全国卷历年高考函数与导数真题归类分析(含答案)

合集下载

历年高考理科数学真题汇编+答案解析(2):函数与导数(2017-2020年)

历年高考理科数学真题汇编+答案解析(2):函数与导数(2017-2020年)

x
1 (0,1] ,则
f
(x)
2
f
(x
1)
2( x
1)( x
2)

f
(x) [
1 ,0] 2
∴当 x (2,3] 时, x 2 (0,1],则 f (x) 22 f (x 2) 4(x 2)(x 3) , f (x) [ 1,0]
函数 f (x) 的图像如图所示.
对任意 x (, m] ,都有 f (x) 8 ,因此 m (2,3] 9
2
2
当 x ( 1 ,1) 时, f (x) 0 , f (x) 在 (, 1) 单调递增.
22
2
当 x (1 , ) 时, f (x) 0 , f (x) 在 (, 1) 单调递减.
2
2
【答案】D
4.(2020 全国 III 卷理 12)已知 55 84 ,134 85 ,设 a log5 3, b log8 5 , c log13 8 ,则
的切线方程为
A. y 2x
B. y x
C. y 2x
D. y x
【解析】∵ f(x)为奇函数,∴ f x f x ,∴ a 1,故 f x x3 x ,因此 f x 3x 2 1 .
故曲线 y f x 在点 (0,0) 处的切线斜率 k f (0) 1 ,∴切线方程为 y x .
当直线 y x a 的截距 a 1 ,即 a 1 时,两个函数的图象有2个交点,即函数g(x)存在2个零
点,故a的取值范围是[–1,+∞) .
【答案】C 【考点】必修 1 指数函数、对数函数
16.(2018 全国 II 卷理 3)函数
f
x
ex
ex x2

函数与导数例高考题汇编(含答案)

函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

10.函数、导数及应用(定积分)——2011—2017年新课标全国卷理科数学分类真题解析(含答案)

10.函数、导数及应用(定积分)——2011—2017年新课标全国卷理科数学分类真题解析(含答案)

3y-5z=3log3k-5log5k= -
<0,∴3y<5z;
第 1页 共 30页
2017 课标Ⅱ卷(全国甲卷)
◎ 第 2页 共 30页
……○…………内…………○…………装…………○…………订…………○…………线…………○……… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
A.-1
B.-2e-3
C.5e-3
D.1
【答案】A
由 f '(x0)=0 得 ln x0=2(x0-1),故 f(x0)=x0(1-x0). 由 x0∈(0, )得 f(x0)< . 因为 x=x0 是 f(x)在(0,1)的最大值点,由 e-1∈(0,1),f '(e-1)≠0 得 f(x0)>f(e-1)=e-2.
……○…………外…………○…………装…………○…………订…………○…………线…………○………
10-2
新课标卷理科数学近八年高考分类考点真题分析 函数、导数及应用(定积分)
11.若 x=-2 是函数 f(x)=(x2+ax-1)ex-1 的极值点,则 f(x)的极小值为
因为 f '(x)=h(x),所以 x=x0 是 f(x)的唯一极大值点.
【解析】本题主要考查导数的运算以及利用导数判断函数的单调性、求函数的极值, 所以 e-2<f(x0)<2-2.
意在考查考生的运算求解能力及方程思想.
【解析】本题主要考查导数的运算,利用导数判断函数的单调性,求极值点、最值点,
因为 f(x)=(x2+ax-1)ex-1,所以 f '(x)=(2x+a)ex-1+(x2+ax-1)ex-1=[x2+(a+2)x+a-1]ex-1.因为 零点存在性定理,意在考查考生的运算求解能力、推理论证能力、函数与方程思想

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。

全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由. 【解析】(1)对32()2f x x ax b =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;当0a =时,(,)-¥+¥区间上单调递增;当0a >时,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a+¥区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以,若0a <,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;此时在区间[0,1]上单调递增,所以(0)1f =-,(1)1f =代入解得1b =-,0a =,与0a <矛盾,所以0a <不成立. 若0a =,(,)-¥+¥区间上单调递增;在区间[0,1].所以(0)1f =-,(1)1f =代入解得1a b =ìí=-î. 若02a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af 而(0),(1)2(0)f b f a b f ==-+³,故所以区间[0,1]上最大值为(1)f . 即322()()13321a a ab a b ì-+=-ïíï-+=î相减得32227a a -+=,即(33)(33)0a a a -+=,又因为02a <£,所以无解. 若23a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af而(0),(1)2(0)f b f a b f ==-+£,故所以区间[0,1]上最大值为(0)f . 即322()()1331a a a b b ì-+=-ïíï=î相减得3227a=,解得332x =,又因为23a <£,所以无解. 若3a >,(,0)-¥区间上单调递增,(0,)3a区间上单调递减,(,)3a+¥区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =ìí-+=-î解得41a b =ìí=î.综上得01a b =ìí=-î或41a b =ìí=î. 【小结】这是一道常规的利用函数导研究函数单调性、极值、【小结】这是一道常规的利用函数导研究函数单调性、极值、最值问题,最值问题,最值问题,此类问题一般住现此类问题一般住现在第一问,在第一问,但但2019年高考3卷把该题放到第20题位置,难度也相应降低,因此,该题的第二问仍然这类问题,只不过多出一个参数。

2024全国卷真题分类汇编(教师版)(函数与导数)

2024全国卷真题分类汇编(教师版)(函数与导数)

2024全国卷真题分类汇编(教师版)-函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan 1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B.C.D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1B.1C.2D.1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.18.(2024年高考全国甲卷数学(理))已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【详解】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++,因为12ln(1),11y x y x =+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a x s x a x x x +=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.。

专题03导数2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

专题03导数2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题03 导数选填题一、选择题1.(2022年全国甲卷理科·第6题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A 1-B .12-C .12D .1【答案】B解析:因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a bf x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B .【题目栏目】导数\导数的应用\导数与函数的最值\含参函数的最值问题【题目来源】2022年全国甲卷理科·第6题2.(2022新高考全国I 卷·第7题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a<<C .c a b <<D .a c b<<【答案】C解析: 设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,.当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =, 所以当01x <<-时,()0h x <,所以当01x <<-时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C .【题目栏目】导数\导数的应用\导数与函数的最值\具体函数的最值问题【题目来源】2022新高考全国I 卷·第7题3.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e ab <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e +-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2021年新高考Ⅰ卷·第7题4.(2021年高考全国乙卷理科·第10题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A a b < B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x的图象如下图所示:.由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.【题目栏目】导数\导数的应用\导数与函数的极值\含参函数的极值问题【题目来源】2021年高考全国乙卷理科·第10题5.(2020年高考数学课标Ⅰ卷理科·第6题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( )A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅰ卷理科·第6题6.(2020年高考数学课标Ⅲ卷理科·第10题)若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅲ卷理科·第10题7.(2019年高考数学课标Ⅲ卷理科·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a eb -==-【答案】【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。

全国卷导数合集(试题+解析)

全国卷导数合集(试题+解析)

(一) 导数的极最值问题1.(2015新课标Ⅱ)设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围.【解析】(Ⅰ)()(e 1)2mxf x m x '=-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,()0f x '<; 当(0,)x ∈+∞时,10mx e -≥,()0f x '>.若0m <,则当(,0)x ∈-∞时,10mx e ->,()0f x '<; 当(0,)x ∈+∞时,10mx e -<,()0f x '>.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增. 故()f x 在0x =处取得最小值.所以对于任意1x ,2x [1,1]∈-,12|()()|1f x f x e --≤的充要条件是:(1)(0)1(1)(0)1f f e f f e --⎧⎨---⎩≤≤,即11m m e m e e m e -⎧--⎨+-⎩≤≤ ① 设函数()1tg t e t e =--+,则()1tg t e '=-.当0t <时,()0g t '<;当0t >时()0g t '>. 故()g t 在(,0)-∞单调递减,在(0,)+∞ 单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤. 当[1,1]m ∈-时,()0,()0g m g m -≤≤,即①式成立;当1m >时,由()g t 得单调性,()0g m >,即1me m e ->-;当1m <-时,()0g m ->,即1m e m e -+>- 综上,m 的取值范围是[1,1]-.2.(2014新课标Ⅰ)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()y f x =在点 (1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01af x a <-,求a 的取值范围.【解析】(Ⅰ)()(1)af x a x b x'=+--, 由题设知(1)0f '=,解得1b =.(Ⅱ)()f x 的定义域为(0,)+∞,由(Ⅰ)知,21()ln 2a f x a x x x -=+-, 1()(1)1()(1)1a a a f x a x x x x x a-'=+--=--- (ⅰ)若12a ≤,则11aa≤-,故当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1af a <-,即1121a a a --<-,解得11a <<. (ii )若112a <<,则11a a >-,故当(1,)1ax a ∈-时,'()0f x <;当(,)1a x a ∈+∞-时,()0f x '>,()f x 在(1,)1a a -单调递减,在(,)1aa+∞-单调递增.所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--, 而2()ln 112(1)11a a a a af a a a a a a =++>-----,所以不合题意. (iii )若1a >,则11(1)1221a a af a ---=-=<-.综上,a的取值范围是(1)(1,)+∞U .3.(2013新课标Ⅰ)已知函数,曲线()y f x =在点处切线方程为. (Ⅰ)求的值;(Ⅱ)讨论的单调性,并求的极大值.【解析】(I )2()()24f x e ax a b x '=++--.由已知得(0)4f =,(0)4f '=.故4b =,8a b +=.从而4a b ==; (II) 由(I )知,2()4(1)4xf x e x x x =+--,1()4(2)244(2)().2x x f x e x x x e '=+--=+-令()0f x '=得,ln 2x =-或2x =-.从而当(,2)(12,)x n ∈-∞--+∞U 时,()0f x '>;当(2,12)x n ∈--,()0f x '<. 故()f x 在(,2)-∞-,(ln 2,)-+∞单调递增,在(2,ln 2)--单调递减. 当2x =-时,函数()f x 取得极大值,极大值为2(2)4(1)f e --=-.4.(2013新课标Ⅱ)已知函数.(Ⅰ)求的极小值和极大值;(Ⅱ)当曲线()y f x =的切线的斜率为负数时,求在轴上截距的取值范围.2()()4x f x e ax b x x =+--(0,(0))f 44y x =+,a b ()f x ()f x 2()xf x x e -=()f x l l x(Ⅰ)()f x 的定义域为(),-∞+∞,()()2xf x e x x -'=-- ①当(),0x ∈-∞或()2,x ∈+∞时,()0f x '<;当()0,2x ∈时,()0f x '> 所以()f x 在(),0-∞,()2,+∞单调递减,在()0,2单调递增.故当0x =时,()f x 取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(Ⅱ)设切点为()(),t f t ,则l 的方程为()()()y f t x t f t '=-+ 所以l 在x 轴上的截距为()()()22322f t t m t t t t f t t t =-=+=-++'-- 由已知和①得()(),02,t ∈-∞+∞U 令()()20h x x x x=+≠,则当()0,x ∈+∞时,()h x的取值范围为)+∞; 当(),2x ∈-∞-时,()h x 的取值范围是(),3-∞-.所以当()(),02,t ∈-∞+∞U 时,()m t 的取值范围是(),03,)-∞+∞U . 综上,l 在轴上截距的取值范围(),03,)-∞+∞U .5.(2015新课标2)已知函数()ln (1)f x x a x =+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【解析】(Ⅰ)()f x 的定义域为(0,)+∞,1()f x a x'=-. x若0a ≤,则()0f x '>,所以()f x 在(0,)+∞单调递增.若0a >,则当1(0,)x a∈时,()0f x '>;当1(,)x a∈+∞时,()0f x '<.所以()f x 在1(0,)a 单调递增,在1(,)a+∞单调递减. (Ⅱ)由(Ⅰ)知,当0a ≤时,()f x 在(0,)+∞上无最大值;当0a >时,()f x 在1x a=取得最大值,最大值为111()ln(1)ln 1f a a a a a a=+-=-+-. 因此1()22f a a>-等价于ln 10a a +-<.令()ln 1g a a a =+-,则()g a 在(0,)+∞单调递增,(1)0g =. 于是,当01a <<时,()0g a <;当1a >时,()0g a >. 因此a 的取值范围是(0,1).(二) 导数的恒成立问题1.(2018全国卷Ⅲ)已知函数2()(2)ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g =≥,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ++->=≥,这与0x =是()f x 的极大值点矛盾. (ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++. 由于当1||min{}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++. 如果610a +>,则当6104a x a +<<-,且1||min{}||x a <时,()0h x '>, 故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,(0)0f =0x =故当1(,0)x x ∈,且1||min{1,}||x a <时,()0h x '<,所以不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点 综上,16a =-.2. (2012新课标)设函数()2x f x e ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()xf x e a '=-.若0a …,则()0f x '>,所以()f x 在(,)-∞+∞单调递增.若0a >,则当(,ln )x a ∈-∞时()0f x '<,当(ln ,)x a ∈+∞,()0f x '>, 所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (Ⅱ) 由于1a =,所以(x -k ) f ´(x )+x +1=()(1)1x x k e x --++. 故当0x >时,(x -k ) f ´(x )+x +1>0等价于11xx k x e +<+- (0x >) ① 0x =令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x xx xe e e x g x e e ----'=+=-- 由(Ⅰ)知,函数()2xh x e x =--在(0,)+∞单调递增.而(1)0,(2)0h h <>,所以()h x 在(0,)+∞存在唯一的零点,故()g x '在(0,)+∞存在唯一的零点,设此零点为α,则(1,2)α∈.当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,()0g x '>,所以()g x 在(0,)+∞的最小值为()g α,又由()0g α'=,可得2e αα=+,所以()1(2,3)g αα=+∈ 故①等价于()k g α<,故整数k 的最大值为2.3.(2011新课标)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ ,解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1()1x f x x x=++,所以)1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h xx h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且4. (2010新课标)设函数2()(1)x f x x e ax =--. (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求a 的取值范围.【解析】(Ⅰ)12a =时,21()(1)2x f x x e x =--, '()1(1)(1)x x x f x e xe x e x =-+-=-+.当(),1x ∈-∞-时'()f x >0;当()1,0x ∈-时,'()0f x <;当()0,x ∈+∞时,'()0f x >. 故()f x 在(),1-∞-,()0,+∞单调增加,在(1,0)-单调递减.(Ⅱ)()(1)af x x x ax =--.令()1ag x x ax =--,则'()xg x e a =-.若1a ≤,则当()0,x ∈+∞时,'()g x >0,()g x 为减函数,而(0)0g =,从而当x ≥0时()g x ≥0,即()f x ≥0.若a >1,则当()0,ln x a ∈时,'()g x <0,()g x 为减函数,而(0)0g =,从而当()0,ln x a ∈时()g x <0,即()f x <0.综合得a 的取值范围为(],1-∞.5. (2017新课标Ⅱ)设函数2()(1)x f x x e =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax +≤,求a 的取值范围.【解析】(1)2()(12)xf x x x e '=--令()0f x '=得 12x =-12x =-+当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈--+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞-,(12,)-++∞单调递减,在(12,12)--+单调递增.(2)()(1)(1)xf x x x e =+-.当1a ≥时,设函数()(1)xh x x e =-,()0xh x xe '=-<,因此()h x 在[0,)+∞单调递减,而(0)1h =,故()1h x ≤,所以()(1)()11f x x h x x ax =+++≤≤.当01a <<时,设函数()1xg x e x =--,()10(0)xg x e x '=->>,所以()g x 在[0,)+∞单调递增,而(0)0g =,故1x e x +≥.当01x <<时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---, 取0541a x --=,则0(0,1)x ∈,2000(1)(1)10x x ax -+--=,故00()1f x ax <+. 当0a ≤时,取051x -=,则0(0,1)x ∈,20000()(1)(1)11f x x x ax >-+=+≥. 综上,a 的取值范围是[1,)+∞.6. (2016年全国II 卷)已知函数.(Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)若当时,,求的取值范围.【解析】(Ⅰ)()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-= (Ⅱ)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;()(1)ln (1)f x x x a x =+--4a =()y f x =()1,(1)f ()1,x ∈+∞()0f x >a(ii )当2>a 时,令()0'=g x 得22121(1)1,1(1)1=----=-+--x a a x a a ,由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()(1)0g x g <=. 综上,a 的取值范围是(],2.-∞(三) 导数的零点问题1.(2018全国卷Ⅱ)已知函数2()e =-xf x ax . (1)若1=a ,证明:当0≥x 时,()1≥f x (2)若()f x 在(0,)+∞只有一个零点,求a【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤xx .设函数2()(1)1-=+-xg x x e,则22()(21)(1)--=--+=--x x g'x x x e x e .当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减. 而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x . (2)设函数2()1e -=-xh x ax .()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x . 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e =-ah 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点;②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点;③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点,由(1)知,当0>x 时,2e >x x ,所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a .2.(2017新课标Ⅰ)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减.(ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20nnnnf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).3.(2016年全国Ⅰ) 已知函数2()(2)(1)xf x x e a x =-+-有两个零点. (I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x +<.【解析】(Ⅰ).'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+(i )设,则,只有一个零点.(ii )设,则当时,;当时,. 所以在上单调递减,在上单调递增. 又,,取满足且,则 ,故存在两个零点. (iii )设,由得或. 若,则,故当时,, 因此在上单调递增.又当时,, 所以不存在两个零点. 若,则,故当时,; 当时,.因此在上单调递减, 在上单调递增.又当时,, 所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,, 又在上单调递减,所以等价于, 即.由于,而,所以.设,则.所以当时,,而,故当时,. 从而,故.0a =()(2)xf x x e =-()f x 0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x (,1)-∞(1,)+∞(1)f e =-(2)f a =b 0b <ln2ab <223()(2)(1)()022a fb b a b a b b >-+-=->()f x 0a <'()0f x =1x =ln(2)x a =-2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞1x ≤()0f x <()f x 2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤()0f x <()f x a (0,)+∞12x x <12(,1),(1,)x x ∈-∞∈+∞22(,1)x -∈-∞()f x (,1)-∞122x x +<12()(2)f x f x >-2(2)0f x -<222222(2)(1)x f x x ea x --=-+-22222()(2)(1)0xf x x e a x =-+-=222222(2)(2)x x f x x e x e --=---2()(2)xx g x xex e -=---2'()(1)()x x g x x e e -=--1x >'()0g x <(1)0g =1x >()0g x <22()(2)0g x f x =-<122x x +<4.(2014新课标Ⅱ)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点【解析】(Ⅰ)'()f x =236x x a -+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,所以1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++设()g x ()2f x kx =-+323(1)4x x k x =-+-+,由题设知10k ->. 当x ≤0时,'()g x 23610x x k =-+->,()g x 单调递增,(1)10,(0)4g k g -=-<=,所以()g x =0在(],0-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()g x ()(1)()h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()0g x =在(0,)+∞没有实根.综上,()g x =0在R 有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.5. (2018全国卷Ⅱ)已知函数321()(1)3=-++f x x a x x . (1)若3=a ,求()f x 的单调区间; (2)证明:()f x 只有一个零点.【解析】(1)当3=a 时,321()3333=---f x x x x ,2()63'=--f x x x .令()0'=f x 解得3=-x 或3=+x当(,3(3)∈-∞-++∞U x 时,()0'>f x ;当(3∈-+x 时,()0'<f x .故()f x 在(,3-∞-,(3)++∞单调递增,在(3-+单调递减.(2)由于210++>x x ,所以()0=f x 等价于32301-=++x a x x . 设32()31=-++x g x a x x ,则2222(23)()0(1)++'=++≥x x x g x x x , 仅当0=x 时()0'=g x ,所以()g x 在(,)-∞+∞单调递增. 故()g x 至多有一个零点,从而()f x 至多有一个零点. 又22111(31)626()0366-=-+-=---<f a a a a ,1(31)03-=>f a , 故()f x 有一个零点. 综上,()f x 只有一个零点.6. (2015新课标1)设函数()2eln xf x a x =-(Ⅰ)讨论()f x 的导函数()f x '零点的个数; (Ⅱ)证明:当0a >时()22ln f x a a a+≥【解析】(Ⅰ)()f x 的定义域为(0+)∞,,()2()=20x af x e x x'->. 当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2e x 单调递增,ax -单调递增,所以()f x '在(0+)∞,单调递增.又()0f x '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点.(Ⅱ)由(Ⅰ),可设()f x '在(0+)∞,的唯一零点为0x ,当0(0)x x ∈,时,()0f x '<;当0(+)x x ∈∞,时,()0f x '>. 故()f x 在0(0)x ,单调递减,在0(+)x ∞,单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以00022()=2ln 2ln 2a f x ax a a a x a a+++≥. 故当0a >时,2()2ln f x a a a+≥.(四) 导数的不等式问题1.(2017新课标Ⅲ)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值.【解析】(1)()f x 的定义域为(0,)+∞.①若a 0≤,因为11()ln 2022f a =-+<,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在(0,)a 单调递减,在(,)a +∞单调递增,故x a =是()f x 在(0,)+∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2.(2016年全国Ⅲ) 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>, 记|()|f x 的最大值为A .(Ⅰ)求()f x ';(Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【解析】(Ⅰ)()2sin 2(1)sin f x a x a x '=---.(Ⅱ)当1a …时,|()||sin 2(1)(cos 1)|f x a x a x '=+-+2(1)a a +-…32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >.(ⅰ)当105a <…时,()g t 在[1,1]-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<⎪⎪++⎪=<<⎨⎪-⎪⎪⎩……. (Ⅲ)由(Ⅰ)得|()||2sin2(1)sin |2|1|f x a x a x a a '=---+-…. 当105a <…时,|()|1242(23)2f x a a a A '+-<-=剟.当115a <<时,131884a A a =++…,所以|()|12f x a A '+<….当1a …时,|()|31642f x a a A '--=剟,所以|()|2f x A '….3.(2018全国卷Ⅰ)已知函数()ln 1=--x f x ae x . (1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0≥f x .【解析】(1)()f x 的定义域为(0)+∞,,1()'=-x f x ae x. 由题设知,(2)0'=f ,所以212e =a . 从而21()e ln 12e =--x f x x ,211()e 2e '=-x f x x.当02<<x 时,()0'<f x ;当2>x 时,()0'>f x . 所以()f x 在(0,2)单调递减,在(2,)+∞单调递增. (2)当1e ≥a 时,()≥f x e ln 1exx --.设e ()ln 1e =--x g x x ,则e 1()e x g x x'=-.当01<<x 时,()0'<g x ;当1>x 时,()0'>g x .所以1=x 是()g x 的最小值点. 故当0>x 时,()(1)0=≥g x g . 因此,当1e≥a 时,()0≥f x .4.(2018全国卷Ⅲ)已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-++-+≥.令21()1ex g x x x ++-+≥,则1()21ex g x x +'++≥.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()(1)=0g x g -≥.因此()e 0f x +≥.5.(2017新课标Ⅲ)已知函数2()ln (21)f x x ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--≤.【解析】(1)()f x 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=. 若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增.若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '<.故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减.(2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为111()ln()1224f a a a-=----. 所以3()24f x a --≤等价于113ln()12244a a a -----≤,即11ln()1022a a-++≤.设()ln 1g x x x =-+,则1()1g x x'=-.当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,)+∞单调递减.故当1x =时,()g x 取得最大值,最大值为(1)0g =.所以当0x >时,()g x ≤0.从而当0a <时,11ln()1022a a-++≤,即3()24f x a--≤.6.(2016年全国III 卷)设函数()ln 1f x x x =-+.(Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【解析】(Ⅰ)由题设,()f x 的定义域为(0,)+∞,1()1f x x'=-,令()0f x '=,解得1x =.当01x <<时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. (Ⅱ)由(Ⅰ)知,()f x 在1x =处取得最大值,最大值为(1)0f =. 所以当1x ≠时,ln 1x x <-. 故当(1,)x ∈+∞时,ln 1x x <-,11ln1x x <-,即11ln x x x-<<. (Ⅲ)由题设1c >,设()1(1)xg x c x c =+--,则()1ln xg x c c c '=--,令()0g x '=,解得01lnln ln c c x c-=. 当0x x <时,()0g x '>,()g x 单调递增;当0x x >时,()0g x '<,()g x 单调递减. 由(Ⅱ)知,11ln c c c-<<,故001x <<,又(0)(1)0g g ==, 故当01x <<时,()0g x >. 所以当(0,1)x ∈时,1(1)xc x c +->.(五) 导数的隐零点问题1.(2017新课标Ⅱ)已知函数2()ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.【解析】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)0g =,()0g x ≥,故(1)0g '=,而1()g x a x'=-,(1)1g a '=-,得1a =. 若1a =,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥.综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--. 设()22ln h x x x =--,则1()2h x x'=-. 当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又2()0h e ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >.因此()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得,01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(0,1)e -∈,1()0f e -'≠得120()()f x f e e -->=.所以220()2ef x --<<.2.(2016年全国Ⅱ) (I)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【解析】(I )证明:()2e 2xx f x x -=+ ()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞U ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+ ∴()2e 20x x x -++>(Ⅱ)33(2)(2)2()(())x x e a x x g x f x a x x-+++'==+, 由(Ⅰ)知,()f x a +单调递增,对任意的[)01a ∈,,(0)10f a a +=-<, (2)0f a a +=…,因此,存在唯一(0,2]a x ∈,使得()0a f x a +=,即()0a g x '=当0a x x <<时,()0f x a +<,()0g x '<,()g x 单调递减; 当a x x >时,()0f x a +>,()0g x '>,()g x 单调递增. 因此()g x 在a x x =处取得最小值,最小值为22(1)()(1)()2a a ax x x a a a a a a a e a x e f x x e g x x x x -+-+===+. 于是()2ax a e h a x =+,由2(1)()02(2)x x e x e x x +'=>++,得2x e x +单调递增. 所以,由(0,2]a x ∈,得0221()2022224a x a e e e e h a x =<==+++…,因为2x e x +单调递增,对任意的21(,]24e λ∈,存在唯一的(0,2]a x ∈,()[0,1)a a f x =-∈,使得()h a λ=,所以()h a 的值域为21e 24⎛⎤ ⎥⎝⎦,.综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域为21e 24⎛⎤⎥⎝⎦,.(六) 导数的双变量问题1.(2018全国卷Ⅰ)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,24a a x --=或24a a x +-=.当2244)a a a a x --+-∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在,)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.。

全国卷理科高考导数函数题(详解版)

全国卷理科高考导数函数题(详解版)

全国卷13-17高考真题分类汇编:函数、导数及其应用1.〔2015.Ⅱ理5〕设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12【解析】选C 由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .2.【2017.Ⅰ理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.假设(11)f =-,则满足21()1x f --≤≤的x 的取值范围是〔 〕 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要重视利用奇、偶函数与单调性解决不等式和比较大小问题,假设()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 3. (2014·Ⅱ理8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( )【解题提示】将函数y=ax-ln 〔x+1〕求导,将x=0代入,利用导数的几何意义求得a. 【解析】选D.因为f(x)=ax-ln(x+1),所以f'(x)=a-11x +.所以f(0)=0,且f'(0)=2.联立解得a=3.故选D. 4.〔2013·Ⅰ文〕已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.假设|f (x )|≥ax ,则a 的取值范围是 ( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]【解析】选D 此题主要考查数形结合思想、函数与方程思想,利用导数研究函数间关系,对分析能力有较高要求.y =|f (x )|的图像如下图,y =ax 为过原点的一条直线,当a >0时,与y =|f (x )|在y 轴右侧总有交点,不合题意.当a =0时成立.当a <0时,有k ≤a <0,其中k 是y =|-x 2+2x |在原点处的切线斜率,显然k =-2,于是-2≤a <0.综上,a ∈[-2,0].5.〔2013·大纲卷理〕已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D .⎝⎛⎭⎫12,1 【解析】选B 此题考查函数定义域问题.由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝⎛⎭⎫-1,-12.6.〔2016.III.理6〕已知432a =,254b =,1325c =,则〔 〕〔A 〕b a c << 〔B 〕a b c << 〔C 〕b c a << 〔D 〕c a b << 【答案】A7、〔2016.I 理8〕假设101a b c >><<,,则〔 〕 A .c c a b < B .c c ab ba < C .log log b a a c b c <D .log log a b c c<【答案】C8.【2017.Ⅰ理11】设x 、y 、z 为正数,且235x y z ==,则〔 〕A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D 【解析】试题分析:令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 9.〔2013·大纲理〕假设函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是 〔 〕 A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)【解析】选D 此题考查函数的单调性等知识.f ′(x )=2x +a -1x 2,因为函数在⎝⎛⎭⎫12,+∞是增函数,所以f ′(x )≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12,+∞上恒成立,设g (x )=1x 2-2x ,g ′(x )=-2x 3-2,令g ′(x )=-2x3-2=0,得x =-1,当6、〔2016.I 理8〕假设101a b c >><<,,则〔 〕〔A 〕c c a b <〔B 〕c cab ba <〔C 〕log log b a a c b c <〔D 〕log log a b c c <【答案】C10. (2014·Ⅱ文11)假设函数f (x )=kx-lnx 在区间(1,+∞)单调递增,则k 的取值范围是( )(D)(C)(B)(A)xyπ4π23π4π22π3π4π2π4yxxyπ4π23π4π22π3π4π2π4yxA. (,2]-∞-B. (,1]-∞-C. [2,)+∞D. [1,)+∞【解题提示】利用函数f(x)在区间(1,+∞)上单调递增,可得其导函数f(x)≥0恒成立,别离参数,求得k 的取值范围.【解析】选D.因为f(x)在(1,+∞)上递增,所以f'(x)≥0恒成立,因为f(x)=kx-lnx,所以f'(x)=k-1x ≥≥1>1x.所以k ∈[1,+∞),选D11、〔2016.I 理7〕函数y =2x 2–e |x |在[–2,2]的图像大致为〔 〕〔A 〕〔B 〕〔C 〕〔D 〕【答案】D 【解析】()22288 2.80f e =->->,排除A ,()22288 2.71f e =-<-<,排除B0x >时,()22x f x x e =-()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-=因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C故选D .12.〔2015.Ⅱ理10〕如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为〔 〕【解析】选B 由已知得,当点P 在BC 边上运动时,即04x π≤≤时,2tan 4tan PA PB x x +=++;当点P 在CD 边上运动时,即3,442x x πππ≤≤≠时,2211(1)1(1)1tan tan PA PB x x +=-+++,DPCB OA x当2x π=时,22PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,2tan 4tan PA PB x x +=+-,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B . 13.〔2015.Ⅰ文12〕设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )〔A 〕 1- 〔B 〕1 〔C 〕2 〔D 〕4【解析】选C 设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为〔,y x --〕,由已知知〔,y x --〕在函数2x ay +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 14.〔2016.II.理12〕已知函数()()f x x ∈R 满足()2()f x f x -=-,假设函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑〔 〕〔A 〕0 〔B 〕m 〔C 〕2m 〔D 〕4m 【答案】B15.【2017.II 理11】假设2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为〔 〕A.1-B.32e --C.35e - 【答案】A 【解析】【考点】 函数的极值;函数的单调性【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同。

全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数$f(x)=2x^3-ax^2+b$.1)讨论$f(x)$的单调性;2)是否存在$a,b$,使得$f(x)$在区间$[0,1]$的最小值为$-1$且最大值为$1$?若存在,求出$a,b$的所有值;若不存在,说明理由.解析】1)对$f(x)=2x^3-ax^2+b$求导得$f'(x)=6x^2-2ax=2x(3x-a)$。

所以有:当$a<0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减;当$a=0$时,$(-\infty,+\infty)$区间上单调递增;当$a>0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减.2)若$f(x)$在区间$[0,1]$有最大值$1$和最小值$-1$,所以,若$a<0$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$[0,1]$上单调递增,所以$f(0)=-1$,$f(1)=1$代入解得$b=-1$,$a=\frac{1}{3}$,与$a<0$矛盾,所以$a<0$不成立.若$a=0$,$(-\infty,+\infty)$区间上单调递增;在区间$[0,1]$,所以$f(0)=-1$,$f(1)=1$代入解得$\begin{cases}a=0\\b=-1\end{cases}$.若$0<a\leq2$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(1)$而$f(0)=b$,$f(1)=2-a+b\geq f(0)$,故所以区间$[0,1]$上最大值为$f(1)$.若$2<a\leq3$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(0)$而$f(0)=b$,$f(1)=2-a+b\leq f(0)$,故所以区间$[0,1]$上最大值为$f(0)$.已知函数$f(x)=x^3+ax+\frac{1}{4},g(x)=-\ln x$。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 导数大题(原卷版及解析版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 导数大题(原卷版及解析版)
解析:(1)当 时, ,
令 得 ,当 时, ,当 时, ,
∴函数 在 上单调递增; 上单调递减;
(2) ,设函数 ,
则 ,令 ,得 ,
在 内 , 单调递增;
在 上 , 单调递减;
,பைடு நூலகம்
又 ,当 趋近于 时, 趋近于0,
所以曲线 与直线 有且仅有两个交点,即曲线 与直线 有两个交点的充分必要条件是 ,这即是 ,
3.(2020年高考数学课标Ⅰ卷理科)已知函数 .
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥ x3+1,求a的取值范围.
4.(2020年高考数学课标Ⅱ卷理科)已知函数f(x)=sin2xsin2x.
(1)讨论f(x)在区间(0,π)的单调性;
(2)证明: ;
(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤
20.(2014高考数学课标2理科)(本小题满分12分)
已知函数 = .
(Ⅰ)讨论 的单调性;
(Ⅱ)设 ,当 时, ,求 的最大值;
(Ⅲ)已知 ,估计ln2的近似值(精确到0.001)
21.(2014高考数学课标1理科)设函数 ,曲线 在点 处的切线 .
(1)求 ;
(2)证明: .
22.(2013高考数学新课标2理科)已知函数 .
18.(2015高考数学新课标2理科)(本题满分12分)设函数 .
(Ⅰ)证明: 在 单调递减,在 单调递增;
(Ⅱ)若对于任意 ,都有 ,求 的取值范围.
19.(2015高考数学新课标1理科)(本小题满分12分)
已知函数
(Ⅰ)当 为何值时, 轴为曲线 的切线;
(Ⅱ)用 表示 中的最小值,设函数 ,讨论 零点的个数.

高考数学全国卷2011-2019导数分类汇编(文科)

高考数学全国卷2011-2019导数分类汇编(文科)

高考数学全国卷2011-2019导数分类汇编(文科)【2011新课标】21. 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,f (x )>ln xx -1【解析】(1)221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩ 即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

(2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2(2ln x -x 2-1x ), 考虑函数,则22222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,.【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间(2)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值 【解析】(1)f (x )的定义域为(,)-∞+∞,()x f x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.(2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0)(1)x x k x x e +<+>-①.令1()(1)x x g x x e +=+-,则221(2)()1(1)(1)xx x x x xe e e x g x e e ----'=+=--. ln ()1x f x x >-ln ()1xf x x >-0x >1x ≠ln ()1xf x x >-由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>.所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 【解析】(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).【2013新课标2】21.已知函数f(x)=x 2e -x . (1)求f(x)的极小值和极大值;(2)当曲线y =f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解析】(1)f(x)的定义域为(-∞,+∞), f′(x)=-e -x x(x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f′(x)<0;当x ∈(0,2)时,f′(x)>0. 所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f(x)取得极小值,极小值为f(0)=0; 当x =2时,f(x)取得极大值,极大值为f(2)=4e -2.(2)设切点为(t ,f(t)),则l 的方程为y =f′(t)(x -t)+f(t). 所以l 在x 轴上的截距为m(t)=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h(x)=2x x+(x≠0),则当x ∈(0,+∞)时,h(x)的取值范围为[∞); 当x ∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[3,+∞].综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[223+,+∞]. 【2014新课标1】21.设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。

历年高考理科数学真题汇编+答案解析(2):函数与导数

历年高考理科数学真题汇编+答案解析(2):函数与导数

历年高考理科数学真题汇编+答案解析专题2 函数与导数(2020年版)考查频率:一般为2~3个小题和1个大题. 考试分值:22分~27分 知识点分布:必修1、选修2-2一、选择题和填空题(每题5分)1.(2019全国I 卷理3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【解析】由指数函数和对数函数的单调性易得22log 0.2log 10a =<=,0.20 221b =>=,0.3 0.20c =>且0.30 0.20.21c =<=,所以有a c b <<.【答案】B【考点】必修1 指数函数、对数函数 2.(2019全国I 卷理5)函数2cos sin )(x x xx x f ++=在[,]-ππ的图像大致为A .B .C .D .【解析】∵2cos sin )(x x x x x f ++=,],[ππ-∈x ,∴)(cos sin cos sin )(22x f x x xx x x x x x f -=++-=+--=-,∴f (x )在[,]-ππ上是奇函数,因此排除A ;又01cos sin )(22>π+-π=π+ππ+π=πf ,因此排除B 、C. 【答案】D【考点】必修1 函数的基本性质3.(2019全国I 卷理13)曲线23()xy x x e =+在点(0)0,处的切线方程为____________.【解析】23(31)x y x x e '=++,当0x =,3y '=,∴曲线23()xy x x e =+在点(0)0,处的切线斜率3k =,∴切线方程为3y x =.【考点】选修2-2 导数及其应用4.(2019全国II 卷理6)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .|a |>|b |【解析】答案A :∵a >b ,∴a -b >0,无法判断ln(a −b )的正负;答案B :∵y =3x 为增函数,∴3a >3b ;答案C :∵y =x 3为增函数,∴a 3>b 3;答案D :当0>a >b 时,|a |<|b |.【答案】C【考点】必修1 指数函数、对数函数5.(2019全国II 卷理12)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【解析】由)(2)1(x f x f =+可得Z x x f t x f t∈⋅=+),(2)(,即Z x t x f x f t∈-⋅=),(2)(.∵当(0,1]∈x 时,()(1)=-f x x x ,1()[,0]4∈-f x ∴当(1,2]∈x 时,1(0,1]-∈x ,则)2)(1(2)1(2)(--=-⋅=x x x f x f ,1()[,0]2∈-f x∴当(2,3]∈x 时,2(0,1]-∈x ,则)3)(2(4)2(2)(2--=-⋅=x x x f x f ,()[1,0]∈-f x 函数()f x 的图像如图所示. 对任意(,]∈-∞x m ,都有8()9≥-f x ,因此(2,3]∈m 令98)3)(2(4)(-=--=x x x f ,得 37=x 或38=x . 由图可知,当37≤m 时,都有8()9≥-f x .【答案】B【考点】必修1 分段函数、函数的性质、指数函数6.(2019全国II 卷理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =_____. 【解析】∵In2>0,∴-In2<0,∴2In )In2(a ef --=-.∵)(x f 是奇函数,∴8)2In ()2In (-=-=-f f . ∴82In -=--a e,∴3In2In2In8In23===-a ,∴3-=a .【答案】-3【考点】必修1 对数函数7.(2019全国III 卷理6)已知曲线ln xy ae x x =+在点(1,ae )处的切线方程为y =2x +b ,则 A .a =e ,b =–1B .a =e ,b =1C .a =e –1,b =1D .a =e –1,1b =-【解析】ln 1xy ae x '=++,由题意可得,1|12x y ae ='=+=,2ae b =+,解得1,1a e b -==-. 【答案】D【考点】选修2-2 导数及其应用8.(2019全国III 卷理7)函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【解析】设32()22x x x f x -=+,∵32()()22xxx f x f x ---==-+,∴()f x =为奇函数,排除C. ∵12(1)022f -=>+,∴排除D.∵3536366262662161(6)<===62222324f -⨯⨯=+,∴排除A. (PS :由“选项重叠原则”,可快速选得正确答案B.)【答案】B【考点】必修1 函数的基本性质9.(2019全国III 卷理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 【解析】∵()f x 是偶函数,∴13331(log )(log 4)(log 4)4f f f -=-=∵33log 4log 31>=,230322<2<2=1--,∴233230<2<2<log 4--.∵()f x 在()0,+∞单调递减,∴23323(2)>(2)>(log 4)f f f --,即233231(2)>(2)>(log )4f f f --. 【答案】C【考点】必修1 对数函数10.(2018全国I 卷理5)设函数()()321=+-+f x x a x ax .若f (x )为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =【解析】∵ f (x )为奇函数,∴()()f x f x -=-,∴1a =,故()3=+f x x x ,因此()231f x x '=+.故曲线()y f x =在点(0)0,处的切线斜率(0)1k f '==,∴切线方程为y x =.【答案】D【考点】选修2-2 导数及其应用11.(2018全国I 卷理9)已知函数,0()In ,0⎧≤=⎨>⎩x e x f x x x ,()()=++g x f x x a .若g (x )存在2个零点,则a的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)【解析】由()0=g x 得()=--f x x a ,作出函数 f (x ) 和=--y x a 的图象如图:当直线=--y x a 的截距1-≤a ,即1≥-a 时,两个函数的图象有2个交点,即函数g (x )存在2个零点,故a 的取值范围是[–1,+∞) .【答案】C【考点】必修1 指数函数、对数函数12.(2018全国II 卷理3)函数的图像大致为()2e e x xf x x --=【解析】∵)()()(22x f xe e x e e xf xx x x -=--=--=---,∴函数f (x )为奇函数,排除A ; 又01)1(>-=ee f ,排除D ;当x →+∞,f (x )→+∞,排除C. 【答案】B【考点】必修1 函数的基本性质13.(2018全国II 卷理11)已知是定义域为的奇函数,满足.若,则 A .B .0C .2D .50【解析】∵是定义域为的奇函数,∴(1)(1)(1)f x f x f x +=-=--,且(0)0f =,∴(2)(11)(11)(0)0f f f f =+=--=-=,(3)(21)(21)(1)2f f f f =+=--=-=-,(4)(31)(31)(2)0f f f f =+=--=-=,(5)(41)(41)(3)2f f f f =+=--=-=,同理可得(6)(10)(14)(46)(50)0f f f f f ======L ,(7)(11)(15)(47)2f f f f =====-L ,(8)(12)(16)(47)0f f f f =====L ,(9)(13)(17)(49)2f f f f =====L ,∴(1)(2)(3)(50)(1)(50)(1)2f f f f f f f ++++=+==L .【答案】C【考点】必修1 函数的基本性质14.(2018全国II 卷理13)曲线在点(0, 0)处的切线方程为__________. 【解析】∵21'=+y x ,∴点(0, 0)处的切线方程为2=y x . 【答案】y =2x15.(2018全国III 卷理7)函数的图像大致为()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-()f x (,)-∞+∞2ln(1)y x =+422y x x =-++【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.【答案】D【考点】选修2-2 导数及其应用16.(2018全国III 卷理12)设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-. ∴0ab <,0a b +<. ∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述 0ab a b <+<.【答案】B【考点】必修1 对数函数17.(2018全国III 卷理14)曲线(1)xy ax e =+在点处的切线的斜率为,则________. 【解析】∵(1)(1)x x xy ae ax e ax a e '=++=++,∴0|12x y a ='=+=-,∴3a =-. 【答案】3-【考点】选修2-2 导数及其应用18.(2017全国I 卷理5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【解析】由题意得()11f -=,∵函数()f x 在(,)-∞+∞单调递减,∴由21()1x f --≤≤得112x -≤-≤,()01,2-a =解得13x ≤≤.【答案】D【考点】必修1 函数的基本性质19.(2017全国I 卷理11)设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【解析】∵x 、y 、z 为正数,所以2351==>x y z ,设2351===>x y z k ,则lg 0>k ,则lg lg lg ,,lg 2lg3lg5===k k kx y z ,∴lg 21lg 22====k x y z ∵333==<同理∵555=>=>>>,∴<<3y <2x <5z. 【答案】D【考点】必修1 指数函数、对数函数20. (2017全国II 卷理11)若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A. 1-B. 32e --C. 35e -D. 1 【解析】函数21()(1)x f x x ax e-=+-,可得12121()(2)(1)=(21)x x x f x x a ex ax e x ax x a e ---'=+++-+++-,∴ 2x =-是函数21`()(1)x f x x ax e -=+-的极值点,∴ 1(2)(1)=0x f a e-'=--,解得1a =-.因此有21()(2)x f x x x e -'=+-,21()(1)x f x x x e-=--令21()(2)0x f x x x e -'=+-=,可得函数有两个极值点:2x =-,1x =,∴ (1)1f =-,3(2)5f e --=,由于函数连续且只有两个极值点,因此()f x 的极小值为(1)1f =-.【答案】A【考点】选修2-2 导数及其应用21.(2017全国III 卷理11)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1 【解析】11()22()x x f x x a e e --+'=-+-,当1x =时,00(1)22()0f a e e '=-+-=;若0a >,根据函数图像及其性质可知,当1x >时,220x ->,11()0x x a ee --+->,故()0f x '>恒成立;当1x <时,同理()0f x '<恒成立. 故函数()f x 在(,1)-∞单调递减,在(1,)+∞单调递增. ∵函数()f x 有唯一零点,∴该唯一零点一定是1,即(1)120f a =-+=,∴12a =. 同理,若00a a <=或,根据函数图像及其性质,可以证明函数()f x 的零点不唯一.【答案】C图A11【考点】选修2-2 导数及其应用22.(2017全国III 卷理15)设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________。

历年全国各省高考真题详解函数及导数

历年全国各省高考真题详解函数及导数

函数与导数1.假如函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为(15四川)(A )16 (B )18 (C )25 (D )812【问题】则mn 的最大值为-------求最值。

【条件翻译】1、。

2、函数在区间122⎡⎤⎢⎥⎣⎦,单调递减,可得出()0f x '≤;0)21('≤f ,0)2('≤f 。

即即,,又因为。

所以可以利用可行域来求最值。

【关键词】单调递减 最大值令Z=MN ,若要相乘值最大,那么N 、M 的值就应当越接近一样大。

阅历证,3,6m n ==满意条件。

故选B 。

【错误会析】由()f x 单调递减得:()0f x '≤,故()280m x n -+-≤在122⎡⎤⎢⎥⎣⎦,上恒成立。

而()28m x n -+-是一次函数,在122⎡⎤⎢⎥⎣⎦,上的图像是一条线段。

故只须在两个端点处()10,202f f ⎛⎫''≤≤ ⎪⎝⎭即可。

由()()212⨯+得:10m n +≤。

所以,2252m n mn +⎛⎫≤≤ ⎪⎝⎭. 选C 。

阅历证,3,6m n ==满意条件()()1,2。

故选B 。

【错误缘由】mn 当且仅当5m n ==时取到最大值25,而当5m n ==,,m n 不满意条件()()1,2。

【解法2】同前面一样,m n 满意条件()()1,2。

由条件()2得:()1122m n ≤-。

于是,()211121218222n n mn n n +-⎛⎫≤-≤= ⎪⎝⎭。

mn 当且仅当3,6m n ==时取到最大值18。

阅历证,3,6m n ==满意条件()()1,2。

故选B 。

【解题技巧】1.解题方法:依据问题为求最大值,求最大值,最小值常用的方法:①定义法,即单调性的推断,②导数法。

利用导数求出在区间内的最值,③不等式求最值法。

2012年-2021年(10年)全国高考数学真题分类汇编 导数客观题(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编 导数客观题(精解精析版)

2012-2021十年全国高考数学真题分类汇编导数客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.2.(2020年高考数学课标Ⅰ卷理科)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题3.(2020年高考数学课标Ⅲ卷理科)若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l 在曲线y x =上的切点为(00x x ,则00x >,函数y x =的导数为12y x'=,则直线l 的斜率02k x =,设直线l 的方程为)0002y x x x x =-,即000x x x -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019年高考数学课标Ⅲ卷理科)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a e b ==-B .,1a eb ==C .1,1a e b -==D .1,1a eb -==-【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。

2010-2019全国卷I文科函数与导数(解析版)

2010-2019全国卷I文科函数与导数(解析版)

专题16 函数与导数(2)1.(2019年)已知函数f (x )=2sin x ﹣x cos x ﹣x , f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【解析】(1)∵f (x )=2sin x ﹣x cos x ﹣x ,∴f ′(x )=2cos x ﹣cos x +x sin x ﹣1=cos x +x sin x ﹣1,令g (x )=cos x +x sin x ﹣1,则g ′(x )=﹣sin x +sin x +x cos x =x cos x , 当x ∈(0,2π)时,x cos x >0,当x ∈(2π,π)时,x cos x <0, ∴当x =2π时,极大值为g (2π)=12π->0,又g (0)=0,g (π)=﹣2,∴g (x )在(0,π)上有唯一零点, 即f ′(x )在(0,π)上有唯一零点;(2)由(1)知,f ′(x )在(0,π)上有唯一零点x 0,使得f ′(x 0)=0, 且f ′(x )在(0,x 0)为正,在(x 0,π)为负, ∴f (x )在[0,x 0]递增,在[x 0,π]递减,结合f (0)=0,f (π)=0,可知f (x )在[0,π]上非负, 令h (x )=ax ,作出图象,如图所示:∵f (x )≥h (x ), ∴a ≤0,∴a 的取值范围是(﹣∞,0].2.(2018年)已知函数f (x )=ae x ﹣lnx ﹣1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e时,f (x )≥0. 【解析】(1)∵函数f (x )=ae x ﹣lnx ﹣1.∴x >0,f ′(x )=ae x ﹣1x,∵x =2是f (x )的极值点, ∴f ′(2)=ae 2﹣12=0,解得a =212e, ∴f (x )=212e e x ﹣lnx ﹣1,∴f ′(x )=2112x e e x-, 当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,∴f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a ≥1e时,f (x )≥x e e ﹣lnx ﹣1,设g (x )=x e e ﹣lnx ﹣1,则()1x e g x e x '=-,由()1x e g x e x'=-=0,得x =1,当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,∴x =1是g (x )的最小值点,故当x >0时,g (x )≥g (1)=0,∴当a ≥1e时,f (x )≥0.3.(2017年)已知函数f (x )=e x (e x ﹣a )﹣a 2x . (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.【解析】(1)f (x )=e x (e x ﹣a )﹣a 2x =e 2x ﹣e x a ﹣a 2x , ∴f ′(x )=2e 2x ﹣ae x ﹣a 2=(2e x +a )(e x ﹣a ),①当a =0时,f ′(x )>0恒成立,∴f (x )在R 上单调递增, ②当a >0时,2e x +a >0,令f ′(x )=0,解得x =lna , 当x <lna 时,f ′(x )<0,函数f (x )单调递减, 当x >lna 时,f ′(x )>0,函数f (x )单调递增,③当a <0时,e x ﹣a >0,令f ′(x )=0,解得x =ln (﹣2a), 当x <ln (﹣2a)时,f ′(x )<0,函数f (x )单调递减, 当x >ln (﹣2a)时,f ′(x )>0,函数f (x )单调递增,综上所述,当a =0时,f (x )在R 上单调递增,当a >0时,f (x )在(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增,当a <0时,f (x )在(﹣∞,ln (﹣2a ))上单调递减,在(ln (﹣2a),+∞)上单调递增.(2)①当a =0时,f (x )=e 2x >0恒成立,②当a >0时,由(1)可得f (x )min =f (lna )=﹣a 2lna ≥0,∴lna ≤0, ∴0<a ≤1,③当a <0时,由(1)可得:f (x )min =f (ln (﹣2a))=234a ﹣a 2ln (﹣2a)≥0,∴ln (﹣2a )≤34,∴342e -≤a <0,综上所述,a 的取值范围为[342e -,1].4.(2016年)已知函数f (x )=(x ﹣2)e x +a (x ﹣1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】(1)由f (x )=(x ﹣2)e x +a (x ﹣1)2, 可得f ′(x )=(x ﹣1)e x +2a (x ﹣1)=(x ﹣1)(e x +2a ),①当a ≥0时,由f ′(x )>0,可得x >1;由f ′(x )<0,可得x <1, 即有f (x )在(﹣∞,1)递减;在(1,+∞)递增;②当a <0时,若a =﹣2e,则f ′(x )≥0恒成立,即有f (x )在R 上递增; 若a <﹣2e时,由f ′(x )>0,可得x <1或x >ln (﹣2a );由f ′(x )<0,可得1<x <ln (﹣2a ). 即有f (x )在(﹣∞,1),(ln (﹣2a ),+∞)递增;在(1,ln (﹣2a ))递减;若﹣2e<a <0,由f ′(x )>0,可得x <ln (﹣2a )或x >1;由f ′(x )<0,可得ln (﹣2a )<x <1. 即有f (x )在(﹣∞,ln (﹣2a )),(1,+∞)递增;在(ln (﹣2a ),1)递减; (2)①由(1)可得当a >0时,f (x )在(﹣∞,1)递减;在(1,+∞)递增,且f (1)=﹣e <0,x →+∞,f (x )→+∞;当x →﹣∞时f (x )>0或找到一个x <1使得f (x )>0对于a >0恒成立,f (x )有两个零点;②当a =0时,f (x )=(x ﹣2)e x ,所以f (x )只有一个零点x =2;③当a <0时,若a <﹣2e时,f (x )在(1,ln (﹣2a ))递减,在(﹣∞,1),(ln (﹣2a ),+∞)递增,又当x ≤1时,f (x )<0,所以f (x )不存在两个零点;当a ≥﹣2e时,在(﹣∞,ln (﹣2a ))单调增,在(1,+∞)单调增,在(1n (﹣2a ),1)单调减,只有f (ln (﹣2a ))等于0才有两个零点, 而当x ≤1时,f (x )<0,所以只有一个零点不符题意. 综上可得,f (x )有两个零点时,a 的取值范围为(0,+∞).5.(2015年)设函数f (x )=e 2x ﹣alnx .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +aln 2a .【解析】(1)f (x )=e 2x ﹣alnx 的定义域为(0,+∞), ∴f ′(x )=2e 2x ﹣ax.当a ≤0时,f ′(x )>0恒成立,故f ′(x )没有零点, 当a >0时,∵y =e 2x 为单调递增,y =﹣单调递增, ∴f ′(x )在(0,+∞)单调递增, 又f ′(a )>0,假设存在b 满足0<b <ln 2a 时,且b <14,f ′(b )<0,故当a >0时,导函数f ′(x )存在唯一的零点,(2)由(1)知,可设导函数f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0, 当x ∈(x 0+∞)时,f ′(x )>0,故f (x )在(0,x 0)单调递减,在(x 0+∞)单调递增, 所欲当x =x 0时,f (x )取得最小值,最小值为f (x 0), 由于022x e ﹣a x =0,所以f (x 0)=02a x +2ax 0+aln 2a ≥2a +aln 2a.故当a >0时,f (x )≥2a +aln 2a.6.(2014年)设函数f (x )=alnx +12a -x 2﹣bx (a ≠1),曲线y =f(x )在点(1,f (1))处的切线斜率为0, (1)求b ;(2)若存在x 0≥1,使得f (x 0)<1aa -,求a 的取值范围.【解析】(1)f ′(x )=()1a a x b x+--(x >0),∵曲线y =f (x )在点(1,f (1))处的切线斜率为0, ∴f ′(1)=a +(1﹣a )×1﹣b =0,解得b =1.(2)函数f (x )的定义域为(0,+∞),由(1)可知:f (x )=alnx +212a x x --,∴()()11af x a x x'=+--=()111a a x x x a -⎛⎫-- ⎪-⎝⎭. ①当a 12≤时,则11aa≤-,则当x >1时,f ′(x )>0,∴函数f (x )在(1,+∞)单调递增,∴存在x 0≥1,使得f (x 0)<1a a -的充要条件是()11af a <-,即1121a aa --<-,解得11a <<; ②当12<a <1时,则11a a>-,则当x ∈(1,1a a -)时,f ′(x )<0,函数f (x )在(1,1aa -)上单调递减;当x ∈(1a a -,+∞)时,f ′(x )>0,函数f (x )在(1aa-,+∞)上单调递增.∴存在x 0≥1,使得f (x 0)<1aa -的充要条件是11a a f a a ⎛⎫< ⎪--⎝⎭, 而()2ln 112111a a a a af a a a a a a ⎛⎫=++> ⎪-----⎝⎭,不符合题意,应舍去. ③若a >1时,f (1)=1112a a a----=<,成立. 综上可得:a 的取值范围是(11)U (1,+∞).7.(2013年)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f (x)在点(0,f(0))处切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.【解析】(1)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,∴f(0)=4,f′(0)=4,∴b=4,a+b=8,∴a=4,b=4.(2)由(1)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣1),2令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0.∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2),当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).8.(2012年)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x +1>0,求k 的最大值.【解析】(1)函数f (x )=e x ﹣ax ﹣2的定义域是R ,f ′(x )=e x ﹣a ,若a ≤0,则f ′(x )=e x ﹣a ≥0,所以函数f (x )=e x ﹣ax ﹣2在(﹣∞,+∞)上单调递增.若a >0,则当x ∈(﹣∞,lna )时,f ′(x )=e x ﹣a <0; 当x ∈(lna ,+∞)时,f ′(x )=e x ﹣a >0;所以,f (x )在(﹣∞,lna )单调递减,在(lna ,+∞)上单调递增. (2)由于a =1,所以,(x ﹣k ) f ′(x )+x +1=(x ﹣k ) (e x ﹣1)+x +1, 故当x >0时,(x ﹣k ) f ′(x )+x +1>0等价于k <11xx x e ++-(x >0)①, 令g (x )=11x x x e ++-,则g ′(x )=()()()2221111x x x xxe e x xe ee----+=--,由(1)知,当a =1时,函数h (x )=e x ﹣x ﹣2在(0,+∞)上单调递增, 而h (1)<0,h (2)>0,所以h (x )=e x ﹣x ﹣2在(0,+∞)上存在唯一的零点,故g ′(x )在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2) 当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0; 所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2所以g (α)=α+1∈(2,3) 由于①式等价于k <g (α),故整数k 的最大值为2.9.(2011年)已知函数f (x )=ln 1a x x ++b x,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y ﹣3=0. (1)求a 、b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln 1x x -.【解析】(1)()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+.由于直线x +2y ﹣3=0的斜率为12-,且过点(1,1),所以1122b a b =⎧⎪⎨-=-⎪⎩, 解得a =1,b =1.(2)由(1)知f (x )=ln 11x x x++,所以()22ln 112ln 11x x f x x x x x ⎛⎫--=- ⎪--⎝⎭,考虑函数()212ln x h x x x -=-(0x >),则()()()222222112x x x h x x x x ---'=-=-,所以当x ≠1时,h ′(x )<0而h (1)=0, 当x ∈(0,1)时,h (x )>0,可得()2101h x x >-; 当()1,x ∈+∞时,()0h x <,可得()2101h x x >-. 从而当x >0且x ≠1时,()ln 01x f x x ->-,即f (x )>ln 1xx -.10.(2010年)设函数f(x)=x(e x﹣1)﹣ax2.(1)若a=12,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【解析】(1)a=12时,f(x)=x(e x﹣1)﹣12x2,∴()1x xf x e xe x'=-+-=(e x﹣1)(x+1),令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0.∴函数()f x的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0).(2)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。

【考点】:函数不等式,函数的单调性。

9.(2016年3卷6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b <<9.【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.10.(2016年1卷)8.若101a b c >><<,,则 (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质11(2017年1卷11)设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【解析】:分别可求得1112352131512,3,5log 2log 3log 5log 2log 3log 5m m m m m m x y z ======分别对分母乘以30可得11151063230log 2log 2,30log 3log 3,30log 5m m m m m ==,故而可得10156101561log 3log 2log 5325325m m m m y x z >⎧⇒>>⇒<<⎨>>⎩,故而选D 。

12.(2018年3卷12)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+解:.,即又即故选B.四、函数的图象 13.(2018年2卷3)函数的图象大致为解:为奇函数,舍去A,舍去D;,所以舍去C ;因此选B.14.(2016年1卷7)函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )考点:函数图像与性质15.(2018年3卷7)函数422y x x =-++的图像大致为解:当时,,排除A,B.,当时,,排除C故正确答案选D.五、导数几何意义16.(2018年2卷13)曲线在点处的切线方程为__________.解:17.(2018年3卷14)曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________.解: 则所以故答案为-3.18.(2018年1卷5)设函数,若为奇函数,则曲线在点处的切线方程为 A.B.C.D. 解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.19.(2016年3卷15)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.【解析】当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x '=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.考点:1、函数的奇偶性与解析式;2、导数的几何意义.20.(2016年2卷16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = .【解析】 ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x = 212x =-,∴1ln 11ln 2b x =+=-.六、导数应用21.(2017年2卷11)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【解析】由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e-=--,故21()(2)x f x x x e -'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减,所以()f x 极小值(1)f =11(111)1e -=--=-,故选A 。

22.(2015年1卷12)设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( )(A )[-32e ,1) (B )[-32e ,34) (C )[32e ,34) (D )[32e,1)【解析】设()g x =(21)xe x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e-,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题23.(2015年2卷12)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是(A )(1)01-∞-⋃,(,) (B )-101⋃+∞(,)(,) (C )(1)-10-∞-⋃,(,) (D )011⋃+∞(,)(,)【解析】记函数()()f x g x x =,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是A函数与导数解答题(共11题)一、零点个数问题1.(2015年1卷)已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==.因此,当34a =时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,+∞)无零点.当x =1时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h fg f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分 综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.2.(2016年2卷)(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【解析】⑴证明:()2e 2x x f x x -=+ ()()()22224e e 222x x x x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+ ∴()2e 20x x x -++> ⑵ ()()()24e2e xxa x x ax a g x x----'=()4e 2e2xxx x ax a x -++=()322e 2x x x a x x -⎛⎫+⋅+ ⎪+⎝⎭=[)01a ∈,,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.3.(2017年1卷)已知函数()()2e 2e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解析:(1)由于()()2e 2e x xf x a a x =+--,所以()()()()22e 2e 1e 12e 1x x x x f x a a a '=+--=-+.①当0a 时,e 10x a -<,2e 10x +>,从而()0f x '<恒成立,所以()f x 在R 上单调递减. ②当0a >时,令()0f x '=,从而e 10x a -=,得ln x a =-.x()ln a -∞-,ln a -()ln a -+∞,()f x ′-+()f x极小值综上所述,当0a 时,()f x 在R 上单调递减;当0a >时,()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增.(2)由(1)知,当0a 时,()f x 在R 上单调递减,故()f x 在R 上至多一个零点,不满足条件.当0a >时,()min 1ln 1ln f f a a a =-=-+.令()()11ln 0g a a a a=-+>,则()2110g a a a'=+>,从而()g a 在()0+∞,上单调递增.而()10g =,所以当01a <<时,()0g a <;当1a =时()0g a =;当1a >时,()0g a >.由上知若1a >,则()min 11ln 0f a g a a =-+=>,故()0f x >恒成立,从而()f x 无零点,不满足条件.若1a =,则()min 11ln 0f a g a a=-+==,故()0f x =仅有一个实根ln 0x a =-=,不满足件; 若01a <<,则()min 11ln 0f a g a a =-+=<,注意到ln 0a ->,()22110e e ea a f -=++->,故()f x 在()1ln a --,上有一个实根.而又31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭, 且33ln 1ln 133ln 1e e 2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎡⎤⎡⎤⎛⎫⎛⎫-=⋅+---⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+---= ⎪ ⎪⎝⎭⎝⎭ 331ln 10a a ⎛⎫⎛⎫---> ⎪ ⎪⎝⎭⎝⎭,故()f x 在3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上有一个实根. 又()f x 在()ln a -∞-,上单调递减,在()ln a -+∞,单调递增,故()f x 在R 上至多两根. 综上所述,01a <<.4(2018年2卷)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求. 解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i )当时,,没有零点;(ii )当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点; ③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点. 综上,在只有一个零点时,.二、构造函数问题5.(2015年2卷)设函数f(x)=e mx +x 2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f(x 1)-f(x 2)|≤e -1,求m 的取值范围.【解析】(1)f′(x)=m(e mx -1)+2x.若m≥0,则当x ∈(-∞,0)时,e mx -1≤0,f′(x)<0;当x ∈(0,+∞)时,e mx -1≥0,f′(x)>0.若m<0,则当x ∈(-∞,0)时,e mx -1>0,f′(x)<0;当x ∈(0,+∞)时,e mx -1<0,f′(x)>0.所以f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对于任意的m,f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f(x 1)-f(x 2)|≤e -1的充要条件是()(),()(),f f e f f e 1-0≤-1⎧⎨-1-0≤-1⎩即,,mme m e e m e -⎧-≤-1⎪⎨+≤-1⎪⎩①设函数g(t)=e t -t-e+1,g′(t)=e t -1. 当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e -1+2-e<0,故当t ∈[-1,1]时,g(t)≤0.当m ∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立; 当m>1时,由g(t)的单调性,g(m)>0,即e m -m>e-1;当m<-1时,g(-m)>0,即e -m +m>e-1.6.(2016年1卷)已知函数()()()221x f x x e a x =-+-有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<【解析】(1)f'(x)=(x-1)e x +2a(x-1)=(x-1)(e x +2a).①设a=0,则f(x)=(x-2)e x ,f(x)只有一个零点;②设a>0,则当x ∈(-∞,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0,所以f(x)在(-∞,1)内单调递减,在(1,+∞)内单调递增.又f(1)=-e,f(2)=a,取b 满足b<0且b<ln a2,则f(b)>a 2 (b-2)+a(b-1)2=a 23b b 2⎛⎫- ⎪⎝⎭>0,故f(x)存在两个零点;③设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x ∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点. 若a<-e2,则ln(-2a)>1,故当x ∈(1,ln(-2a))时,f'(x)<0;当x ∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点,综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f(x)在(-∞,1)内单调递减,所以x 1+x 2<2等价于f(x 1)>f(2-x 2),即f(2-x 2)<0,由于f(2-x 2)=-x 222x e -+a(x 2-1)2, 而f(x 2)=(x 2-2)2x e +a(x 2-1)2=0,所以f(2-x 2)=-x 222x e --(x 2-2)2x e ,设g(x)=-x 2-xe -(x-2)e x ,则g'(x)=(x-1)( 2x e - -e x ).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x 2)=f(2-x 2)<0,故x 1+x 2<2.7.(2016年1卷)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾. (ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点. 如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-.三、不等式证明8.(2016年3卷)设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记|f(x)|的最大值为A. (1)求f'(x);(2)求A ;(3)证明|f'(x)|≤2A.【解析】(1)f'(x)=-2asin2x-(a-1)sinx.(2)当a≥1时,()()()()() cos 21cosx 11232,||0f a x a a a a f x =+-+≤+-⨯=-= 当0<a<1时,()()()()2cos 21cosx 12cos a 1cos 1,f x a x a a x x =+-+=+--令cosx=t ∈1,1⎡⎤-⎣⎦,则f(x)=g(t)=2at 2+()a 1-t-1,其对称轴为t=1a4a-, 当t=1a 4a -∈()1,1-时,解得a<-()1舍去3或a>15,所以当15<a<1时,因为g(1)=a,g(1)=3a-2, 则g(-1)-g(1)=2-2a>0,又()()()1a 17a 1a g g 104a 8a -+⎛⎫---=>⎪⎝⎭, 所以A=g 21a a 6a 14a 8a ⎛⎫-++=⎪⎝⎭.当0<a≤15时,()g 1- =a,()g 1 =2-3a 所以此时()g 1-<()g 1=2-3a.综上可得:A=2123a,0a ,5a 6a 11,a 1,8a 53a 2,a 1.⎧-<≤⎪⎪⎪++<<⎨⎪⎪-≥⎪⎩(3)由(1)得.当0<a≤15时,()f'x ≤1+a≤2-4a<2()23a -=2A,当15<a<1,A=2a 6a 1a 1318a 88a 4++=++≥.所以()f'x <2A. 当a≥1时,()f'x ≤3a -1≤6a -4=2(3a-2)=2A.综上所述:()f'x ≤2A.9.(2017年3卷)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111+1++222n m ⎛⎫⎛⎫⎛⎫< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭1,求m 的最小值. 解析 (1)解法一:()1ln f x x a x =--,0x >,则()1a x a f x x x-'=-=,且(1)0f =, 当0a 时,()0f x '>,()f x 在()0+∞,上单调递增,所以01x <<时,()()10f x f <=,不满足题意;当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.① 若1a <,()f x 在(,1)a 上单调递增,所以当(,1)x a ∈时,()(1)0f x f <=,不满足题意;② 若1a >,()f x 在(1,)a 上单调递减,所以当(1,)x a ∈时,()(1)0f x f <=,不满足题意; ③ 若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以()(1)0f x f =,满足题意.综上所述1a =. 解法二:因为()10f =,要使()1ln 0f x x a x =--在()0,+∞上恒成立,则必要条件为()10f x a '=-=,得1a =.当1a =时,()1ln f x x x =--,()1x f x x-'=. 当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增; 所以1x =为()f x 的极小值点,()()10f x f =,即1a =满足题意. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->,令112n x =+,得11ln 122nn ⎛⎫+< ⎪⎝⎭, 所以221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 从而2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.而2e<3<,所以m 的最小值为3.10.(2017年2卷)已知函数()2ln f x ax ax x x =--,且()0f x ≥。

相关文档
最新文档