强为I0。
P2与P1夹角为?,因此经P2后的线偏振光振幅为A?A0cos?,2光强为I?A0cos2??I0cos2?,此式为马吕斯定律。
实验数据及图形:从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o光)和非常光(e光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M和N是两个偏振片,C是波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分解为o光和e光,最后投影在N上,形成干涉。
偏振片波片偏振片图3 分振动面干涉装置考虑特殊情况,当M⊥N时,即两个偏振片的透振方向垂直时,出射光强为:I0(sin22?)(1?cos?);当M∥N时,即两个偏振片的透振方向平行时,出射4I0(1?2sin2?cos2??2sin2?cos2?cos?)。
其中θ为波片光轴与M2I??光强为:I//?透振方向的夹角,δ为o光和e光的总相位差(同波晶片的厚度成正比)。
改变θ、δ中的任何一个都可以改变屏幕上的光强。
当δ=(2k+1)π(1/2波片)时,cosδ=-1,I??强最大,I//?02sin22?,出射光I0(1?sin2?)2,出射光强最小;当δ=[(2k+1)π]/2(1/4波片)时,cosδ=0,I??I0I(sin22?),I//?0(2?sin22?)。
《大学物理》光的偏振现象的研究实验
图2 二向色性起偏《大学物理》光的偏振现象的研究实验姓 名学 号 班 级桌 号 教 室实验日期 20 年 月 日 时段 指导教师一. 实验目的1. 观察光的偏振现象,加深对光偏振基本规律的认识;2. 了解产生和检验偏振光的基本方法;3. 验证马吕斯定律;4.1/2波片,1/4波片的研究; 5.利用旋光现象测定蔗糖溶液浓度. 二. 实验仪器导轨和机座, 带布儒斯特窗的氦氖激光器, 激光器架, 偏振片、波片架, 滑动座(4个), 光传感器(光电探头),光功率测试仪,偏振片(2个),1/2波片(波长632.8nm ),1/4波片(波三. 实验原理1. 偏振光的基本概念光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向。
通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向所构成的平面称为光的振动面。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。
振动面的取向和光波电矢量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,评 分教师签字图1 平面偏振光、自然光和部分偏振光图3 双折射起偏原理图人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称为右旋椭圆或右旋圆偏振光,反之为左旋。
通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。
这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。
将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。
实际上,起偏器和检偏器是互为通用的。
下面介绍几种常用的起偏和检偏方法。
2. 二向色性起偏、马呂斯定律、双折射起偏二向色性起偏:物质对不同方向的光振动具有选择吸收的性质,称为二向色性。
光的偏振实验
光的偏振实验光的干涉和衍射现象表明光是一种波动,但这些现象还不能告诉我们光是纵波还是横波, 光的偏振现象清楚的显示了光的横波性。
历史上,早在光的电磁理论建立以前,在杨氏双缝 实验成功以后不多年,马吕斯(E.LMalus )于1809年就在实验上发现了光的偏振现象。
【实验目的】1 •验证马吕斯定律;2. 产生和观察光的偏振状态;3. 了解产生与检验偏振光的元件和仪器; 4•掌握产生与检验偏振光的条件和方法。
【实验仪器】光源(白炽灯或可见光激光器)、起偏器、检偏器、光屏或光功率指示器、/4波片。
【实验原理】光波是一种电磁波,电磁波是横波,光波中的电矢量与波的传播方向垂直。
光的偏振现 象清楚的显示了光的横波性。
光波的电矢量E 和磁矢量H 相互垂直,且都垂直于光的传播方 向c (图1)。
通常用电矢量E 代表光的振动方向,并将电矢量E 和光的传播方向c 所构成的 平面称为光振动面。
我们知道光有五种偏振状态,即线偏振光、椭圆偏振光、圆偏振光、自然光和部分偏振 光。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光 (图2a )o 光源发射的光是由大量分子或原子辐射构成的。
单个原子或分子辐射的光是偏振图IE,H :c 三者之间的关系的,由于大量原子或分子的热运动和辐射的随机性,它 们所发射的光的振动面出现在各个方向的几率是相同 的。
一般说,在IX 秒内各个方向电矢量的时间平均值 相等,故这种光源发射的光对外不显现偏振的性质,称 为自然光(图2b )。
在发光过程中,有些光的振动面在 某个特定方向上出现的几率大于其他方向,即在较长时 间内电矢量在某一方向上较强,这样的光称为部分偏振 光(图2c )。
还有一些光,其振动面的取向和电矢量的大小随时间作有规图3a 椭圆偏振光的合成图2线偏振光、自然光及部分偏振光律的变化,电矢量末端在垂直于传播方向的平面上的轨迹是椭圆或圆,这种光称为椭圆偏振光或圆偏振光(图3d)。
偏振光的观察与研究实验报告数据(精选10篇)
偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。
由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。
在本次实验中,我们对偏振光的观察与研究进行了探究。
一、实验目的1. 学习偏振光的概念及其传播方式。
2. 观察线偏振器和波片对偏振光的影响。
3. 研究偏振光的干涉现象。
二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。
2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。
然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。
记录得到的光的强度值,并将其称为“T”。
3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。
观察手机屏幕的显示情况。
4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。
四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。
2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。
这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。
3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。
这说明手机屏幕与偏振光的作用原理是相似的。
4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。
五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。
光的偏振现象及其应用
光的偏振现象及其应用1. 光的偏振现象1.1 偏振的概念偏振是光波的一种特性,描述了光波中电场矢量在空间中的特定方向。
与非偏振光相比,偏振光中电场矢量的方向在空间中保持一致,而非偏振光中电场矢量的方向在空间中随机分布。
1.2 偏振的产生偏振光的产生主要有两种方式:自然偏振和人工偏振。
•自然偏振:自然光在传播过程中,由于经过物质的散射、反射等作用,使得光波中的电场矢量方向逐渐趋于一致,从而产生偏振现象。
•人工偏振:通过偏振器可以将自然光或非偏振光转化为偏振光。
偏振器只允许电场矢量在特定方向上的光通过,其他方向的光被阻挡。
1.3 偏振的表示方法偏振可以用偏振态来表示,偏振态包括线偏振、圆偏振和椭圆偏振。
•线偏振:电场矢量在空间中只有一个方向,呈直线状。
•圆偏振:电场矢量在空间中呈圆周分布,且大小恒定。
•椭圆偏振:电场矢量在空间中呈椭圆分布,长轴和短轴分别表示电场矢量在不同方向上的大小。
2. 光的偏振现象的实验验证2.1 马吕斯定律马吕斯定律是描述偏振光通过偏振器时,光强与偏振器偏振方向的关系。
当偏振器的偏振方向与偏振光的偏振方向平行时,光强达到最大;当偏振器的偏振方向与偏振光的偏振方向垂直时,光强减小为零。
2.2 起偏器和检偏器起偏器是一种使自然光或非偏振光变为偏振光的装置,它可以通过对光波的特定方向进行选择来实现。
检偏器是一种检测偏振态的装置,通过测量光强变化来判断光波的偏振方向。
2.3 偏振光的干涉当两束偏振光波重叠时,由于电场矢量的相互叠加,会产生干涉现象。
偏振光的干涉可以用来研究光波的偏振态和相位关系。
3. 光的偏振现象的应用3.1 光学仪器光的偏振现象在光学仪器中有着广泛的应用。
例如,偏振显微镜可以用来观察物质的偏振性质;偏振镜可以用来消除反射光和非偏振光源中的杂散光,提高图像质量。
3.2 液晶显示技术液晶显示技术(LCD)中,光的偏振现象被用来控制显示屏幕的亮度和色彩。
通过调节液晶分子的排列,可以改变光的偏振状态,从而实现图像的显示。
怎么用自然光获得线偏振光部分偏振光椭圆偏振光和圆偏振光
怎么用自然光获得线偏振光部分偏振光椭圆偏振光和圆偏振光线偏振光,椭圆偏振光和圆偏振光都是偏振光的种类。
自然光是一种随机产生的光,可以用来产生偏振光。
这里我们来介绍一下如何用自然光获得不同类型的偏振光。
一、线偏振光获得线偏振光的第一步是准备一个棱镜。
棱镜也叫做偏振棱镜,它的特点是有两个棱两个面,并且当光线过去的时候,它会把光线分开为两种型态。
其中一种通过棱镜被分解变成线偏振光,而另一种则沿着棱镜表面反射出去。
要获得线偏振光,可以将一份自然光从棱镜的波面传播进去,可以看到随着光的传播,光的偏振现象也出现了。
在这个过程中,我们可以看到棱镜表面会变成一枚晶格,随着距离的增加,晶格的正方形就会发送出来的光也一样在表面上会出现线偏振的现象,可以使用摄像机把它拍下来,以此来获得线偏振光。
二、椭圆偏振光要获得椭圆偏振光,需要准备一个旋转偏振滤波片。
它是一个半透明的片子,具有旋转偏振特性,这意味着当从外部把一些光线进行旋转的时候,片内的光线会由垂直向水平偏振。
要获得椭圆偏振光,先将一份自然光照射在旋转偏振滤波片上,接着不断地将这片滤光片旋转,可以看到随着角度的变化,片内会正好出现一些椭圆形的偏振现象,而且椭圆大小和光强度也会随着旋转角度而发生变化。
使用摄像机就可以把它拍下来,从而获得椭圆偏振光。
三、圆偏振光要获得圆偏振光,可以准备一个特殊的圆偏振片,它能够把光分解为圆偏振光。
为了获得圆偏振光,首先要将一份自然光线照射到圆偏振片上,然后旋转圆偏振片,随着旋转角度的增加,可以看到角度不断变化的圆形偏振现象,接着使用摄像机就可以把它拍下来,从而获得圆偏振光。
通过以上几种方法,就可以用自然光获得线偏振光、椭圆。
偏振光的分析
上,则经多次反射,最后从玻片堆透射出来的光也近于线偏振光。所有这些结论都可从菲涅 耳公式出发得到论证。
自然光经过偏振片,其透过光基本上成为线偏振光。这是由于偏振片具有选择吸收性的 缘故,入射光波中,电矢量 E 垂直于偏振片透光方向的成分被强烈吸收,而 E 平行于这光方 向的分量则吸收较少。
I 马吕斯定律: 强度为 的线偏振光通过检偏器后,透射光的强度 0
光为线偏振光。
【实验内容】
一、起偏与检偏、鉴别自然光与偏振光
1、在光源至光屏的光路中放入起偏器 P1 。旋转 P1 ,观察光屏上光斑强
度的变化情况并作出判断。
2、在起偏器 P1 后面再放入检偏器 P2 ,并固定 P1 的方向。旋转 P2 360 o ,观察光屏上
光斑强度的变化情况。观察出现几次消光,并作出解释。
θ 为 I = I0 cos2 θ 。式中 为入射偏振光的偏振方向与检偏器偏振方向之
I 间的夹角。当以光线传播方向为轴转动检偏器时,透射光强度 发生
I = I I = I 周期性变化。当θ = 0 o 时, 透
;当 θ
max
= 9 0 o 时,
透
(消
m in
I I I 光状态); 0o < θ < 90o 时, min < 透 < max
本实验中,着重考察的是光的各种偏振态的改变。 一、变自然光为线偏振光 一束自然光入射到介质表面,其反射光和折射光一般是部分偏振光。在特定入射角即
布儒斯特角θ B 下,反射光成为线偏振光,其电矢量垂直于入射面。若光线是由空气射到折
射率为 n(≈ 1.5) 的玻璃平面上,则θ B = tg −1n ≈ 57o 。如果自然光是以θ B 入射到玻璃片堆
大学旋光效应实验报告
实验数据显示,旋光角度与光强之间并没有明显的相关性,说明光强对旋光效应的影响 较小。
误差分析
• 测量误差:由于实验中使用的测量仪器存在一定的误差,导致测量结果存在一定的不确定性。
• 环境因素误差:实验过程中可能受到环境因素的影响,如温度、湿度等,也可能对实验结果产生一定的误差。 • 操作误差:实验操作过程中可能存在的误差,如读数误差、操作不当等,也可能对实验结果产生影响。 • 通过对实验结果的分析和误差分析,我们可以得出结论:旋光效应与光的波长有关,而与光强的影响较小。在实验过程中,应尽量减小测量仪器、环境因素和操作误差对实验结果的影
大学旋光效应实验报告
• 实验目的
CONTENTS
目
• 实验原理
录
• 实验步骤 • 实验结果与分析
• 结论与建议
01 实验目的
CHAPTER
理解旋光效应的概念
01
旋光效应:是指物质在偏振光通 过时,使偏振光的振动方向产生 旋转的现象。
02
了解旋光效应在日常生活和科学 领域中的应用,如生物、化学、 光学等。
响,以提高实验的准确性和可靠性。
05 结论与建议
CHAPTER
结论与建议
• 在大学物理实验中,我们进行了 一项关于旋光效应的实验。旋光 效应是一种物理现象,当光通过 某些物质时,会因为物质的旋光 性而发生偏转,这种现象称为旋 光效应。通过实验,我们深入了 解了旋光效应的原理,并出结论,并与理论值进 行比较,评估实验误差。
04 实验结果与分析
CHAPTER
实验数据记录
实验数据记录表
记录了实验过程中测量的各个角度下的旋光 角度,以及对应的波长和光强。
数据处理
偏振光的研究实验报告
偏振光的研究实验报告篇一:偏振光的观测与研究~~实验报告偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
【实验目的】1.观察光的偏振现象,加深偏振的基本概念。
2.了解偏振光的产生和检验方法。
3.观测布儒斯特角及测定玻璃折射率。
4.观测椭圆偏振光和圆偏振光。
【实验仪器】光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置图1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。
两者均垂直于光的传播方向。
从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。
在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。
光源发射的光是由大量原子或分子辐射构成的。
由于热运动和辐射的随机性,大量原-子或分子发射的光的振动面出现在各个方向的几率是相同的。
一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。
有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。
还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。
光的左旋右旋椭圆偏振特性
探索如何利用光的左旋和右旋椭圆偏振特性实 现更高效、更稳定的光学器件和光通信系统。
THANKS
感谢观看
光学通信
在光纤通信中,光的偏振态对信号的 传输质量和稳定性具有重要影响,左 旋和右旋椭圆偏振光可用于提高通信 系统的性能。
在物理学领域的应用
量子力学
光的左旋和右旋椭圆偏振特性与量子力学的角动量理论密切相关,对于深入理解量子力学的基本原理具有重要意 义。
原子和分子光谱学
在原子和分子光谱学中,光的左旋和右旋椭圆偏振光可以影响光谱的形状和强度,有助于研究原子和分子的能级 结构和相互作用。
光电探测器
用于检测光强,并将光信号转 换为电信号以便于记录和分析
。
实验步骤
2. 设置初始偏振状态
使用线性偏振片将光线调整为所 需的左旋或右旋椭圆偏振态。
1. 准备实验环境
搭建实验装置,确保所有设备正 确连接并校准。
3. 分束与反射
通过分束器将光线分成两束,分 别经过反射镜反射后再次合并。
4. 干涉与检测
03
左旋和右旋椭圆偏振光在传播过程中可能会受到不同介质的影
响,表现出不同的传播特性。
03
光的左旋右旋椭圆偏振特 性的实验验证
实验设备与材料
激光器
用于产生单色、高相干性的光 源,确保光线的偏振状态稳定
。
偏振片
用于检测和调整光线的偏振状 态,包括线性偏振片和圆偏振 片。
分束器
将一束光分成两束,以便于后 续的干涉和比较。
02
左旋和右旋椭圆偏振光是偏振态的一种,它们分别对应于沿 顺时针和逆时针方向旋转的椭圆。
左旋光和右旋光的电模式场-概述说明以及解释
左旋光和右旋光的电模式场-概述说明以及解释1.引言1.1 概述左旋光和右旋光是我们常见的两种光的极化方式,它们在电模式场方面存在一些显著的差异。
因此,本文将重点研究左旋光和右旋光的电模式场特征。
左旋光和右旋光的电模式场是指它们在电场分布和振动方向上的差异。
在某些光学材料或分子中,由于材料具有旋光性质,左旋光和右旋光的电场分布会呈现出相反的旋转方向。
本文的目的是通过研究左旋光和右旋光的电模式场,探讨它们在结构和性质上的特点,以及它们在光学传播和相互作用中的应用。
通过深入了解左旋光和右旋光的电场分布特征,我们可以更好地理解它们的物理本质,并为光学器件和传感器设计提供一定的指导。
本文的结构如下。
首先,在引言部分简要介绍左旋光和右旋光的概念以及本文的目的。
然后,正文部分将分别对左旋光的电模式场和右旋光的电模式场进行详细阐述。
在结论部分,我们将对左旋光和右旋光的电模式场进行总结,并对它们进行比较。
通过本文的研究,我们希望能够加深对左旋光和右旋光的电模式场特征的理解,并为相关领域的学术研究和应用提供一定的参考。
1.2 文章结构文章结构部分的内容可以编写如下:本文的结构主要包括引言、正文和结论三个部分。
引言部分主要对左旋光和右旋光的电模式场进行概述,并说明了本文的目的和意义。
首先介绍了左旋光和右旋光的基本定义和特点,以及其在光学领域中的重要应用。
接着简要介绍了文章的结构,以便读者能够清晰地了解整篇文章的内容安排。
正文部分将详细讨论左旋光和右旋光的电模式场。
首先介绍了左旋光的电模式场,其中包括三个要点。
在要点1中,详细介绍了左旋光的电场振幅和相位分布,并解释了其在电磁场中的特点。
要点2则探讨了左旋光的电场与磁场之间的相互作用,并阐述了其在光学器件设计和光信息传输中的应用。
最后,要点3讨论了左旋光电模式场的调制和控制方法,以及其在光通信和光储存等领域的应用。
随后,我们将继续讨论右旋光的电模式场,同样包括三个要点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:左旋偏振光;右旋偏振光;线偏振光; 波片 4 引言 在波动光学理论中,偏振光是一个重要的概念,而椭圆偏振光是偏振光的基 本形式, 椭圆偏振光的光矢量的大小和方向均随时间变化, 其端点的轨迹为椭圆。 对于椭圆偏振光而言, 左右旋椭圆偏振光的获得及它们之间的相互转换是一个较 为重要的部分。 本文的核心部分就是由自然光获得左右旋偏振光及其相互转换, 在大部分大 学教材及实验室中, 通常会采用由线偏振光垂直射向波片或菲涅尔组合棱镜来获 得,这两种方法无论是理论上还是实际操作中都较为简单易行。本文作为对左右 旋偏振光获得方法的总结,不仅要有常见的方法,也介绍了两种不常见的方法, 即由线偏振光在各向同性电介质界面上反射获得和由线偏振光在金属表面上反 射获得的方法,并对各种不同的方法进行了公式推导和原理分析。对于左右旋偏 振光之间的转换,从理论和实际上解决这一问题是有着十分重要的意义的。常规 的方法是通过添加某些器件来实现, 本文则利用斯托克斯矢量法分析了在不添加 任何器件的情况下, 直接利用获得左、 右旋偏振光的器件—— 4 波片,将左(右) 旋偏振光调为右(左)旋偏振光的方法。本文所阐述的方法与常规方法相比,更为 简便易行。 1 左旋和右旋偏振光的描述及如何判断 1.1 左旋和右旋偏振光 1.1.1 椭圆偏振光和圆偏振光 左右旋偏振光有左旋右旋椭圆偏振光和左旋右旋圆偏振光之分, 而圆偏振光 又是椭圆偏振光的特例,故以下主要以阐述椭圆偏振光为主。 椭圆偏振光指的是在光的传播方向上, 任意一个场点的电矢量既改变它的大
(1.3)
由于 E x 和 E y 的值总是在 Ax 和 Ay 之间变化,电矢量端点的轨迹与以 Ex Ax 和 E y Ay 为边界的矩形框相内切,如图(1.1)示:
y
Ay
Ax
x
图(1.1)
椭圆偏振光示意图
Байду номын сангаас
通常,它的主轴(长轴或短轴)与 x 轴构成 角, 的数值可以由下式求出
2
tan 2
2 Ax Ay
2 2 Ax Ay
cos
(1.4)
由上式知椭圆主轴的大小和取向与这两列光波的振幅 Ax 、 Ay 以及它们的相 位差 都有关系,且任意一个场点电矢量的端点沿椭圆运动的方向也与相位差
有关。如图(1.2)表示各种形态的椭圆,图上横坐标是 x 轴,纵坐标是 y 轴,
( g ) 、 (h) 所示的情况都是左旋椭圆偏振光。当相位差 为
是正椭圆偏振光,如图(1.2)中的 (c) 、 ( g ) 所示[3]。
的奇数倍时,得到 2
圆偏振光是椭圆偏振光在一定条件下的特例。即当 Ax Ay A0 ,
2
时,(1.3)式变成圆方程,这时在光的传播方向上任意一个场点电矢量端点的轨 迹是一个圆。这种光称为圆偏振光。
由 (1.2) 式表明, 任意场点电矢量端点的轨迹是一个椭圆, 椭圆的方程可从 (1.1) 式中消去因子 (t kz ) 后得到,即
2 2 Ey Ex E y Ex cos sin 2 2 2 2 Ax Ay Ax Ay
4
为例,
t kz 0 时, Ex Ax , E y Ay cos
4
2 Ay 2
t kz
2
时, E x 0 , E y Ay cos
3 2 Ay 4 2
1
小,又以角速度 (即光波的圆频率)均匀的转动它的方向;或者说电矢量的端 点在垂直波传播方向的平面内描绘出一个椭圆。 而圆偏振光指的是在光的传播方 向上,任意一个场点的电矢量以角速度 匀速地转动它的方向,但大小不变;或 者说电矢量的端点在垂直波传播方向的平面内描绘出一个圆[1]。 1.1.2 左旋和右旋偏振光的描述 椭圆偏振光可由两列频率相同,振动方向相互垂直的,且沿同一方向传播的 线偏振光叠加得到。假设光波沿 z 轴方向传播,则电矢量在 x 轴和 y 轴的投影可 表示为:
由自然光获得左旋和右旋偏振光的研究
摘要:本文全面阐述了左右旋椭圆偏振光,从它的描述、判断、获得及相互转换几
方面进行了讨论。 文中的重点部分是几种不同的由自然光获得左右旋偏振光的方法, 特别是 线偏振光在各向同性电介质面上反射和线偏振光在金属表面上反射两种方法, 这两方法在教 材与实验室中不常见。 文中对这两种方法进行了详尽的原理分析与推导, 并与文中的其他方 法做了比较,从而使我们能够更加深刻的理解获得左右旋偏振光的方法。
3
1.2 左旋和右旋偏振光的判断 由之前的分析可以知道,椭圆偏振光和圆偏振光又分别分为左旋和右旋两 类,是由合成它的两平面偏振光的相位差 决定的,与振幅 Ax 和 Ay 无关[4]。 假设光路中的某个场点在一个 t 的特殊时间段内, t kz 由 0 变到
,根 2
据电矢量 E x 和 E y 的合矢量始末方向变化就可判断它是左旋或者是右旋光。 以
Ex Ax cos(t kz )
[1]
Ey Ay cos(t kz )
[1]
(1.1)
故可得合成波的表达式为: E E x ex E y e y Ax cos(t kz )ex Ay cos(t kz )e y
(1.2)
图上所标注的 表示 E y 的振动超前于 E x 的相位。
y
x
0
(a)
4
(b)
2
(c)
3 4 (d)
(e)
5 4 (f)
3 2 (g)
7 4
(h)
2
(i)
图(1.2) 不同相位差所对应的椭圆旋向图
由以上分析可做如下概述: 当迎着光的传播方向观察时, 若一个场点的电矢量端点描出的椭圆沿顺时针 方向旋转,称之为右旋椭圆偏振光。如图(1.2)中的 (b) 、 (c) 、 (d ) 所示的情况 都是右旋椭圆偏振光。当迎着光的传播方向观察时,若一个场点的电矢量端点描 出的椭圆沿逆时针方向旋转,则称之为左旋椭圆偏振光。如图(1.2)中的 ( f ) 、