一元二次方程知识点总结

合集下载

一元二次方程总复习知识点梳理

一元二次方程总复习知识点梳理

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。

一元二次方程复习知识点梳理

一元二次方程复习知识点梳理

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x+4)中,不能随便约去x +4。

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

一元二次方程知识点总结

一元二次方程知识点总结

一元二次方程知识点总结一元二次方程知识点的总结知识结构梳理(1)含有个未知数。

(2)未知数的最高次数是)是方程。

1、概念 (3(4)一元二次方程的一般形式是。

2 (1) 法,适用于能化为的一元。

,,,x,m),nn,0二次方程(2) 法,即把方程变形为ab=0的形式,一 2、解法 (a,b 为两个因式), 则a=0或元二 (3) 法次 (4) 法,其中求根公式是方程当时,方程有两个不相等的实数根。

(5) 当时,方程有两个相等的实数根。

当时,方程有没有的实数根。

可用于解某些求值题(1)一元二次方程的应用 (2)(3)可用于解决实际问题的步骤 (4)(5)(6) 考点一. 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:?方程是整式方程。

?它只含有一个未知数。

?未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

例下列关于x的方程,哪些是一元二次方程,2222,3x,x,5x,6x,0,x,0? ;?;(3);(4);(5) 2x(x,3),2x,12x,5考点二. 一元二次方程的一般形式2a,0ax,bx,c,0一元二次方程的一般形式为(a,b,c是已知数,)。

其中a,b,c分别叫做二次项系数、一次项系数、常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

2a,0(3)形如不一定是一元二次方程,当且仅当时是一元二次方程。

ax,bx,c,0例1 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。

722(1); (2); (3) 5x,x,,,,x,2x,3,8,,,,,,3x,4x,3,x,22 2m,2例2 已知关于的方程是一元二次方程时,则 xm,,,,,m,1x,m,1x,2,0考点三. 解一元二次方程的方法2x,2 使方程左、右两边相等的未知数的值叫做方程的解,如:当x,3x,2,0时,2x,2所以是x,3x,2,0方程的解。

一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。

②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。

(2)确定a,b,c的值。

(3)代入中计算其值,判断方程是否有实数根。

(4)若代入求根公式求值,否则,原方程无实数根。

【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。

·步骤:(1)将方程化为一元二次方程的一般形式。

(2)把方程的左边分解为两个一次因式的积,右边等于0。

(3)令每一个因式都为零,得到两个一元一次方程。

(4)解出这两个一元一次方程的解,即可得到原方程的两个根。

根的判别情况判别式:b2-4ac的值x1、x2的关系根的具体值一元二次方程两根与系数的关系:。

一元二次方程知识点归纳

一元二次方程知识点归纳

一元二次方程知识点归纳一、一元二次方程的概念:1、含有1个未知数;2、未知数最高次数是2;3、必须整式方程(分母不能含有未知数)4、形式:)(002≠=++a c bx ax5、二次项:2ax ;一项:bx ;常数项 :c6、二次项系数:0≠a ;一次项系数 :b (全体实数);常数项 :c (全体实数)二、解方程的方法:直接开方法、配方法、公式法、因式分解法(1)02=+c ax c ax —=2 a c x —=2 ac x -±= (2)02=+bx ax 0=+)(b ax x a b x x -==210; (3)p n mx =+2)( p n mx ±=+ n p mx —±= mn p x -±=(4)0)()(=+++b ax N b ax M 0)(=++b ax N M )((5)02=++n mx x n m m mx x -=++222)2()2( 44)2(22n m m x —=+ 4422n m m x —±=+ 242m n m x --±= (6))0(02≠=++a c bx ax )(ac b b x 422-=∆∆±-=三、一元二次方程根的判别式——ac b 42-=∆1、一元二次方程根的情况: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<∆⎪⎩⎪⎨⎧==∆≠>∆≥∆(无解))(有两个相等实数根:):(有两个不相等实数根(有两个实数根)00002121x x x x 2、规律:(1)当0<ac 时,必定0>∆,即一元二次方程有两个不相等实数根(2)当c=0时,ab x x -==210;,即一元二次方程有一根为0 (3)当b=0时,ac x —±=,即一元二次方程两根互为相反数 (4)当a=c 时,一元二次方程两根互为倒数四、一元二次方程的“根”(1)“根”:代入原方程使得左右两边相等的未知数的值(2)韦达定理:a b x x -=+21;a c x x =21;cb x x —=+2111; 2122122212x x x x x x —)(+=+ ;212212214)(x x x x x x —)(+=-五、配方法的应用(1)解一元二次方程(2)讨论∆(3)讨论恒值(4)平方的非负性六、应用题(1)“围栏”问题①设宽为x ;利用周长用x 的代数式表示长(注意:有围墙与无围墙区别) ②利用矩形面积公式列出并列出方程③结合实际,列出关于长、宽取值范围的不等式组,解得x 的取值范围(2)“边框问题”(挖角)(3)“挖路问题”(平移计算)(4)平均增长率:n x a M )1(+=(M :后量;a :现量;x :增长率;n :经过次数)(5)“握手”问题——单循环:2)1(-n n ;双循环:)(1-n n (6)直角三角形问题(7)“黄金分割”:215-=x (8)多边形的对角线条数:2)3(-n n (9)利润问题:调价幅度与销量增减成比例关系①设调价为x ;根据题意得,销量增幅:kx②调价后单价=原售价±调价;调价后销量=原销量±销量增幅调价后总收入=调价后单价×调价后销量③进货量=调价后销量④总成本=单成本×进货量5调价后总利润=调价后总收入-总成本(2)①单利润=单售价—单成本②总利润=单利润×销量。

一元二次方程总复习全章知识点梳理.

一元二次方程总复习全章知识点梳理.

一元二次方程总复习考点 1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax 2+bx+c=0(a≠ 0 。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点 2:一元二次方程的解法1. 直接开平方法2. 配方法:3.公式法:4. 因式分解法:因式分解的方法:提公因式、公式法、十字相乘法、分组分解法。

5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a ≠ 0.因当 a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定 a , b ,c 的值;②若 b 2 -4ac <0,则方程无解.★⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4 2 =3 (x +4中,不能随便约去 x +4。

⑷注意:解一元二次方程时一般不使用配方法 (除特别要求外但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴ b 2-4ac ≥ 0⇔方程有两个不相等的实数根;⑵ b 2-4ac=0⇔方程有两个相等的实数根;⑶ b 2-4ac ≤ 0⇔方程没有实数根。

解题小诀窍:当题目中含有“两不等实数根” “两相等实数根” “没有实数根”时,往往首先考虑用b 2-4ac 解题。

主要用于求方程中未知系数的值或取值范围。

考点 3:根与系数的关系 :韦达定理对于方程 ax 2+bx+c=0(a≠ 0 利用韦达定理可以求一些代数式的值(式子变形。

解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。

二、经典考题剖析:【易错】下列方程是关于 x 的一元二次方程的是(A. 02=++c bx axB. 0652=++k x kC. 01232=++xx x D. 012 3(22=+++x x k 1、 (2009成都若关于 x 的方程 kx 2 -2x -1=0有两个不相等的实数根,则 k 的取值范围是(A.k>-1B. k>-1且k ≠ 0C. k<1D. k<1且k ≠ 02、解方程:(1 1(2 1(3-=-y y y y (20862=+-x x3、 (2009鄂州关于 x 的方程 kx 2+(k+2x+4k=0有两个不相等的实数根,(1求 k 的取值范围;(2是否存在实数 k 使方程的两个实数根的倒数和等于 0?若存在求出 k 的值;不存在说明理由。

一元二次方程知识点总结

一元二次方程知识点总结

一元二次方程知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-第二章 一元二次方程本章中考动向:会用因式分解法、公式法、配方法解简单系数的一元二次方程;了解一元二次方程根的判别式和根与系数的关系并能进行简单运用;能根据具体问题中的数量关系列方程,能根据具体问题的实际意义检验方程的解的合理性。

一. 知识点:1. 一元二次方程的概念只含有一个未知数x 的整式方程,并且都可以化成20ax bx c ++=(a ,b ,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程。

注:(①整式方程,含有一个未知数;②整理后未知数的最高次数是2)2. 一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,化成:20ax bx c ++=(a ≠0)。

这种形式叫做一元二次方程的一般形式,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数,c 是常数项。

关键:(1)a ≠0;(2)系数带上符号3.一元二次方程的解(根)能使一元二次方程两边的值相等的未知数的值,叫做一元二次方程的解,也叫一元二次方程的根。

应用:若是方程的解(根),则代入方程,可使其成立。

通常结合恒等变形来求一些式子的值。

例:已知a 是方程2310x x -+= 的一个根,试求3222511a a a a --++ 的值。

4. 配方法解一元二次方程:将一元二次方程转化成()2x m n += (n ≥0)的形式。

通过配成完全平方式的方法得到一元二次方程的根。

()2x m n += (n ≥0)。

x m =- 关键:将二次项系数化为1的方程的两边同时加上一次项系数一半的平方注:在求解一些式子的最值问题时,我们是将式子配成完全平方,再利用完全平方式子的非负性来解决。

例如:当x 取何值时,代数式2267x x -+ 的值最小求出这个最小值5. 公式法解一元二次方程对于一元二次方程20ax bx c ++=(a ≠0),当24b ac -≥0时,利用配方法可算出它的根是2b x a-±= 关键步骤:(1)将方程化为一般形式,确定公式中a ,b ,c 的值;(2)先求出 24b ac -的值,再考虑是否用公式。

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。

9年级一元二次方程的所有知识点

9年级一元二次方程的所有知识点

9年级一元二次方程的所有知识点一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 判断一个方程是否为一元二次方程的步骤。

- 首先看方程是否是整式方程。

- 再看方程是否只含有一个未知数。

- 最后看未知数的最高次数是否为2。

例如x^2+2x - 1 = 0是一元二次方程,而x^2+(1)/(x)-1 = 0不是一元二次方程(因为它不是整式方程),xy + x^2=1也不是一元二次方程(因为它含有两个未知数)。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于形如x^2=k(k≥0)的方程,解为x=±√(k)。

- 例如,方程x^2=9,解得x = 3或x=-3。

- 对于形如(ax + b)^2=k(k≥0)的方程,解为ax + b=±√(k),然后进一步求解x,即x=(-b±√(k))/(a)。

例如(2x - 1)^2=4,则2x - 1=±2,当2x - 1 = 2时,2x=3,x=(3)/(2);当2x - 1=-2时,2x=-1,x =-(1)/(2)。

2. 配方法。

- 步骤:- 把方程化为一般形式ax^2+bx + c = 0(a≠0)。

- 移项,使常数项移到方程右边,得到ax^2+bx=-c。

- 二次项系数化为1,即方程两边同时除以a(x^2+(b)/(a)x =-(c)/(a))。

- 在方程两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2。

- 左边写成完全平方式(x +(b)/(2a))^2=-(c)/(a)+frac{b^2}{4a^2},然后用直接开平方法求解。

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:,它的特征是:等式左边十一个关)0(02≠=++a c bx ax 于未知数x 的二次多项式,等式右边是零,其中叫做二2ax 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程。

根据b a x =+2)(平方根的定义可知,是b 的平方根,当时,,a x +0≥b b a x ±=+,当b<0时,方程没有实数根。

b a x ±-=(2)配方法:配方法的理论根据是完全平方公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并用x 代替,则有。

222)(2b x b bx x ±=+±配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程中,叫做一)0(02≠=++a c bx ax ac b 42-元二次方程的根的判别式,通常用“)0(02≠=++a c bx ax ”来表示,即∆acb 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。

一元二次方程 知识点总结

一元二次方程 知识点总结

一元二次方程知识点总结一元二次方程是高中数学中的重要概念之一,它是由形如ax^2 + bx + c = 0的方程组成,其中a、b、c都是实数且a不等于0。

本文将总结一元二次方程的相关知识点,并详细介绍其求解方法和应用。

一、一元二次方程的一般形式与基本性质1.1 一元二次方程的一般形式: ax^2 + bx + c = 0,其中a、b、c都是实数且a不等于0。

1.2 一元二次方程的次数为2,被称为二次方程。

1.3 一元二次方程的系数:a、b、c分别是方程的二次项系数、一次项系数和常数项。

1.4 一元二次方程的根:方程的解叫做方程的根,方程可能有两个相等的实根、两个不等的实根、两个复数根或无解。

二、一元二次方程的求解方法2.1 因式分解法通过将一元二次方程进行因式分解,将方程转化为两个一次方程相乘的形式,从而求解方程的根。

例如:x^2 + 7x + 12 = 0,可因式分解为(x+3)(x+4) = 0,方程的根为x=-3和x=-4。

2.2 公式法(求根公式)利用一元二次方程的根与系数之间的关系,可以通过求根公式来求解方程的根。

一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a)。

例如:x^2 + 7x + 12 = 0,代入a=1,b=7,c=12,可得x = (-7± √(7^2 - 4*1*12))/(2*1),计算后得方程的根为x=-3和x=-4。

2.3 完全平方方法对于一些特殊的一元二次方程,可以利用完全平方公式来求解方程的根。

完全平方公式是指:(a ± b)^2 = a^2 ± 2ab + b^2。

例如:x^2 + 10x + 25 = 0,可写为(x+5)^2 = 0,方程的根为x=-5。

三、一元二次方程的判别式一元二次方程的判别式是通过方程的系数来判断方程的根的情况。

3.1 判别式的定义:Δ = b^2 - 4ac。

一元二次方程知识点归纳

一元二次方程知识点归纳
①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;
②销售问题;利润问题,利润=售价-成本;利润率=利润/成本×100%;
③比赛问题:
④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.
例:方程 是关于x的一元二次方程,则方程的根为-1.
2.一元二次方程的解法
(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.
(2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.
(3)公式法:一元二次方程ax2+bx+c=0的求根公式为x= (b2-4ac≥0).
一元二次方程知识点
一、知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1.一元二次方程的相关概念
(1)定义:只含有一个未知数=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.
与一元二次方程两根相关代数式的常见变形:x12+x22=(x1+x2)2-2x1x2,
(x1+1)(x2+1)=x1x2+(x1+x2)+1,
等.
失分点警示
在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.a≠0
3.根的判别式
(1)当Δ= 0时,原方程有两个不相等的实数根.

一元二次方程 知识点总结

一元二次方程 知识点总结

一元二次方程知识点总结一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 判断方程是否为一元二次方程。

- 首先看方程是否为整式方程。

- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。

例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于方程x^2=p(p≥0),解为x=±√(p)。

- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

2. 配方法。

- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。

- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。

- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。

- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。

- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。

3. 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 步骤:- 确定a、b、c的值。

- 计算b^2-4ac的值,判断方程是否有实数根。

- 当b^2-4ac≥0时,代入求根公式求解。

一元二次方程(知识点+考点+题型总结)

一元二次方程(知识点+考点+题型总结)

一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2":①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+xx C 02=++c bx ax D 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 .★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A 。

m=n=2 B 。

m=2,n=1 C 。

n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 .针对练习:★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 .★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。

其中a为二次项系数,b为一次项系数,c为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。

注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。

(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。

注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程知识点总结集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

(2)配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,acb 42-叫做一元二次方程)0(02≠=++ac bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

6.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,① 必然事件发生的概率为1,即P(必然事件)=1;② 不可能事件发生的概率为0,即P (不可能事件)=0;③如果A为不确定事件,那么0<P(A)<17. 随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率.一.旋转1、定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后图形全等。

二、中心对称1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质:(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3、中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

三、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)一、圆的定义:1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、以点O为圆心的圆记作“⊙O”,读作“圆O”二、与圆有关的定义:(1)弦:连接圆上任意两点的线段叫做弦。

(如图中的AB);经过圆心的弦叫做直径。

(如图中的CD);直径等于半径的2倍。

(2)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B 为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧四、圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

圆是以圆心为对称中心的中心对称图形。

五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角:顶点在圆心的角叫做圆心角。

2、弦心距:从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

六、圆周角定理及其推论1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

七、点和圆的位置关系:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。

八、过三点的圆: 不在同一直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。

三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

圆内接四边形性质(四点共圆的判定条件):圆内接四边形对角互补。

九、反证法:先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

十、直线与圆的位置关系:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个公共点叫做切点(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

(4)如果⊙O的半径为r,圆心O到直线l的距离为d,那么直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r。

十一、切线的判定和性质1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理:圆的切线垂直于经过切点的半径。

十二、切线长定理1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

十三、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。

三角形的内心:三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

十四、圆和圆的位置关系:1、如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

如果两个圆有两个公共点,那么就说这两个圆相交。

2、圆心距:两圆圆心的距离叫做两圆的圆心距。

3、圆和圆位置关系的性质与判定:设两圆的半径分别为R和r,圆心距为d,那么两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R-r<d<R+r(R≥r);两圆内切⇔d=R-r(R>r);两圆内含⇔d<R-r(R>r)。

4、两圆相切、相交的重要性质:如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

十五、正多边形和圆1、正多边形:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

十六、与正多边形有关的概念1、正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

十七、正多边形的对称性1、正多边形的轴对称性:正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

2、正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3、正多边形的画法:先用量角器或尺规等分圆,再做正多边形。

十八、弧长和扇形面积1、弧长公式:n °的圆心角所对的弧长l 的计算公式为180r n l π=2、扇形面积公式:lR R n S 213602==π扇;其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

相关文档
最新文档