高一数学各章知识点总结
高一数学知识点总结(15篇)
高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
高一数学上 全部知识点
高一数学上全部知识点一、代数与函数1.整式的加减乘除、乘方化简2.一元一次方程与一元一次不等式3.二次函数的定义、性质、图像与应用4.基本初等函数与反函数5.实数与绝对值6.数列的概念与常用数列的性质7.分式的化简与分式方程的解法二、平面几何1.平面直角坐标系与向量2.多边形的定义、性质与计算3.圆的定义、性质与计算4.三角形的定义、性质与计算5.相似三角形的判定与计算6.三角函数的定义、性质与计算7.三角函数的应用三、立体几何1.立体图形的投影与展开2.平行线与平面3.多面体的定义、性质与计算4.球的定义、性质与计算5.三棱锥与四棱锥的定义、性质与计算6.正多面体与棱柱的定义、性质与计算四、概率与统计1.随机事件的概念与性质2.概率的定义、性质与计算3.频率与概率的关系4.抽样调查与统计分析5.常用的统计图表的制作与分析6.正态分布的性质与应用五、数学思想方法及数论1.数学的证明方法与思想2.方程与不等式的证明3.数论的基本概念与性质4.整除性与素数的性质5.最大公约数与最小公倍数的计算6.同余关系与模运算六、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性相关与线性无关3.空间直角坐标系与空间向量4.平面与直线的位置关系5.平面的方程与直线的方程6.平行线与垂直线的判定与性质七、导数与微分1.导数的定义与性质2.常用函数的导数与导数公式3.函数的单调性与极值4.函数图形的描绘与性质5.函数的近似计算与应用6.微分的定义与性质八、不等式与极限1.不等式的基本性质与解法2.绝对值不等式的求解3.函数不等式的解法4.极限的定义与性质5.极限的运算法则与计算6.自然对数与指数函数的极限计算九、数理统计1.随机事件与概率2.频率与概率的估计3.统计图表的绘制与分析4.总体与样本的概念与性质5.统计量的计算与应用6.抽样调查与统计分析总结:高一数学涉及了代数与函数、平面几何、立体几何、概率与统计、数学思想方法及数论、平面向量与解析几何、导数与微分、不等式与极限、数理统计等多个知识点。
高一数学知识点全面总结
高一数学知识点总结(一)1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n_2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈a都有x∈b,则a b(或a b);2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 )3)交集:a∩b={x| x∈a且x∈b}4)并集:a∪b={x| x∈a或x∈b}5)补集:cua={x| x a但x∈u}注意:①? a,若a≠?,则? a ;②若,,则 ;③若且,则a=b(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关子集的几个等价关系①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;④a∩cub = 空集cua b;⑤cua∪b=i a b。
5.交、并集运算的性质①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高一数学知识点总结(二)等差数列公式等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)_公差前n项的和=(首项+末项)_项数/2公差=后项-前项高中数学数列知识点总结:等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈n)。
高一必修一数学各章知识点
高一必修一数学各章知识点高一的数学课程可谓是一个基础扎实的阶段,包括了几个重要的章节,如函数、导数和几何等。
在这篇文章中,我将为大家总结一下高一必修一数学各章的知识点。
1. 数与代数数与代数是数学的基础,也是高中数学的入门篇章。
在这一章节中,我们主要学习了有理数、整式和方程等内容。
(1)有理数:有理数包括整数、分数和小数等形式。
我们可以进行有理数的四则运算,如加减乘除,并学会求有理数的相反数和绝对值。
(2)整式:整式是由常数和变量以及它们的运算符号组成的表达式。
我们需要掌握多项式和分式的加减乘除运算法则,并学会因式分解和提取公因式。
(3)方程:方程是表示等式关系的代数式,包括一元一次方程、一元二次方程等。
我们学习了方程的解法,如逆运算法、配方法和求根公式等。
2. 函数函数是高中数学中的重点和难点之一。
函数是一种特殊的关系,它把一个数集的每个元素都映射到另一个数集的元素上。
在这一章节中,我们主要学习了函数的定义、性质和图像等。
(1)函数的定义:函数是两个数集之间的一种关系,它满足每一个自变量对应一个唯一的因变量。
我们需要掌握函数的自变量、因变量和函数值的概念,并学会用函数的定义判断函数关系是否成立。
(2)函数的性质:函数有很多重要的性质,如函数的奇偶性、周期性和单调性等。
我们需要掌握这些性质的定义和判断方法,以及它们在图像上的表现。
(3)函数的图像:函数的图像是函数的可视化表示,它能通过一条曲线或折线的形式展示函数的变化规律。
我们需要学会用函数的定义域、值域和单调性等性质来分析函数的图像。
3. 导数导数是高中数学的一大亮点,它是微积分学的基础概念。
在这一章节中,我们主要学习了函数的导数及其应用。
(1)函数的导数:函数的导数描述了函数在某一点的变化速率,它是函数在该点的切线斜率。
我们需要掌握导数的定义和求法,如极限定义、导数公式和求导法则等。
(2)函数的导数应用:导数在实际问题中有广泛的应用,如求函数的极值、曲线的凹凸性、曲率和曲线的切线问题等。
高一数学所有知识点总结归纳
高一数学所有知识点总结归纳高一数学是学生在高中阶段学习数学的第一年,是基础扎实、知识积累的重要阶段。
在这一年里,学生将接触到许多数学的基本概念和方法,并逐渐拓展自己的数学思维。
为了让大家更好地复习和巩固基础知识,本文将对高一数学的所有知识点进行总结归纳。
一、集合与函数1. 集合的基本概念- 集合的定义、元素和特点- 空集、全集和子集- 并集、交集和差集的运算2. 函数与映射- 函数的定义和性质- 函数的分类及其表示法- 函数的运算、复合函数和反函数3. 集合与函数的应用- 关系与函数的区别与联系- 函数在实际问题中的应用二、数列与数列的极限1. 数列的概念与表示- 数列的定义和性质- 等差数列和等比数列2. 数列的通项与前n项和- 递推公式与通项公式- 前n项和的计算和性质3. 数列的极限- 数列极限的概念及性质- 数列极限的计算和判断三、平面向量与解析几何1. 平面向量的基本概念- 平面向量的定义和性质- 平面向量的线性运算和数量积2. 平面向量的应用- 向量的共线与垂直- 向量的模、夹角和投影- 平面向量在几何中的应用3. 解析几何- 平面直角坐标系与向量表示- 直线和圆的方程- 直线与圆的性质和判断条件四、三角函数与三角恒等变换1. 三角函数的定义和性质- 正弦、余弦、正切等基本概念- 三角函数的周期性和奇偶性2. 三角函数的运算- 三角函数的和差、倍角、半角公式 - 三角函数的积化和差化积3. 三角恒等变换- 三角函数的恒等变换及证明- 三角方程的解法和应用五、数系与方程1. 实数与复数- 实数的性质与运算- 复数的定义和运算2. 一次方程和二次方程- 一次方程和一元二次方程的概念- 一次方程和一元二次方程的解法和应用3. 不等式与绝对值- 不等式的性质和解法- 绝对值的定义和性质总结:高一数学涉及的知识点非常广泛,本文对集合与函数、数列与数列的极限、平面向量与解析几何、三角函数与三角恒等变换、数系与方程等方面进行了总结归纳。
高一数学必修一二知识点总结
高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:1对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素;2任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素;3集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样;4集合元素的三个特性使集合本身具有了确定性和整体性;3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法;注意啊:常用数集及其记法:非负整数集即自然数集记作:N正整数集N或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a A列举法:把集合中的元素一一列举出来,然后用一个大括号括上;描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法;用确定的条件表示某些对象是否属于这个集合的方法;①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能1A是B的一部分,;2A与B是同一集合;反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系5≥5,且5≤5,则5=5实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集;AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB或BA③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集;三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B读作”A交B”,即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集;记作:A∪B读作”A并B”,即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.4、全集与补集1补集:设S是一个集合,A是S的一个子集即,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集或余集记作:CSA即CSA={x|x S且x A}2全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集;通常用U来表示;3性质:⑴CUCUA=A⑵CUA∩A=Φ二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{fx|x∈A}叫做函数的值域.注意:2如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1分式的分母不等于零;2偶次方根的被开方数不小于零;3对数式的真数必须大于零;4指数、对数式的底必须大于零且不等于1.5如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.6指数为零底不可以等于零6实际问题中的函数的定义域还要保证实际问题有意义.又注意:求出不等式组的解集即为函数的定义域;构成函数的三要素:定义域、对应关系和值域再注意:1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关;相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备见课本21页相关例2值域补充1、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.2.应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础;3.函数图象知识归纳1定义:在平面直角坐标系中,以函数y=fx,x∈A中的x为横坐标,函数值y为纵坐标的点Px,y 的集合C,叫做函数y=fx,x∈A的图象.C上每一点的坐标x,y均满足函数关系y=fx,反过来,以满足y=fx的每一组有序实数对x、y为坐标的点x,y,均在C上.即记为C={Px,y|y=fx,x∈A}图象C一般的是一条光滑的连续曲线或直线,也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成;2画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以x,y为坐标在坐标系内描出相应的点Px,y,最后用平滑的曲线将这些点连接起来.B、图象变换法请参考必修4三角函数常用变换方法有三种,即平移变换、伸缩变换和对称变3作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路;提高解题的速度;发现解题中的错误;4.快去了解区间的概念1区间的分类:开区间、闭区间、半开半闭区间;2无穷区间;3区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映像;记作“f:AB”给定一个集合A到B的映像,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:Ⅰ集合A中的每一个元素,在集合B中都有象,并且象是唯一的;Ⅱ集合A中不同的元素,在集合B中对应的象可以是同一个;Ⅲ不要求集合B中的每一个元素在集合A 中都有原象;常用的函数表示法及各自的优点:1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2解析法:必须注明函数的定义域;3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值;列表法:便于查出函数值;图象法:便于量出函数值补充一:分段函数参见课本P24-25在定义域的不同部分上有不同的解析表达式的函数;在不同的范围里求函数值时必须把自变量代入相应的表达式;分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.1分段函数是一个函数,不要把它误认为是几个函数;2分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=fu,u∈M,u=gx,x∈A,则y=fgx=Fx,x∈A称为f、g的复合函数;例如:y=2sinXy=2cosX2+17.函数单调性1.增函数设函数y=fx的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有fx1<fx2,那么就说fx在区间D上是增函数;区间D称为y=fx的单调增区间睇清楚课本单调区间的概念如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有fx1>fx2,那么就说fx在这个区间上是减函数.区间D称为y=fx的单调减区间.注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有fx1<fx2;2图象的特点如果函数y=fx在某个区间是增函数或减函数,那么说函数y=fx在这一区间上具有严格的单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3.函数单调区间与单调性的判定方法A定义法:1任取x1,x2∈D,且x1<x2;2作差fx1-fx2;3变形通常是因式分解和配方;4定号即判断差fx1-fx2的正负;5下结论指出函数fx在给定的区间D上的单调性.B图象法从图象上看升降_C复合函数的单调性函数的单调性注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2、还记得我们在选修里学习简单易行的导数法判定单调性吗8.函数的奇偶性1偶函数一般地,对于函数fx的定义域内的任意一个x,都有f-x=fx,那么fx就叫做偶函数.2.奇函数一般地,对于函数fx的定义域内的任意一个x,都有f-x=—fx,那么fx就叫做奇函数.注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数;2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量即定义域关于原点对称.3具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:1首先确定函数的定义域,并判断其定义域是否关于原点对称;2确定f-x与fx的关系;3作出相应结论:若f-x=fx或f-x-fx=0,则fx是偶函数;若f-x=-fx或f-x+fx=0,则fx是奇函数.注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,1再根据定义判定;2有时判定f-x=±fx比较困难,可考虑根据是否有f-x±fx=0或fx/f-x=±1来判定;3利用定理,或借助函数的图象判定.9、函数的解析表达式1.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.2.求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数fgx的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出fx10.函数最大小值定义见课本p36页1利用二次函数的性质配方法求函数的最大小值2利用图象求函数的最大小值3利用函数单调性的判断函数的最大小值:如果函数y=fx在区间a,b上单调递增,在区间b,c上单调递减则函数y=fx 在x=b处有最大值fb;如果函数y=fx在区间a,b上单调递减,在区间b,c上单调递增则函数y=fx在x=b处有最小值fb;第二章基本初等函数一、指数函数一指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根nthroot,其中>1,且∈.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式radical,这里叫做根指数radicalexponent,叫做被开方数radicand 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±>0.由此可得:负数没有偶次方根;0的任何次方根都是0,记作;注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.二指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数exponential,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.图象特征函数性质1.向x、y轴正负方向无限延伸函数的定义域为R2.图象关于原点和y轴不对称非奇非偶函数3.函数图象都在x轴上方4.函数的值域为R+5.函数图象都过定点0,16.自左向右看图象逐渐上升自左向右看,图象逐渐下降图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:1在a,b上,值域是或;2若,则;取遍所有正数当且仅当;3对于指数函数,总有;4当时,若,则;二、对数函数一对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:—底数,—真数,—对数式两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数.二对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是0,+∞.注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别;图象特征,函数性质1.函数图象都在y轴右侧函数的定义域为0,+∞2.图象关于原点和y轴不对称非奇非偶函数3.向y轴正负方向无限延伸函数的值域为R4.函数图象都过定点1,0自左向右看,图象逐渐上升,自左向右看,图象逐渐下降三幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.1所有的幂函数在0,+∞都有定义,并且图象都过点1,1;2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.第三章函数的应用、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点;2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标;即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1代数法求方程的实数根;2几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2△=0,方程有两相等实根二重根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.高一数学必修43△<0,方程无⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠.10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限.14、函数sin y x =的图象上所有点向左右平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长缩短到原来的1ω倍纵坐标不变,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长缩短到原来的A 倍横坐标不变,得到函数()sin y x ωϕ=A +的图象. 函数sin y x =的图象上所有点的横坐标伸长缩短到原来的1ω倍纵坐标不变,得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左右平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长缩短到原来的A 倍横坐标不变,得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质:图象定义域 值域最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量共线向量:方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:函 数 性 质a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.不共线的向量1e 、2e 作为这一平面内所有向量的一组基底22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos x x a ba b x θ⋅==+.24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+; ⑹()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-. 25、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=. ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.26、()sin cos αααϕA +B =+,其中tan ϕB =A . 实根,二次函数的图象与轴无交点,二次函数无零点.特殊几何体表面积公式c 为底面周长,h 为高,为斜高,l 为母线柱体、锥体、台体的体积公式球体的表面积和体积公式:V=;S=空间点、直线、平面之间的位置关系1平面含义:平面是无限延展的2三个公理:1公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为A ∈LB ∈L=>LαA∈αB∈α公理1作用:判断直线是否在平面内.2公理2:过不在一条直线上的三点,有且只有一个平面;符号表示为:A、B、C三点不共线=>有且只有一个平面α,使A∈α、B∈α、C∈α;公理2作用:确定一个平面的依据;3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;符号表示为:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据.2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点;2公理4:平行于同一条直线的两条直线互相平行;符号表示为:设a、b、c是三条直线a ∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用;公理4作用:判断空间两条直线平行的依据;3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈0,;③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角;—空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:1直线在平面内——有无数个公共点2直线与平面相交——有且只有一个公共点3直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α.直线、平面平行的判定及其性质直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;符号表示:aαbβ=>a∥αa∥b平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行;符号表示:aβbβa∩b=Pβ∥αa∥αb∥α2、判断两平面平行的方法有三种:1用定义;2判定定理;3垂直于同一条直线的两个平面平行;—∥αaβa∥bα∩β=b作用:利用该定理可解决直线间的平行问题;2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行;符号表示:α∥βα∩γ=aa∥bβ∩γ=b作用:可以由平面与平面平行得出直线与直线平行直线、平面垂直的判定及其性质⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面;如图,直线与平面垂直时,它们唯一公共点P叫做垂足;PaL2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a定理中的“两条相交直线”这一条件不可忽视;b定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;梭lβBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直;—2、两个平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直;第三章直线与方程1直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角;特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度;因此,倾斜角的取值范围是0°≤α<180°2直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率;直线的斜率常用k表示;即;斜率反映直线与轴的倾斜程度;当直线l与x轴平行或重合时,α=0°,k=tan0°=0;当直线l与x轴垂直时,α=90°,k不存在.当时,;当时,;当时,不存在;②过两点的直线的斜率公式:P1x1,y1,P2x2,y2,x1≠x2注意下面四点:1当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;2k与P1、P2的顺序无关;3以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;4求直线的倾斜角可由直线上两点的坐标先求斜率得到;3直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1;当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1;②斜截式:,直线斜率为k,直线在y轴上的截距为b。
高一数学每一章知识点梳理
高一数学每一章知识点梳理【高一数学每一章知识点梳理】第一章:数列与数学归纳法数列的概念和性质- 数列的定义与表示方法- 等差数列与等差中项- 等比数列及其性质- 数列的求和公式- 等差数列与等比数列的和的性质- 斐波那契数列数学归纳法- 数学归纳法的基本思想与原理- 数学归纳法的应用第二章:函数基本概念函数的定义与表示- 自变量与因变量- 函数的定义及表示方法- 函数的值域与定义域- 函数的图像与性质函数的基本性质- 函数的奇偶性- 奇偶函数的性质- 函数的单调性与最值- 函数的周期性- 函数的反函数线性函数与二次函数- 线性函数的概念与性质- 线性函数的图像与应用- 二次函数的概念与性质- 二次函数的图像与应用第三章:三角函数单位圆与三角函数的定义- 单位圆的坐标体系- 弧度与角度的互换- 正弦、余弦、正切函数的定义- 三角函数的周期性与奇偶性三角函数的诱导公式- 诱导公式的概念与推导- 角和差公式- 二倍角公式与半角公式三角函数的图像性质与变换- 正弦、余弦、正切函数的图像性质- 幅值、周期、相位的变化- 三角函数的平移与反转第四章:平面向量向量的概念与表示- 向量的定义与表示方法- 向量的模、方向与共线性- 零向量与相反向量向量的运算- 向量的加法与减法- 数乘与向量的数量积- 向量的数量积与夹角- 向量的向量积及其性质平面向量的应用- 平面向量的共线性、共面性- 利用平面向量解决几何问题第五章:解直角三角形勾股定理与三角函数- 直角三角形的性质与定义- 勾股定理的概念与应用- 单位圆上的三角函数与直角三角形的关系解直角三角形- 已知两边求夹角- 已知一边一角求其他边与角度解决初等几何问题- 利用三角函数解决初等几何问题第六章:平面几何向量向量的基本运算法则- 向量的加法、减法与数量积- 向量运算的几何意义- 平面向量与坐标的转换向量的线性相关与线性无关- 向量的线性组合- 向量的线性相关性与线性无关性平面向量的数量积- 数量积的概念与性质- 向量夹角的数量表示- 零向量与向量垂直的判定平面向量的应用- 平面向量解决几何问题- 向量平行和垂直的判定第七章:不等式与不等式组一元一次不等式- 一元一次不等式的概念与解法- 一元一次不等式的综合应用一元二次不等式- 一元二次不等式的概念与解法- 一元二次不等式的综合应用一元函数不等式- 一元函数不等式的概念与解法- 一元函数不等式的综合应用多元函数不等式组- 多元函数不等式组的概念与解法- 多元函数不等式组的应用第八章:平面几何直线与圆直线的方程与性质- 直线的斜截式与截距式- 直线的点斜式与两点式- 直线的平行与垂直关系- 直线的夹角与交点性质圆的方程与性质- 圆的一般方程与特殊方程- 圆的位置关系- 切线与切点的性质圆的切线方程- 切线的定义与判定条件- 切线方程的推导与应用- 切线长度的求解【总结】以上是高一数学每一章的知识点梳理,通过系统的学习与掌握这些知识点,可以帮助同学们打下牢固的数学基础,为后续学习提供有力支持。
高一数学各章知识点总结
高一数学各章知识点总结
高一数学主要包括以下几个章节的知识点:
1. 集合与函数:
- 集合的概念、集合的表示方法和集合的运算
- 函数的概念、函数的表示方法和函数的性质
- 区间的表示和区间的性质
2. 数列与数学归纳法:
- 数列的概念和数列的通项公式
- 数列的等差数列和等比数列
- 数学归纳法的基本原理和应用
3. 不等式与简单的函数:
- 一次不等式、二次不等式和绝对值不等式的解法- 函数的概念、函数的性质和函数的图像
- 二次函数的性质和二次函数的图像
4. 几何与向量:
- 几何的基本概念和性质,包括点、直线、平面和角- 三角函数的概念和基本性质
- 向量的概念、向量的运算和向量的性质
5. 三角函数及其应用:
- 三角函数的基本关系和性质
- 三角函数的图像和周期性
- 三角函数的加法定理、差化积公式等基本公式
6. 概率与统计:
- 随机事件的概念和基本性质
- 概率的计算和概率的性质
- 统计图表的制作和统计分析的基本方法。
数学高一知识点总结人教版
数学高一知识点总结人教版第一章直线与平面一、直线的倾斜角二、直线的倾斜角的概念及其度量三、直线的方程四、各种形式的直线方程五、弧度制六、平面的方程第二章集合与映射一、集合的基本概念二、集合的表示法三、集合的关系四、集合的运算五、映射的定义六、映射的性质七、复合映射第三章函数与导数一、函数的概念二、函数的运算三、函数的图像四、一次函数及其应用五、二次函数及其应用六、一元二次不等式及其应用七、函数的极限与连续性八、导数的概念九、导数的几何意义十、导数的运算法则十一、函数的微分求法十二、微分的应用第四章数列与数学归纳法一、等差数列二、等比数列三、数列的基本性质及表示四、数学归纳法五、二项式定理的应用第五章三角函数一、三角函数的概念及其定义二、三角函数的基本性质三、三角函数的图像四、三角函数的运算五、平面向量六、平面向量的基本运算七、平面向量及其应用第六章概率与统计一、随机事件二、概率三、条件概率与独立性四、随机变量五、数理统计六、统计研究第七章共线定理一、三角形的六条边分比例定理二、角平分线定理三、高线定理四、中位线定理五、垂直平分线定理六、倒角线定理第八章空间几何一、空间的基本概念二、空间图形的位置关系三、空间图形的投影四、空间几何图形的容积五、空间直角坐标系第九章解三角形一、解三角形的基本公式二、各种角的计算三、海伦公式四、三角形的面积第十章平面几何一、平面的基本性质二、平行线三、三角形的性质四、四边形的性质五、平面几何图形的坐标计算以上就是我对高一数学知识点的总结,希望对大家学习有所帮助。
高一数学所有知识点总结大全
高一数学所有知识点总结大全一、代数(Algebra)1.数的性质与运算法则1.1 有理数和无理数1.2 数轴及实数的划分1.3 数的绝对值1.4 基本整式的概念与运算1.5 同底数幂运算1.6 指数幂运算法则1.7 根式的概念与运算2.一元一次方程与不等式2.1 一元一次方程与解的概念2.2 一元一次方程的基本解法2.3 一元一次方程的应用2.4 一元一次不等式与解的概念2.5 一元一次不等式的解集表示及性质 2.6 一元一次不等式的解法与应用3.二次根式和一元二次方程3.1 二次根式的概念与性质3.2 二次根式化简与运算3.3 一元二次方程与解的概念3.4 一元二次方程求根公式3.5 一元二次方程的解的性质与判别式 3.6 一元二次方程的解法及应用4.函数及其应用4.1 函数的基本概念与性质4.2 一次函数与线性函数4.3 幂函数与指数函数4.4 正比例函数与反比例函数4.5 函数图像的绘制与性质4.6 函数与方程的联系与应用5.二次函数5.1 二次函数的概念与性质5.2 二次函数图像的特征与性质5.3 二次函数的顶点、零点与对称轴5.4 二次函数的最值与区间5.5 二次函数的图像平移、翻折与伸缩5.6 二次函数与实际问题的模型建立与解决二、几何(Geometry)1.平面几何基本概念1.1 点、直线和平面的基本概念1.2 线段、角和三角形的基本概念1.3 多边形、圆及其相关概念2.图形的性质2.1 垂直、平行及夹角性质2.2 三角形内角和性质2.3 三角形的边和角的关系2.4 四边形的性质与分类2.5 平行四边形、矩形与正方形的性质 2.6 直角三角形和等腰三角形的性质 2.7 圆的性质3.平面几何的证明3.1 常用证明方法与基本推理3.2 三角形性质的证明3.3 平行四边形和矩形的性质证明3.4 圆的性质与定理证明4.空间几何与立体图形4.1 空间几何基本概念4.2 直线、平面与空间图形的关系4.3 二面角与立体图形的计算4.4 体积与表面积的计算4.5 空间几何问题的应用与解决三、概率与统计(Probability and Statistics)1.概率的基本概念和计算1.1 概率的定义与性质1.2 初等概率计算1.3 加法法则和乘法法则1.4 事件的独立性2.统计的基本概念和数据分析2.1 统计的定义与性质2.2 数据的收集与整理2.3 频数表与频率分布表2.4 统计图表的绘制与分析2.5 平均数与范围的计算3.分布律与概率分布3.1 离散型随机变量的概念与分布律3.2 连续型随机变量的概念与概率密度函数3.3 二项分布与正态分布的性质和计算以上为高一数学的所有知识点总结大全,涵盖了代数、几何、概率与统计等各个方面。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高一数学必修一二知识点总结
高一数学必修一二知识点总结
一、集合与函数概念
集合的表示与运算:了解集合的概念、分类和表示方法(如列举法、描述法),以及集合的运算(如并集、交集、补集等)。
函数的概念与性质:理解函数的定义域、值域、对应法则等基本要素,掌握函数的单调性、奇偶性、周期性等基本性质。
二、基本初等函数
指数函数与对数函数:掌握指数函数和对数函数的定义、性质、图像及变换,理解指数方程和对数方程的解法。
幂函数与三角函数:了解幂函数的定义、性质和图像,掌握三角函数的定义、诱导公式、基本关系式、图像及性质,理解三角恒等变换和三角函数的应用。
三、数列与不等式
数列的概念与性质:理解数列的定义、分类(等差数列、等比数列等)及通项公式,掌握数列的前n项和公式及求和方法。
不等式的解法与应用:掌握不等式的性质、基本不等式(如均值不等式)及解法,理解不等式在实际问题中的应用。
四、平面向量与立体几何初步
平面向量的基本概念与运算:了解向量的定义、表示方法(如坐标表示法),掌握向量的加、减、数乘及数量积等运算。
立体几何的基本概念与性质:理解空间点、直线、平面的基本性质,掌握空间几何体的表面积和体积计算公式。
五、统计与概率初步
统计的基本概念与数据处理:了解统计的基本概念(如总体、样本、平均数、方差等),掌握数据的收集、整理和分析方法。
概率的基本概念与计算:理解概率的定义、性质及计算方法(如古典概型、几何概型等),掌握条件概率、独立事件等概念及计算方法。
以上只是高一数学必修一和必修二的部分知识点总结,具体学习还需结合教材和教辅资料进行深入理解和应用。
在学习过程中,建议注重基础知识的巩固和拓展,多做练习题以提高解题能力和思维水平。
高一数学必修一知识点汇总
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
高一数学每章节知识点
高一数学每章节知识点一、集合1、集合的概念集合的定义集合中元素的特性:确定性、互异性、无序性集合的表示方法:列举法、描述法、韦恩图法2、集合间的关系子集:若集合 A 中的任意元素都属于集合 B,则 A 是 B 的子集,记作 A⊆B真子集:若 A⊆B 且A≠B,则 A 是 B 的真子集,记作 A⊂B集合相等:若 A⊆B 且 B⊆A,则 A=B3、集合的运算交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作A∪B补集:设 U 为全集,A⊆U,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA二、函数1、函数的概念函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数函数的定义域、值域函数的三要素:定义域、值域、对应关系2、函数的表示方法解析法:用数学表达式表示两个变量之间的对应关系图象法:用图象表示两个变量之间的对应关系列表法:列出表格来表示两个变量之间的对应关系3、函数的单调性增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2),那么就说函数 f(x)在区间 D 上是增函数减函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)>f(x2),那么就说函数 f(x)在区间 D 上是减函数单调性的证明:取值、作差、变形、定号、下结论4、函数的奇偶性偶函数:设函数 f(x)的定义域为 D,如果对于定义域 D 内任意一个x,都有 f(x)=f(x),那么函数 f(x)就叫做偶函数奇函数:设函数 f(x)的定义域为 D,如果对于定义域 D 内任意一个x,都有 f(x)=f(x),那么函数 f(x)就叫做奇函数奇偶性的判断:先判断函数的定义域是否关于原点对称,再判断f(x)与 f(x)的关系三、指数函数1、指数正整数指数幂:an =a×a×…×a(n 个 a 相乘)零指数幂:a0 = 1(a≠0)负整数指数幂:ap = 1/ap (a≠0,p 为正整数)分数指数幂:am/n =n√am (a>0,m、n∈N,且 n>1)2、指数函数的概念定义:函数 y = ax(a>0 且a≠1)叫做指数函数指数函数的图象和性质图象特征:过定点(0,1),当 a>1 时,函数单调递增;当 0<a<1 时,函数单调递减值域:(0,+∞)四、对数函数1、对数对数的定义:如果 ax = N(a>0 且a≠1),那么数 x 叫做以 a 为底N 的对数,记作 x = logaN对数的性质:logaa = 1,loga1 = 0对数的运算法则:loga(MN) = logaM + logaN,loga(M/N) =logaM logaN,logaMn = nlogaM(n∈R)2、对数函数的概念定义:函数 y = logax(a>0 且a≠1)叫做对数函数对数函数的图象和性质图象特征:过定点(1,0),当 a>1 时,函数单调递增;当 0<a<1 时,函数单调递减定义域:(0,+∞)五、幂函数1、幂函数的定义一般地,形如 y = xa(a 为常数)的函数叫做幂函数2、常见幂函数的图象和性质y = x,y = x2,y = x3,y = x1/2,y = x-1 等图象特征和单调性根据幂指数的不同而有所差异六、函数的应用1、函数与方程零点的定义:函数 y = f(x)的图象与 x 轴交点的横坐标叫做函数的零点零点存在性定理:如果函数 y = f(x)在区间a,b上的图象是连续不断的一条曲线,并且有 f(a)·f(b)<0,那么函数 y = f(x)在区间(a,b)内至少有一个零点2、函数模型及其应用常见的函数模型:一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型等函数模型的应用:解决实际问题中的最优化、预测等问题以上是高一数学中涉及的主要章节知识点,希望对您有所帮助。
高一数学1到8章知识点
高一数学1到8章知识点第一章:集合的基本概念集合是数学中最基本的概念之一,它是由一些确定的对象组成的整体。
数学中常用的符号表示集合,例如大写字母A、B、C等表示集合,而小写字母a、b、c等表示集合中的元素。
集合的基本操作包括并集、交集、差集和补集。
并集是指将两个集合的所有元素合并在一起,交集是指两个集合中共同的元素,差集是一个集合中减去另一个集合中相同的元素所得到的集合,补集是指在某个集合中不属于另一个集合中的元素的集合。
第二章:整式与分式的基本概念整式是指只包含代数变量和常数的运算式,其中包括常数项、一次项、二次项等。
分式是指两个整式之间的比值,其中包括真分式和假分式。
在整式的运算中,我们需要掌握加法、减法、乘法和除法的运算规则。
在分式的运算中,我们需要掌握分式加法、减法、乘法和除法的运算规则。
第三章:一元一次方程与不等式一元一次方程是指只含有一个未知数的一次方程,解一元一次方程的方法有等式两边加、减、乘、除同一个数等法则。
一元一次不等式是指只含有一个未知数的一次不等式,解一元一次不等式的方法有图解法和代入法。
第四章:平面直角坐标系与二次函数平面直角坐标系是由横轴和纵轴组成的,用于表示点的位置。
在平面直角坐标系中,我们可以通过坐标表示一个点的位置。
二次函数是指函数的表达式为a*x^2+b*x+c的函数,其中a、b、c为常数且a不等于0。
我们可以通过平移、翻折和缩放的方式来研究二次函数的图像和性质。
第五章:三角函数三角函数是指以角为自变量的函数,其中包括正弦函数、余弦函数和正切函数。
三角函数在几何学和物理学中有着广泛的应用。
在三角函数的运算中,我们需要掌握角度与弧度的互相转换,以及基本角的各种性质和计算方法。
第六章:平面向量与解析几何平面向量是指有大小和方向的量,常用箭头表示。
在平面上,我们可以通过向量的运算,例如加法、减法、数量积和向量积等,来研究和解决问题。
解析几何是指将几何问题转化为代数问题进行研究的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1各章知识点总结————第一章 集合与函数概念 一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如{我校篮球队员},{太平洋,大西洋,印度洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。
◆ 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c ……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R|x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系1.“包含”关系—子集 注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。
A ⊆A ②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A) ③如果 A ⊆B, B ⊆C ,那么 A ⊆C ④ 如果A ⊆B 同时 B ⊆A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
◆ 有n 个元素的集合,含有2n 个子集,2n-1个真子集运算类型 交 集 并 集 补 集 定 义 由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A I B (读作‘A 交B ’),即A I B={x|x ∈A ,且x ∈B }. 由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A Y B(读作‘A 并B ’),即A Y B={x|x ∈A ,或x ∈B}). 设S 是一个集合,A 是S 的一个子集,由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)记作A C S ,即C S A=},|{A x S x x ∉∈且 韦 恩 图 示A B 图1A B图2 性质 A I A=A A I Φ=Φ A I B=B I A A I B ⊆A A I B ⊆B A Y A=A A Y Φ=A A Y B=B Y A A Y B ⊇A A Y B ⊇B (C u A) I (C u B)= C u (A Y B)(C u A) Y (C u B) = C u (A I B)A Y (C u A)=UA I (C u A)= Φ. A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个 3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值二、函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. ◆ 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域1)观察法 (2)配方法(3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P (x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y),均在C 上 . (2) 画法: 描点法 图象变换法 常用变换方法有三种:平移变换 伸缩变换 对称变换 4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示..映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
记作“f (对应关系):A (原象)→B (象)” 对于映射f :A →B 来说,则应满足: (1)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的; (2)集合A 中不同的元素,在集合B 中对应的象可以是同一个; (3)不要求集合B 中的每一个元素在集合A 中都有原象。
6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间. 如果对于区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2 时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质; (2) 图象的特点:如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(指出函数f(x)在给定的区间D 上的单调性(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质) (1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2) 求函数的解析式的主要方法有:凑配法 待定系数法 换元法 消参法 10.函数最大(小)值: 1)利用二次函数的性质(配方法)求函数的最大(小)值2)利用图象求函数的最大(小)值 3)利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);例题:1.求下列函数的定义域:⑴221533x x y x --=+- ⑵211()1x y x -=-+2.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _3.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x = 5.求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+- [1,2]x ∈ (3)12yx x =-245y x x -++6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。