南宁市2019年中考数学4月模拟试题A卷

合集下载

考点01 正数和负数(原卷版)

考点01 正数和负数(原卷版)

考点01 正数和负数1.(广东省东莞市中堂星晨学校2019-2020学年七年级下学期4月线上测试数学试题)下列各数中,为负数的是( ) A .14B .14-C .4D .02.(2020年广西南宁市三美学校九年级学业水平考试收网(二)数学试题)四个数﹣2,2,﹣1,0中,负数的个数是( ) A .0B .1C .2D .33.(甘肃省白银市靖远县第七中学2019-2020学年七年级上学期期中数学试题)如果零上2C ︒记作2C +︒,那么零下3C ︒记作( ) A .2C +︒B .2C -︒C .3C +︒D .3C -︒4.(2020年江苏省常州溧阳市南渡初级中学中考二模数学试题)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作( ) A .+3 B .﹣3C .﹣13D .+135.(2019年四川省成都市金堂县中考数学二诊试题)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若收入60元记作+60元,则-20元表示( ) A .收入20元 B .收入40元C .支付40元D .支付20元6.(2020年内蒙古呼和浩特市回民区九年级二模数学试题)某种食品保存的温度是182-±(℃),下面几个温度中,不适合储存这种食品的是( ) A .14-℃ B .20-℃C .18-℃D .17-℃7.(2019年广东省深圳市中考数学预测试卷(三))一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是( ) A .100.30克 B .100.70克C .100.51克D .99.80克8.(2020年河北省沧州市青县九年级初中毕业考试数学试题)手机截屏显示吐鲁番盆地的海拔高度,它表示吐鲁番盆地( )A.高于海平面154米B.低于海平面﹣154米C.低于海平面154米D.海平面154米以下9.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时10.(2019年河北省邯郸市中考三模数学试题)筹算是中国古代的计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数图中算式一表示的是(+2)+(﹣4)=﹣2,按照这种算法,算式二被盖住的部分是()A.B.C.D.11.(2019年河北省秦皇岛市海港区中考数学模拟试卷(5月份))甲、乙、丙三个人玩一种游戏,每玩一局都会将三人随机分成两组.积分方法举例说明:第一局甲、乙胜出,分别获得3分,丙获得﹣6分;第二局甲胜出获得12分,乙、丙分别获得﹣6分,两局之后的积分是:甲15分,乙﹣3分,丙﹣12.如表是三人的逐局积分统计表,计分错误开始于()A .第三局B .第四局C .第五局D .第六局12.(云南省2020年中考数学试题)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为7+吨,那么运出面粉8吨应记为___________吨.13.(2020年北京市陈经纶中学分校九年级三模数学试题)某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如表:若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为______℃.14.(辽宁省锦州市2019-2020学年七年级上学期期末数学试题)某食品厂生产的袋装食品每袋的质量标准为500g ,市质量技术监督局从中随机抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:若该种食品的合格标准为5003g g ±,则该食品抽样检测的合格率为____________.15.(湖北省襄阳市襄州区2019-2020学年七年级上学期期末数学试题)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:(1)20箱冬桃中,与标准质量差值为﹣0.2千克的有筐,最重的一箱重千克(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?16.(吉林省吉林市2019-2020学年七年级上学期期末数学试题)空气质量指数是国际上普遍采用的定量评价空气质量好坏的重要指标,空气质量指数不超过50则空气质量评估为优.下表记录了我市11月某一周7天的空气质量指数变化情况.规定:空气质量指数50记为零,空气质量指数超过50记为正,空气质量指数低于50记为负.解答以下问题:(1)根据表格可知,星期四空气质量指数为,星期六比星期二空气质量指数高;(2)求这一周7天的平均空气质量指数.。

2019年中考初中数学应用题经典练习题

2019年中考初中数学应用题经典练习题

2019年4月13日初中数学试卷(初三-应用题)一、综合题(共8题;共85分)1. (10分) (2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1。

1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?2。

( 10分)春平中学要为学校科技活动小组提供实验器材,计划购买A型,B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元?(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?3。

(10分) 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元。

(1)若商场用50000元共购进型号手机10部,型号手机20部。

求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7。

5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?4。

( 10分)某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?5。

(10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.6。

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列说法中正确的是( )A .两个全等三角形一定成轴对称B .两个成轴对称的三角形一定是全等的C .三角形的一条中线把三角形分成以中线为对称轴的两个图形D .三角形的一条高把三角形分成以高线为对称轴的两个图形2.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A .1个B 2个C .3个D .4个3.如图所示,△ABC 中,AB=AC ,BE=CE ,则由“SSS”可直接判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BED ≌△CED D .以上答案都不对4.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OB B .1()2OB OA -C .1()2OA OB +D .以上都不对5.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°6.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积7.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤8.下列计算中,正确的是( )A .9338(4)2x x x ÷=B .23234(4)0a b a b ÷=C .2m 2m a a a ÷=D .2212()4c 2ab c ab ÷-=- 9.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( )A .3个B .2个C .1个D .0个10. 一个三角形的三个内角中,至少有( )A . 一个锐角B . 两个锐角C . 一个钝角D .一个直角11.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖 12.如图1所示是一张画有小白兔的卡片,卡片正对一面镜子,这张卡片在镜子里的影像是下列各图中的( )图1 A . B . C . D .13.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:2 14.若关于x 的方程1011--=--m x x x 有增根,则m 的值是( )。

最新2019年初中数学100题练习试卷 中考模拟试题416990

最新2019年初中数学100题练习试卷 中考模拟试题416990

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.当x=-2时,二次函数21-312y x x =-+的值是( ) A .9 B .8 C .6 D .52.如图,直线 AB 、CD 被第三条直线EF 所截,∠1=80°,下列论述正确的是( )A .若∠2=80°,则 AB ∥CDB .若∠5=80°,则 AB ∥CDC .若∠3= 100°则 AB ∥CD D .若∠4=80°,则 AB ∥CD3. 如图,1l ∥2l ,将 AB 沿2l 向右平移 1.5 cm 后至 CD 位置,若AB=2,则 CD 等于( )A .1.5cmB .2 cmC .3.5 cmD .1.5 cm 或2 cm4.如图,已知 AB ∥CD ,∠A = 70°,则∠1 的度数为( )A . 70°B . 100°C .110°D . 130°5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm6.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A.15°B.30°C.50°D.65°7.有下列长度的三条线段:①3、3、1;②2、2、4;③4、5、6;④4、4、3. 其中能构成等腰三角形的有()A.①④B.①②④C.②④D.①②8.数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是()A. 5,4 B.4,5 C.5,5 D.4.5,49.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是()A.30元B.35元C.50元D.100元10.样本3、6、4、4、7、6的方差是()A.12 B.C.2 D11.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为()A.50B.80C.65或50D.50或8012.”时,最恰当的假设是()A B C D13.从 1、2、3、…、9这九个数字中,任取一个数字是偶数的概率是()A. 0 B.49C.12D.5914.如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P(甲)表示小球停在甲中黑色三角形上的概率,P(乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是()A.P(甲)>P(乙)B. P(甲)= P(乙)C. P(甲)< P(乙)D. P(甲)与P(乙)的大小关系无法确定。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

2019届九年级数学 中考模拟试卷含解析

2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。

2019年中考数学:精选25道 最新圆 填空题 专选培优练习 (含答案)

2019年中考数学:精选25道 最新圆 填空题 专选培优练习 (含答案)

精选25道最新圆填空题专选培优练习1.(2019•雨湖区一模)如图,点A、B、C、D在圆O上,∠A=140°,则∠C=.2.(2019•吴兴区校级一模)如图,一个圆形硬币刚好和一块三角尺的两边相切,其中与AB 边的切点为D,若∠C=30°,BC=6,BD=,则圆形硬币的半径为.3.(2019•简阳市模拟)如图,△ABC内接于⊙O.AB为⊙O的直径,BC=3,AB=5,D、E 分别是边AB、BC上的两个动点(不与端点A、B、C重合),将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上(包含端点A、C),若△ADB′为等腰三角形,则AD的长为.4.(2019•宝山区二模)如果圆O的半径为3,圆P的半径为2,且OP=5,那么圆O和圆P 的位置关系是.5.(2019•天桥区一模)如图,在3×3的方格纸中,每个小方格都是边长为l的正方形,点O,A,B均为格点,则的长等于.6.(2019•青羊区模拟)如图,矩形ABCD中,AB=8,BC=4,以CD为直径的半圆O与AB 相切于点E,连接BD,则阴影部分的面积为.(结果保留π)7.(2019•江北区模拟)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E三点,F是弧EC上的一个点,且∠B=24°,则∠AFC=.8.(2019•延庆区一模)如图,⊙O的直径AB垂直于弦CD,垂足是E,已知∠A=22.5°,OC=2,则CD的长为.9.(2019•金山区二模)一个正多边形的对称轴共有10条,且该正多边形的半径等于4,那么该正多边形的边长等于.10.(2019•路桥区一模)如图,点B,C,F在⊙O上,∠C=18°,BE是⊙O的切线,B为切点,OF的延长线交BE于点E,则∠BEO=度.11.(2019•香坊区一模)如图,AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O 于点C,E是AB上一点,延长CE交⊙O于点D,则∠CDB的度数是°.12.(2019•哈尔滨模拟)某扇形的面积为6π,弧长为3π,此扇形的圆心角的度数为.13.(2019•信阳一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.14.(2019•盐城一模)如图,已知正方形ABCD,边长为4cm,边CD的中点E,连结AE,将△ADE绕顶点A顺时针方向旋转90°到△ABF,则线段DE所扫过的面积为cm2.15.(2019•闵行区二模)如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD =4,AB=16,那么OC=.16.(2019•沈河区校级模拟)如图,O点在梯形ABCD的下底AB上,且⨀O与梯形的上底及两腰都相切,若AB=5cm,CD=2cm,则梯形ABCD的周长等于.17.(2019•河南一模)如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C 顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.18.(2019•莆田模拟)等宽曲线是这样的一种几何图形,它们在任何方向上的直径(或称宽度)都是相等的.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧则弧AB,弧BC弧AC组成的封闭图形就是“莱洛三角形”.莱洛三角形是“等宽曲线”,用莱洛三角形做横断面的滚子,能使载重物水平地移动而不至于上下颠簸.诺AB=3,则此“莱诺三角形”的周长为.19.(2019•铁西区三模)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=1,则⊙O的半径长为.20.(2019•永康市模拟)木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=2cm,BC=4cm,则⊙O的半径等于cm.21.(2019•娄底模拟)如图,在△ABC中,∠ACB=90°,AC=1,BC=,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于(结果保留π)22.(2019•江岸区校级模拟)如图,已知四边形ABCD外接圆⊙O的半径为5,对角线AC与BD交于点E,BE=DE,AB=BE,且AC=8,则四边形ABCD的面积为.23.(2019•安徽一模)如图.点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O 于C.若AP=8,PB=2,则PC的长是.24.(2019•安徽模拟)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,连接OC与半圆相交于点D,则CD的长为.25.(2019•慈溪市模拟)如图,已知半圆O的直径AB为12,OP=1,C为半圆上一点,连结CP.若将CP沿着射线AB方向平移至DE,若DE恰好与⊙O相切于点D,则平移的距离为.参考答案1.解:∵点A、B、C、D在圆O上,∴∠A+∠C=180°,∴∠C=40°,故答案为:40°.2.解:设圆心为O,连接OD,OA,∵∠C=30°,∠ABC=90°∴tan C==,∠BAC=60°∴AB=2,∵BD=,∴AD=AB﹣BD=,∵AB,AC都与⊙O相切,∴∠DAO=∠BAC=30°,OD⊥AD,∴tan∠DAO=,∴DO=1,故答案为:1.3.解:∵AB为⊙O的直径,∴∠C=90°,∵BC=3,AB=5,∴AC=4,∵将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上,∴BD=B′D,BE=B′E,若△ADB′为等腰三角形,①当AB′=DB′时,设AB′=DB′=BD=x,则AD=5﹣x,如图1,过B′作B′F⊥AD于F,则AF=DF=AD,∵∠A=∠A,∠AF B′=∠C=90°,∴△AFB′∽△ACB,∴=,∴=,解得:x=,∴AD=5﹣x=;②当AD=DB′时,则AD=DB′=BD=AB=;③当AD=AB′时,如图2,过D作DH⊥AC于H,∴DH∥BC,∴==,设AD=5m,∴DH=3m,AH=4m,∴DB′=BD=5﹣5m,HB′=5m﹣4m=m,∵DB′2=DH2+B′H2,∴(5﹣5m)2=(3m)2+m2,∴m=,m=(不合题意舍去),∴AD=,故答案为:或或.4.解:∵圆O的半径为3,圆P的半径为2,且OP=5,∴OP=R+r=2+3=5,∴两圆外切,故答案为:外切.5.解:在△ACO和△ODB中,,∴△ACO≌△ODB(SAS)∴∠AOC=∠OBD,∵∠BOD+∠OBD=90°,∴∠BOD+∠AOC=90°,即∠AOB=90°,由勾股定理得,OA=OB==,∴的长==π,故答案为:π.6.解:连接OE,如图,∵以CD为直径的半圆O与AB相切于点E,∴OD=4,OE⊥BC,易得四边形OEAD为正方形,∴由弧DE、线段AE、AD所围成的面积=,∴阴影部分的面积:,故答案为:4π.7.解:如图,连接AE.∵∠BAC=90°,BE=CE,∴AE=BE=CE,∴∠B=∠EAB=24°,∴∠AEC=∠B+∠EAB=48°,∴∠AFC=∠AEC=48°,故答案为48°.8.解:∵直径AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=2,∴x2+x2=4,解得:x=,即:CE=2,∴CD=2,故答案为:29.解:∵正多边形的对称轴共有10条,∴这个正多边形是正十边形,设这个正十边形的中心为O,则OA=OB=4,∠AOB==36°,∵OA=OB,∴∠OAB=∠B=72°,作AC平分∠OAB交OB于C,则∠OAC=∠O,∠ACB=∠B,∴OC=CA=AB,△ABC∽△OAB,∴=,即AB2=4×(4﹣AB),解得,AB1=2﹣2,AB2=﹣2﹣2(舍去),∴AB=2﹣2,故答案为:2﹣2.10.解:∵∠C=18°,∴∠BOE=36°,∵BE是⊙O的切线,∴∠OBE=90°,∴∠OEB=90°﹣36°=54°,故答案为:5411.解:连接AC,∵由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABT=40°,∴∠CDB=∠CAB=40°,故答案为:4012.解:设扇形的圆心角是n°,半径为R,∵扇形的面积为6π,弧长为3π,∴R=6π,解得:R=4,则由扇形的面积公式得:=6π,解得:n=135,即扇形的圆心角是135°,故答案为:135°.13.解:∵在Rt△ABC,∠C=90°,∠A=30°,AC=,∴∠B=60°,BC=tan30°×AC=1,阴影部分的面积S=S扇形ACE +S扇形BCD﹣S△ACB=+﹣=﹣,故答案为:﹣.14.解:由旋转得:△ADE≌△ABF,∵四边形ABCD是正方形,∴∠ADE=90°,AD=CD=4,∵E是CD的中点,∴DE=2,∴AE==2,∴线段DE所扫过的面积=S扇形AEF +S△ADE﹣S△ABF﹣S扇形ADB=S扇形AEF﹣S扇形ADB=﹣=π,故答案为:π;15.解:∵半径OC垂直于弦AB,∴AD=AB=8,∠ADO=90°,设CO=x,则AO=x,DO=x﹣4,x2=82+(x﹣4)2,解得:x=10,∴CO=10,故答案为:10.16.解:设⨀O与梯形的上底及两腰的切点分别为E、F、G,如图,连接OE,OF,作DH⊥AB于H,∴OE⊥CD,∵AB∥CD,∴OE⊥AB,∴DH∥OE,∴DH=OE,∵OE=OF,∴OF=DH,在△ADH和△AOF中∴△AD H≌△AOF(AAS),∴AD=OA,∴AD+BC=AB,∵AB=5cm,CD=2cm,∴梯形ABCD的周长=2AB+CD=12cm,故答案为12cm.17.解:如图1,过A作AD⊥BC于D∵∠BAC=120°,AB=AC=4,∴AD=2,BD=CD=2∴BC=4∵根据旋转的性质知∠BCB'=∠ACA'=60°,△ABC≌△A'B'C,∴S△ABC =S△A'B'C,∴S阴影=S扇形CB'B+S△A'B'C﹣S△ABC﹣S扇形CA'A=﹣=.故答案是:π.18.解:连接OB、OC,作OD⊥BC于D,∵△ABC是正三角形,∴∠BAC=60°,∴的长为:=π,∴“莱洛三角形”的周长=π×3=3π.故答案为3π19.解:如右图所示,连接AO,BO,DO,BD,连接AO交BD于点E,∵⊙O为四边形ABCD的外接圆,O为圆心,∠BCD=120°,AB=AD=1,∴∠BAD=180°﹣∠BCD=60°,∠AOB=∠AOD,∴∠BOD=2∠BAD=120°,∴∠AOB=∠AOD=120°,∴AB=BD=AD=1,∴△ABD是等边三角形,∴AE⊥BD,AE平分BD,∴∠BOE=60°设OA=a,则OE=a,BE=,∴a2=,解得,a=,故答案为:.20.解:设圆的半径为rcm,如图,连接OC、OA,作AD⊥OC,垂足为D.则OD=(r﹣2)cm,AD=BC=4cm,在Rt△AOD中,r2=(r﹣2)2+42解得:r=5.即该圆的半径为5cm.故答案为:5.21.解:∵∠ACB=90°,AC=1,BC=,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为,故答案为:.22.解:∵BE=DE,AB=BE,∴AB2=2BE2=BE•BD,∴AB:BE=BD:AB,又∠EBA=∠ABD,∴△ABE∽△DBA,∴∠ADB=∠BAE,∵∠ADB=∠ACB,∴∠ACB=∠CAB,∴AB=BC.连接BO,交AC于H,连接OA,∵AB=BC,∴BO⊥AC,∴CH=AH,∴CH=AH=AC=4∵AO=5,∴OH==3,BH=OB﹣OH=5﹣3=2.=AC•BH=×5×2=5,∴S△ABC∵E是BD的中点,∴S △ABE =S △ADE ,S △BCE =S △DCE ,∴S △ABC =S △ADC ,∴S 四边形ABCD =2S △ABC =10,故答案为10.23.解:延长CP 交圆于一点D , ∵PC ⊥OP ,∴PC =PD (垂径定理),∴PC 2=PA •PB ,∵AP =8,PB =2,∴PC 2=2×8,解得:PC =4.故答案为:4.24.解:如图,设⊙O 与AC 相切于点E ,连接OE ,则OE ⊥AC , ∵AB =10,AC =8,BC =6,∴AB 2=AC 2+BC 2,∴∠C =90°,∴BC ⊥AC ,∴OE ∥BC ,∵AO =OB ,∴AE =EC =AC =4,∵OA =AB =5,∴OE =3,∴OD=3,在Rt△ABC中,OC是斜边AB上的中线,∴OC=AB=5,∴CD=OC﹣OD=5﹣3=2.故答案为2.25.解:∵半圆O的直径AB为12,∴OD=OB=6,如图,过OM⊥CD于M,连接OD,则CM=DM,∵DE是⊙O的切线,∴OD⊥DE,∵将CP沿射线AB方向平移至DE,∴CD∥PE,CD=PE,∴∠1=∠2,∵∠DMO=∠ODE=90°,∴△DMO∽△ODE,∴=,设CD=x,则OE=OP+PE=x+1,∴=,∴x=8,x=﹣9(舍去),∴平移的距离为8,故答案为:8.。

最新2019年初中数学100题练习试卷 中考模拟试题532596

最新2019年初中数学100题练习试卷 中考模拟试题532596

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.在一副完整的扑克牌中摸牌,第一张是红桃3,第二张黑桃7,第三张方片4,第四张是小王,那么第五张出现可能性最大的是( ) A .红桃B .黑桃C .方片D .梅花2.下列字母中,不是轴对称图形的是 ( ) A .XB .YC .ZD .T3.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2B .-61y 2 C .-32y 2 D .-32xy 2 4.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( ) A .互为倒数B .互为相反数C .相等D .关系不能确定5.下列计算正确的是( )A .222448a a a +=B .()()2322366x x x -+=-C .()428428a ba b -= D .()222141x x +=+6.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( ) A .2个B .3个C .4个D .5个7.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号13xy =+.按上述规定,将明码“love ”译成密码是( ) A .gawqB .shxcC .sdriD .love8.计算-4a (2a 2+3a-1)的结果是( ) A .-8a 3+12a 2-4aB .-8a 3-12a 2+1C .-8a 3-12a 2+4aD .8a 3+12a 2+4a9.用科学记数方法表示0000907.0,得( ) A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯10.计算(6a n+2-9a n+1+3a n-1)÷3a n-1的结果是( ). A .2a 3-3a 2B .2a 3-3a 2+1C . 3a 3-6a 2+1D .以上都不对11.已知一组数据5,7,3,9,则它们的方差是( ) A . 3B . 4C . 5D . 612.如图,AD ,BE 都是△ABC 的高,则与∠CBE 一定相等的角是( ) A .∠ABEB .∠BADC .∠DACD .以上都不是13.计算220(2)2(2)----+-得( ) A .9B .112C .1D .1214.下列各式与x yx y-+相等的是( ) A .55x y x y -+++B . 22x y x y-+C .222()x y x y --(x y ≠)D .2222x y x y-+ 15.下列各组长度的三条线段能组成三角形的是( ) A .3cm,3cm , 6cm B .7 cm,4cm , 5cm C .3cm,4cm , 8cmD .4.2 cm, 2.8cm , 7cm16.如果24(2)|21|(3)x z x y -+-=-+,那么满足等式x 、y 、z 分别是( )A . 12x =、3y =、1z = B .12x =-、3y =-、1z =- C . 12x =、3y =-、14z =D .12x =、3y =、2z = 17.如图,直线a 、b 被c 所截,a ∥b ,已知∠1 =50°,则∠2 等于( )A .30°B .50°C .130D .150°。

最新2019年初中数学100题练习试卷 中考模拟试题384230

最新2019年初中数学100题练习试卷 中考模拟试题384230

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列判断中,正确的是( )A .顶角相等的两个等腰三角形全等B .腰相等的两个等腰三角形全等C .有一边及锐角相等的两个直角三角形全等D .顶角和底边分别相等的两个等腰三角形全等2.王英同学从A 地沿北偏西60 方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .C .100mD .3 ) A . .D .4.)5.计算:53x x ÷=( )A .2xB .53x C .8x D .16.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A .ASAB .SASC .SSSD .AAS7.方程27x y +=在自然数范围内的解有( )A .1个B . 2个C .3个D .4个8.下列各式,是完全平方式的为( )①2244a ab b -+;②2242025x xy y ++;③4224816x x y y --;④42212a a a ++. A .①、③ B . ②、④ C . ①、② D .③、④9. 在同一平面内,作已知直线 l 的平行线,且到l 的距离为7 cm ,这样的平行线最多可 以作( )A .1 条B .2 条C .3 条D . 无数条10.如图,若∠1=∠2, 则( )A .AC ∥DEB .AC ∥EF C .CD ∥EF D . 以上都不是11.=⋅-n m a a 5)(( )A .m a +-5B .m a +5C . n m a +5D .n m a +-512.等腰三角形一边长等于4,一边长等于9,它的周长是( )A .17B .22C .17或22D .1313.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是( )A .偶数B .奇数C .比5小的数D .数614.三角形内到三角形各边的距离都相等的点必在三角形的( )A . 中线上B .平分线上C .高上D . 中垂线上15.图中几何体的左视图是( )16.一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:对这个鞋店的经理来说,他最关注的是数据的( )A .平均数B .众数C .中位数D .方差17.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分和 一个最低分,将其余分数的平均分作为这名选手的最后得分,评委为某选手打分(单。

2019年初三中考数学第二次模拟考试试卷试题及答案

2019年初三中考数学第二次模拟考试试卷试题及答案

2018-2019学年度第二学期第二次模拟测试数学试卷一、选择题(本大题10小题,每小题3分,共30分),在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1. 31-的倒数是( ) A .31- B .3 C .-3 D .-0.32.如图1,所示的几何体是由六个小正方体组合而成的,它的俯视图是( )A .B .C .D . (图1)3.生活中,有时也用“千千万”来形容数量多,“千千万”就是100亿,“千千万”用科学记数法可表示为( )A .0.1×1011B .10×109C .1×1010D .1×1011 4.下列各式运算正确的是( )A .235a a a +=B .235a a a ⋅=C .236()ab ab =D .1025a a a ÷=5.如图2,已知直线 ∥ ,一块含30º角的直角三角板如图放置, ∠1=25º,则∠2=( )A .30ºB .35ºC .40ºD .45º6.一元二次方程x 2﹣4x+2=0的根的情况是( ) (图2) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如图3,AB 是⊙O 的直径,∠AOC =130°,则∠D 的度数是( ) A .15° B .25° C .35° D .65°8.下列所述图形中,是中心对称图形的是( )A .直角三角形B .正三角形C .平行四边形D .正五边形9.东莞市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是( )A .150, 150B .150, 152.5C .150, 155D .155, 15010.如图4,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为x (s ), △AMN 的面积为y (cm 2),则y 关于x 的函数图象是( )(图4)A .B .C.D .二、填空题(本大题6小题,每小题4分,共24分),请将下列各题的正确答案填写在答题卡相应的位置上。

最新2019年初中数学100题练习试卷 中考模拟试题577049

最新2019年初中数学100题练习试卷 中考模拟试题577049

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率为 ( )A .43B .32C .21D . 41 2.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .3 3.某校准备组织师生观看全运会球类比赛,在不同时间段里有 3场比赛,其中 2场是乒乓球比赛,1场是羽毛球比赛,从中任意选看 2场,则选看的2场恰好都是乒乓球比赛的概率是( )A .14B .13C .12D .234.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现摸到红色、黑色球的频率分别为 15%和 45%,则口袋中白色球的数目很可能是( )A .6个B . 16个C .18个D .24个 5.若关于x 的分式方程311x m x x -=--有增根,则m 的值为( ) A .1m = B .2m =- C .0m = D .无法确定6.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( )A .1个B .2个C .3个D .4个7.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2 = 180°B .∠A=∠3C .∠1 = ∠AD .∠1 =∠48.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,则图中与CD 相等的线段有( )A .AD 与BDB .BD 与BC C .AD 与BC D .AD ,BD 与BC9.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )A .B .C .D .10.数90,91,92,93的标准差是( )A B .54 C D 11.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍12.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20 km .他们行进的路程s (km )与甲出发后的时间t (h )之间的函数图象如图.根据图象信息,下列说法正确的是 ( )A .甲的速度是4km /hB .乙的速度是10km /hC .乙比甲晚出发1hD .甲比乙晚到B 地3h13.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h .已知北京到上海的铁路全长为1462km .设火车原来的速度为xkm/h ,则下面所列方程。

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分4.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12 5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.547.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.下面的几何体中,主视图为圆的是()A.B.C.D.10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y 4+y2++2y3+y 2+y+y 4+y2+﹣2y3+y 2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB=154,故选A 3.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.5.C【解析】从上面看,看到两个圆形,故选C .6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 7.B解析:B【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x 2+22=(4-x )2,解得,∴BE=; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

备考2023年中考数学一轮复习-数与式_有理数_数轴及有理数在数轴上的表示-单选题专训及答案

备考2023年中考数学一轮复习-数与式_有理数_数轴及有理数在数轴上的表示-单选题专训及答案

备考2023年中考数学一轮复习-数与式_有理数_数轴及有理数在数轴上的表示-单选题专训及答案数轴及有理数在数轴上的表示单选题专训1、(2020九台.中考模拟) 如图,数轴上蝴蝶所在点表示的数可能为()A . 3B . 2C . 1D . -12、(2019长春.中考真卷) 如图,数轴上表示-2的点A到原点的距离是()A . -2.B . 2.C .D .3、(2014徐州.中考真卷) 点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A . 3B . 2C . 3或5D . 2或64、(2016南京.中考真卷) 数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A . ﹣3+5B . ﹣3﹣5C . |﹣3+5|D . |﹣3﹣5|5、(2017无棣.中考模拟) 实数a,b,c,d在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为()A . aB . bC . cD . d6、(2018房山.中考模拟) 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A .B .C .D .7、(2017滨海新.中考模拟) 有理数a、b在数轴上的对应的位置如图所示,则下列各式中正确的是()A . a+b<0B . a+b>0C . a﹣b=0D . a﹣b>08、(2017路南.中考模拟) 如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则该数轴的原点为()A . 点EB . 点FC . 点MD . 点N9、(2019吉林.中考模拟) 如图,若数轴上A、B两点之间的距离是5,且点B在原点左侧,则点B表示的数是()A . 5B . -5C . 2D . -210、(2017灌南.中考模拟) 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,则下列关系正确的是()A . a+c=2bB . b>cC . c﹣a=2(a﹣b)D . a=c11、(2018金华.中考模拟) 如图,数轴上有A,B,C,D四个点,其中表示-2的相反数的点是()A . 点DB . 点C C . 点BD . 点A12、(2018青岛.中考真卷) 如图,点A所表示的数的绝对值是()A . 3B . ﹣3C .D .13、(2017揭西.中考模拟) 如图所示,则下列选项中代表数值最小的是()A . aB . bC . ﹣aD . ﹣b14、(2019梧州.中考模拟) 在数轴上,点A表示的数是﹣4,点B表示的数是2,线段AB的中点表示的数为()A . 1B . ﹣1C . 3D . ﹣315、(2020四川.中考模拟) 实数在数轴上对应点的位置如图所示,则下列判断正确的是()A .B .C .D .16、(2019信阳.中考模拟) 实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A .B .C .D .17、(2022黄埔.中考模拟) 如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()A . ﹣2B . 0C . 1D . 418、(2017乌鲁木齐.中考真卷) 如图,数轴上点A表示数a,则|a|是()A . 2B . 1C . ﹣1D . ﹣219、(2019沙雅.中考模拟) 实数a、b在数轴上的位置如图所示,下列各式成立的是()A .B . a-b>0C . ab>0D . a+b>020、(2020遵化.中考模拟) 如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A . ﹣2B . 0C . 1D . 421、(2020鼓楼.中考模拟) (2019·中山模拟) 如图,点A所表示的数的绝对值是()A . 3B . ﹣3C .D .22、(2020贵州.中考模拟) 下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x ﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A . 4个B . 5个C . 6个D . 7个23、(2020开平.中考模拟) 如图,数轴上,,,,五个点表示连续的五个整数,,,,,且,则下列说法正确的有()①点表示的数字是②③④A . 都之前B . 只有①③正确C . 只有①②③正确D . 只有③错误24、(2020邯郸.中考模拟) 边长为5的菱形ABCD按如图所示放置在数轴上,其中A 点表示数﹣2,C点表示数6,则BD=()A . 4B . 6C . 8D . 1025、(2016河北.中考真卷) 点A,B在数轴上的位置如图所示,其对应的数分别是a 和b。

最新2019年初中数学100题练习试卷 中考模拟试题401774

最新2019年初中数学100题练习试卷 中考模拟试题401774

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.一个正方形的边长增加了 2 cm ,面积相应增加了32 cm 2,则这个正方形的边长为( )A . 6cmB . 5cmC .8cmD .7cm2.等腰直角三角形两直角边上的高所的角是( )A . 锐角B .直角C .钝角D . 锐角或钝角3.如图,△ABC ≌△BAD ,A 与B ,C 与D 是对应点,若AB=4cm ,BD=4.5cm ,AD=1.5cm ,则BC 的长为( )A .4cmB .4.5cmC .1.5cmD .不能确定4.下列运算中,正确的是( )A .23467()x y x y =B .743x x x =⋅C .2213()()x y x y xy--÷= D .21124-⎛⎫= ⎪⎝⎭ 5.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个6.下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有( )A .2个B .3个C .4个D .5个7.某人在平面镜里看到的时间是,此时实际时间是( ) A . 12:01 B . 10:51 C . 10:21 D . 15:108.如果(3x 2y-2xy 2)÷m=-3x+2y ,则单项式m 为( )A .xyB .-xyC .xD .-y 9.如果2(1)(3)x x x mx n -+=++,那么m ,n 的值分别是( )A .1m =,3n =B .4m =,5n =C .2m =,3n =-D .2m =-,3n =10.下列各式与x yx y-+相等的是()A.55x yx y-+++B.22x yx y-+C.222()x yx y--(x y≠)D.2222x yx y-+11.下列计算中,正确的是()A.2a+3b=5ab B.a·a3=a3C.a6÷a2=a3D.(-ab)2=a2b2 12.若|324|x y+-与26(573)x y+-互为相反数,则x与y的值是()A.11xy=⎧⎨=-⎩B.21xy=⎧⎨=-⎩C.231xy⎧=⎪⎨⎪=⎩D.不存在13.如图,∠AOP=∠BOP,PD⊥OB,PC⊥OA,则下列结论正确的是()A.PD=PC B.PD<PC C.PD>PC D.PD和PC的大小关系是不确定的14.把式子2(3)(2)aa a-+-化简为13a+,应满足的条件是()A.2a-是正数B.20a-≠D.2a-是非负数D.20a-=15.如图,已知∠1 和∠2 互补,∠3 = 125°,则∠4 的度数是()A.45°B.55°C.125°D.75°16.如图,直线a、b被c所截,a∥b,已知∠1 =50°,则∠2 等于()A.30°B.50°C.130 D.150°17.在△ABC 中,AB =AC,∠A=70°,则∠B的度数是()A.l10°B.70°C.55°D.40°18.在△ABC 中,AB = BC,∠A =80°,则∠B 的度数是()A.100°B.80°C. 20 D. 80°或 20°19.已知等腰三角形一腰上的高线等于底边的一半,则这个等腰三角形的顶角等于()A.120°B.90°C. 60°D.30°20.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:(1)。

最新2019年初中数学100题练习试卷 中考模拟试题477056

最新2019年初中数学100题练习试卷 中考模拟试题477056

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是 ( )2.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数3.如图,用放大镜将图形放大,应该属于( )A . 相似变换B .平移变换C .对称变换D .旋转变换4.计算200820090.04(25)⨯-的结果正确的是( )A .2009B . -25C .1D .-15.下列分解因式正确的是( )A .32(1)x x x x -=-B .26(3)(2)m m m m +-=+-C .2(4)(4)16a a a +-=-D .22()()x y x y x y +=+-6.对于任何整数n ,多项式22(3)n n +-都能被( )A .3n +整除B .n 整除C .3整除D .不能确定 7.把分式方程1111x x x-=--变形后,下列结果正确的是( ) A .1(1)x x --=B .1(1)x x --=-C .1(1)x x ---=-D .1x x -=-8.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( )A . 35°B .60°C .45°D .30° 9. 下列语句错误的是( )A .连结两点的线段长度叫做两点间的距离B .两点之间,直线最短C .两条平行线中,-条直线上的点到另一条直线的距离叫两条平行线间的距离D .平移变换中,各组对应点连成两线段平行且相等10.如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左传80°C .右转100°D .左传100°11.如图,在△ABC 中,AB=AC ,∠BAC=120°,点D 在BC 上,AD=BD=2 cm ,则CD 长为( )A .3 cmB cmCD .4 cm12.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( )A .m+1B .2mC .2D .m+213.已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定14.用科学记数方法表示0000907.0,得( )。

最新2019年初中数学100题练习试卷 中考模拟试题512193

最新2019年初中数学100题练习试卷 中考模拟试题512193

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.在下图中,为多面体的是( )A .B .C .D .2.如图,小手盖住的点的坐标可能为 ( )A .(5,2)B .(一6,3)C .(一4,一6)D .(3,一4)3.在1()n m n xx -+⋅=中,括号内应填的代数式是( ) A .1m n x ++ B .2m x + C .1m x + D .2m n x ++4.下面计算正确的是( )A .22(1)1a a +=+B .2(1)(1)1b b b ---=-C .22(21)441a a a -+=++D .2(1)(2)32x x x x ++=++ 5.掷一枚硬币,正面向上的概率为( )A .1B .12C .13D .146.计算200820090.04(25)⨯-的结果正确的是( )A .2009B . -25C .1D .-17.下列多项式中,含有因式1y +的多项式是( )A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +--D . 2(1)2(1)1y y ++++8.如图,如果 AB ∥CD ,∠C=60°,那么∠A+∠E=( )A .20B .30°C .40D .60°9.如图,若∠1 与∠2互为补角,∠2 与∠3 互为补角,则一定有( )A . 1l ∥2lB .3l ∥4lC .13l l ⊥D .24l l ⊥10.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于( )A .三角形内部B .三角形的边上C .三角形外部D .无法确定11.如图所示,在△ABC 中,AB=AC ,∠B=14∠BAC ,AD ⊥AB 垂足为A ,AD=1,则BD=( )A .1BC .2D .312.4a 2b 3-8a 4b 2+10a 3b 因式分解时,应提公因式( )A .2a 2bB .2a 2b 2C .4a 2bD .4ab 213.下列几何体中,是多面体的是( )14.已知方程组42ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则2a-3b 的值为( ) A .4 B .6 C .-6 D .-415. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:。

最新2019年初中数学100题练习试卷 中考模拟试题891995

最新2019年初中数学100题练习试卷 中考模拟试题891995

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息一、选择题1. 如图,∠1的内错角是( ) A .∠2B .∠3C .∠4D .∠52.分式2221m m m m-+-约分后的结果是( ) A .1m m n-+ B .1(1)mm m --+C .1mm- D .1(1)mm m -+3.某种商品在降价x %后,单价为a 元,则降价前它的单价为( ) A .%a x B .%a x ⋅C .1%ax -D .(1%)a x -4.如图,在△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2B . 1:3C . 2: 3D . 1 : 45.若2212m nn x y--与13218m m x y --是同类项,则2m n +值为( )A . -4B . 163-C .-2D .103-6.若|324|x y +-与26(573)x y +-互为相反数,则x 与y 的值是( )A.11xy=⎧⎨=-⎩B.21xy=⎧⎨=-⎩C.231xy⎧=⎪⎨⎪=⎩D.不存在7.如图所示的4组图形中,左边图形与右边图形成轴对称的图形有()A.1组B.2组C.3组D.4组8.下列事件中,不可能发生的是()A.异号两数相加和为正数B.从 1、3、5、7、.9中任取一个数是偶数C.任意抛掷一只纸杯,杯口朝上D.任意投掷一枚正方体骰子,朝上一面的数字小于79.从 1、2、3、…、9这九个数字中,任取一个数字是偶数的概率是()A. 0 B.49C.12D.5910.现有2008年奥运会福娃卡片20张,其中贝贝 6张、晶晶 5 张、欢欢4张、迎迎3张、妮妮2张,每张卡片大小、质地均匀相同,将有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到晶晶的概率()A.110B.310C.14D.1511.把不等式组1020xx+≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.12.同时抛掷两枚 1 元硬币,其中正面同时朝上的概率是()A.1 B.12C.13D.1413.在“口2口4a口4”的空格“口”中,任意填上“+”或“一”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.12C.13D.1414.下列说法中,正确的是()A.同位角相等B.两条不相交的直线叫平行线C.三条直线相交,必产生同位角、内错角和同旁内角D.同旁内角互补,两直线平行。

最新2019年初中数学100题练习试卷 中考模拟试题147043

最新2019年初中数学100题练习试卷 中考模拟试题147043

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,桌面上放着一个圆锥和一个长方体,其中俯视图是( )2.如图,在△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B . 1:3C . 2: 3D . 1 : 43.某电视台举行歌手大奖赛,每场比赛都有编号为 l~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手分别抽走了2号和7号题,第 3位选手抽中 8号题的概率是( )A .110B .19C .18D .17 4.已知整式22x 3()(21)ax x b x +-=+-,则b a 的值是( )A . 125B . -125C .15D .-15 5.把分式方程1111x x x-=--变形后,下列结果正确的是( ) A .1(1)x x --=B .1(1)x x --=-C .1(1)x x ---=-D .1x x -=-6.以下列各组数为长度的线段,能组成三角形的是( )A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm7.如图,要使 a∥b,则∠2 与∠3 满足条件()A.∠2=∠3 B.∠2+∠3=90°C.∠2+∠3=180°D.无法确定8.下列图形中,一定是轴对称图形的是()A.直角三角形B.平行四边形C.梯形D.等腰三角形9.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠l=2∠2 B.2∠1+∠2=180° C.∠l+3∠2=180°D.3∠1-∠2=180°10.如图,在Rt△ABC中,∠C = 90°,E是BC上的一点,DE⊥AB,点0为垂足,则∠A 与∠CED的关系是()A.相等B.互余C.互补D.以上都有可能11.如图是一个空心圆柱体. 在指定的方向上,视图正确的是()A. B. C. D.12.下面的四个展开图中,如图所示的正方体的展开图是()A. B.C.D.13.如果(3x2y-2xy2)÷m=-3x+2y,则单项式m为()A.xy B.-xy C.x D.-y14.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南宁市2019年中考数学4月模拟试题A卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,点,,在同一条直线上,正方形,正方形的边长分别为3,4,为线段
的中点,则的长为()
A. B.
C. 或
D.
2 . 某天三个城市的最高气温分别是﹣7℃,1℃,﹣6℃,则任意两城市中最大的温差是()
A.5B.6C.7D.8
3 . 某次数学测试后,对九(1)班和九(2)班的50名同学进行成绩分析,甲说:“九(1)班同学的平均分比九(2)班高”,乙说:“第25名和第26名同学的平均分九(2)班比九(1)班高.”上面两名同学说法能反映出的统计量有()
A.平均数和众数B.众数和方差C.平均数和方差D.平均数和中位数
4 . 把不等式组的解集表示在数轴上,下列选项正确的是
A.B.C.D.
5 . 若,则分式等于()
B.C.1D.
A.
6 . 下列各数中,最大的数是()
A.B.0C.|﹣4|D.π
7 . 如图,AB∥CD,直线l分别与AB,CD相交,若∠1=130°,则∠2=()
A.40°B.50°C.130°D.140°
8 . 某超市以每件10元的进价购进200件玩具,销售人员预期最近的促销活动,单价是19元时只能卖出100件,而单价每降低1元则可以多卖出20件,那么单价是元时,此次促销活动的预期获利最大.
A.15B.16C.17D.18
9 . 国家体育馆“鸟巢”的建筑面积达25.8万平方米,请将“25.8万”用科学记数法表示,结果是()A.25.8×104B.25.8×105C.2.58×104D.2.58×105
10 . 下列运算正确的是()
A.B.
C.D.
二、填空题
11 . 计算:×=______.
12 . 如图,将长方形纸片沿折叠,使点与点重合,点落在点处,为折痕.若,
,则四边形 (阴影部分)的面积是__________.
13 . 已知锐角三角形ABC的三个内角满足∠A>∠B>∠C,α是∠A﹣∠B,∠B﹣∠C以及90°﹣∠A中的最小者,则当∠B=度时,α的最大值为
14 . 若点P1(-1,m),P2(-2,n)在反比例函数(k>0)的图象上,则m ________ n(填“>”“<”或“=”号).
15 . 在考试期间,某文具店平均每天可卖出30支2B铅笔,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,若该文具店把零售单价下降x元(0<x<1),那么该文具店平均每天可卖出________支铅笔.
三、解答题
16 . 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?
(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
17 . 已知抛物线y=ax2﹣2ax+c与x轴交于A,B两点(A在B左侧),与y轴正半轴交于点C,且满足:(1)一元二次方程ax2﹣2ax+c=0的一个解是﹣1;(2)抛物线的顶点在直线y=2x上.
问:(1)直接写出A、B两点的坐标.
(2)求此抛物线的解析式.
18 . 在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、
A.
(1)如图1,当EF∥BC时,求证:;
(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
19 . 为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;
(2)请直接将条形统计图补充完整;
(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少
人?
20 . 如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D ,点E为线段BC的中点,AD=2,tan A=2.
(1)求AB的长;
(2)求DE的长.
21 . 如图,在▱ABCD中,BD⊥AB,AB=12 cm,AC=26 cm,求AD、BD、BC及CD的
长.
22 . 如图,已知矩形 ABCD 中,AB=1,BC=,点 M 在 AC 上,且 AM=AC,连接并延长 BM 交 AD 于点 N.
(1)求证:△ABC∽△AMB;
(2)求 MN 的长.
23 . 计算
(1).
(2)(-x+2y) (-2y-x)。

相关文档
最新文档