高中简单立体几何体(附例题详解)资料讲解
高中数学《必修2》立体几何知识点及解题思路
高中数学《必修2》立体几何知识点及解题思路空间几何体一、常见几何体的定义能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。
二、常见几何体的面积、体积公式1.圆柱:侧面积S侧cl 2 rl (其中c是底面周长,r是底面半径,l是圆柱的母线,也是高)表面积S表S侧S底2 rl 2 r2 2 r(r l)V柱体sh r2h12.圆锥:侧面积S侧cl rl (其中c是底面周长,r是底面半径,l是圆锥的母线)2表面积S表S侧S底rl r2 r(r l) 11 V椎体sh r2h 33(2 r 2 R)l3.圆台:侧面积S侧(r R)l (其中r、R是上下底面半径,l是圆台的母线)2表面积S表S侧S底(r R)l r2 R2 (rl Rl r2 R2) 1 V台体(S' S'S S)h (其中S'、S是上下底面面积,h是圆台的高)344.球:表面积S表4 R2,体积V球R3 3三、直观图:会用斜二侧画法画出平面图形的直观图。
画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系;②与x轴平行的线段仍然与x轴平行,长度不变;与y轴平行的线段仍然与y轴平行,但是长度减半。
四、三视图1.投影:光线照射物体留在屏幕上的影子。
①中心投影:光由一点向外散射形成的投影。
②平行投影:在平行光线照射下形成的投影。
③正投影:光线正对着投影面时的平行投影。
2.三视图:正视图:光线从前向后的正投影;侧视图:光线从左向右的正投影;俯视图:光线从上向下的正投影。
三视图的性质:侧视图和正视图的高相同;俯视图和正视图的长相同;侧视图和俯视图的宽相同。
第二章:点、直线、平面之间的位置关系一、立体几何中的公理与基本关系1.平面公理:公理1:如果一条直线上有两个点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三个点,有且只有一个平面。
推论1:一条直线和直线外一点确定一个平面。
高中数学立体几何(解析版)
立体几何立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.【考查题型】选择,填空,解答题【限时检测】(建议用时:90分钟)一、单选题AA是1.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA为底面矩形的一边,则这样的阳正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1马的个数是()A.4 B.8 C.12 D.16【答案】D【分析】根据新定义和正六边形的性质可得答案.【详解】根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选D.【点睛】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.2.(2020·上海虹口区·高三一模)在空间,已知直线l及不在l上两个不重合的点A、B,过直线l做平面α,使得点A、B到平面α的距离相等,则这样的平面α的个数不可能是()A.1个B.2个C.3个D.无数个【答案】C【分析】分情况讨论可得出.【详解】(1)如图,当直线AB与l异面时,则只有一种情况;(2)当直线AB与l平行时,则有无数种情况,平面α可以绕着l转动;(3)如图,当l过线段AB的中垂面时,有两种情况.故选:C.3.(2020·上海高三一模)如图,在正四棱柱1111ABCD A B C D -中,底面边长2AB =,高14A A =,E 为棱1A A 的中点.设BAD ∠=α、BED θ∠=、1B ED γ∠=,则α、β、γ之间的关系正确的是( ).A .αγθ=>B .γαθ>>C .θγα>>D .αθγ>>【答案】B 【分析】求出α、β、γ的大小即可求解. 【详解】由题意可得2BAD πα∠==,连接BD ,则BDE 为等边三角形,所以3BED πθ∠==, 连接1B D ,则222122426B D =++=22222BE DE ==+=取1B D 的中点O ,连接EO ,则16BO 862EO =-=所以16tan 32B EO ∠==, 所以13B EO π∠=,即123B ED πγ∠==,所以γαθ>>.故选:B4.已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是( )A .1AD AB ⋅B .11AD BC ⋅ C .1BD BC ⋅ D .1BD AC ⋅【答案】C【分析】利用正方体几何性质计算出数量积为零的选项,根据长方体的性质证明数量积一定不为零的选项.【详解】当长方体1111ABCD A B C D -为正方体时,根据正方体的性质可知: 1111,,AB AD AD B C BD AC ⊥⊥⊥,所以10AB AD ⋅=、110AD B C ⋅=、10BD AC ⋅=.根据长方体的性质可知:1BC CD ⊥,所以1BD 与BC 不垂直,即1BD BC ⋅一定不为0.故选:C5.(2020·上海高三一模)已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有一条直线l 与a 、b 都成45︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】B 【分析】作出过P 与两直线相交的直线l 判断①;通过平移直线a ,b ,结合异面直线所成角的概念判断②.【详解】解:直线AB 与A 1D 1 是两条互相垂直的异面直线,点P 不在这两异面直线中的任何一条上,如图所示:取BB 1的中点Q ,则PQ ∥A 1D 1,且 PQ =A 1D 1,设A 1Q 与AB 交于E ,则点A 1、D 1、Q 、E 、P 共面, 直线EP 必与A 1D 1 相交于某点F ,则过P 点有且只有一条直线EF 与a 、b 都相交,故①为真命题; 分别平移a ,b ,使a 与b 均经过P ,则有两条互相垂直的直线与a ,b 都成45°角,故②为假命题. ∴①为真命题,②为假命题.故选:B .【点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,是中档题.二、填空题6.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π;【分析】根据圆的周长公式易得圆锥底面周长,也就是圆锥侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图扇形的圆心角的大小.【详解】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.【点睛】思路点睛:该题考查的是有关圆锥侧面展开图的问题,解题思路如下:(1)首先根据底面半径求得底面圆的周长;(2)根据圆锥侧面展开图扇形的弧长就是底面圆的周长,结合母线长,利用弧长公式求得圆心角的大小. 7.(2020·上海闵行区·高三一模)如图,已知正四棱柱1111ABCD A B C D -的底面边长为2,高为3,则异面直线1AA 与1BD 所成角的大小是_______.【答案】22;【分析】根据11//AA DD ,得到1DD B ∠异面直线1AA 与1BD 所成的角,然后在1Rt DD B △,利用正切函数求解.【详解】因为11//AA DD ,所以1DD B ∠异面直线1AA 与1BD 所成的角,在正四棱柱1111ABCD A B C D -的底面边长为2,高为3, 所以1122tan 3BD DD B DD ∠==, 因为1(0,)2DD B π∠∈, 所以122arctan3DD B ∠=, 故答案为:22arctan 38.(2019·上海市建平中学高三月考)某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.【答案】12π+2,高为3;半圆锥的底面是半径为1的半圆,高为3;据此计算出该几何体的体积.【详解】由三视图可知,三棱锥的体积:1223132V ⎛=⨯⨯= ⎝⎭;半圆锥体积:()11113232V ππ=⨯⨯⨯⨯⨯=,所以总体积为:12π+. 故答案为12π+.【点睛】本题考查空间几何体的体积计算,难度较易.计算组合体的体积时,可将几何体拆分为几个容易求解的常见几何体,然后根据体积公式完成求解.9.(2020·上海高三其他模拟)如图直三棱柱ABB 1-DCC 1中, BB 1⊥AB ,AB=4,BC=2,CC 1=1,DC 上有一动点P ,则△APC 1周长的最小值是 .【答案】521+试题分析:要求周长的最小值,因边为定值,只要求另两边之和的最小值,因两点直线线段最短,所以的最小值为因此△APC 1周长的最小值是521考点:棱柱的相关知识.10.(2020·上海高三一模)已知母线长为6cm 的圆锥的侧面积是底面积的3倍,则该圆锥的底面半径为________cm .【答案】2【分析】设底面半径为r ,由两个面积的关系可得底面半径的值.【详解】解:设底面半径为r ,则由题意,可得213262r r ππ=⨯⨯,解得2r , 故答案为:2.【点睛】本题考查圆锥的侧面积及圆的面积公式,属于基础题.11.(2020·上海高三其他模拟)已知圆锥的母线长为l ,过圆锥顶点的最大截面三角形的面积为212l ,则此圆锥底面半径r 与母线长l 的比r l的取值范围是____________. 【答案】22【分析】先判断两条母线的夹角=90θ时最大截面三角形的面积为212l 22l r ≤和r l <,最后求出r l 的取值范围即可. 【详解】解:过圆锥顶点的截面三角形的面积:1sin 2S l l θ=⋅⋅(θ为两母线的夹角), 因为过圆锥顶点的最大截面三角形的面积为212l ,即两条母线的夹角=90θ时的截面面积,此时底面弦长为2l ,所以22l r ≤,又r l <,所以212r l≤<, 故答案为:2[,1)2【点睛】本题考查空间几何体,是基础题.12.(2020·上海青浦区·高三二模)用一平面去截球所得截面的面积为23cm π,已知球心到该截面的距离为1cm ,则该球的表面积是___________2cm .【答案】16π【分析】由已知求出小圆的半径,然后利用勾股定理求出球的半径,即可求出球的表面积【详解】解:因为用一平面去截球所得截面的面积为23cm π,所以小圆的半径为3cm ,因为球心到该截面的距离为1cm ,所以球的半径为221(3)2+=cm ,所以球的表面积为24216S ππ=⨯=2cm ,故答案为:16π【点睛】此题考查球的截面的半径、球心到截面的距离与球的半径间的关系,属于基础题13.(2020·上海普陀区·高三月考)已知一个半圆柱的高为4,其俯视图如图所示,其左视图的面积为8,则该半圆柱的表面积为______.【答案】1612+π【分析】由圆柱的主视图和左视图知该圆柱的底面直径为4,高为3,由此能求出该几何体的表面积,得到答案.【详解】由题意,其左视图为矩形,其左视图的面积为8,半圆柱的高h 为4,可得半圆的半径r 为2,由于半圆柱的表面积为两个底面半圆面积加侧面展开图形的面积, 即2211222224224161222S r rh rh πππππ=⨯⨯++=⨯⨯⨯+⨯⨯+⨯⨯=+.故答案为:1612+π.【点睛】本题主要考查了空间几何体的三视图的应用,以及圆柱的表面积的计算问题,同时考查了圆柱的结构特征的应用,属于基础题.三、解答题14.(2020·上海虹口区·高三一模)如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小;(2)求三棱锥P BMC -的体积.【答案】(1)5(2)3. 【分析】(1)以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法可求得异面直线BM 和PC 所成的角的大小;(2)计算出PMC △的面积,并推导出AB ⊥平面PMC ,利用锥体的体积公式可求得三棱锥P BMC -的体积.【详解】(1)由于AB 、AC 、AP 两两垂直,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,如下图所示:则()3,0,0B 、()0,0,0A 、()0,3,0C 、()0,0,3P 、()0,0,1M ,()3,0,1BM =-,()0,3,3PC =-,5cos ,101032BM PC BM PC BM PC⋅<>===-⨯⋅,因此,异面直线BM 和PC 所成的角的大小为5arccos 10; (2)AB AC ⊥,AB AP ⊥,AC AP A =,AB ∴⊥平面APC ,AC AP ⊥,1AM =,2PM AP AM ∴=-=,132PMC S PM AC ∴=⋅=△, 1133333B PMC PMC V S AB -=⋅=⨯⨯=△.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.15.(2020·上海青浦区·高三一模)如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面P AC ;(2)求异面直线1BD 与AP 所成角的大小. 【答案】(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点. 连结PO ,又因为P 是1DD 的中点,所以1//PO BD . 又因为PO ⊂平面P AC ,1BD ⊄平面P AC 所以直线1//BD 平面P AC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==,2122AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30. 【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m nα=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.16.(2020·上海长宁区·高三一模)如图,已知圆锥的顶点为P ,底面圆心为O ,高为23,底面半径为2.(1)求该圆锥的侧面积;(2)设OA 、OB 为该圆锥的底面半径,且90AOB ∠=︒,M 为线段AB 的中点,求直线PM 与直线OB 所成的角的正切值.【答案】(1)8π;(213【分析】(1)利用圆锥侧面积公式即可;(2)通过中点作辅助线即可. 【详解】解:(1)OP ⊥底面OAB 由题意高3h =2r ,所以母线4l圆锥的侧面积S =12lr 12242π=⨯⨯⨯8π= (2)取OA 的中点为N ,因为M 为AB 的中点所以//MN OB ,PMN ∠就是直线PM 与直线OB 所成的角. 因为OB OA ⊥,OB OP ⊥,所以OB ⊥平面POA ,MN ⊥平面POA ,MN PN ⊥ 在Rt △PNM 中,22()132rPN h =+=,112MN OB ==.所以PMN ∠的正切值为13.即直线PM 与直线OB 所成的角正切值为13.17.(2020·上海徐汇区·高三一模)如图:在直三棱柱111ABC A B C -中,2AC BC ==,14CC =,90ACB ∠=,E 、F 分别为棱1AA 、AB 的中点.(1)求异面直线1A C 与EF 所成的角的大小(结果用反三角函数值表示); (2)求五棱锥11C EFBB A -的体积11C EFBB A V -. 【答案】(1)5arctan (2)143.【分析】(1)连接1A B ,利用中位线的性质可得出1//A B EF ,由此可得出1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角,利用解三角形的知识求出1BA C ∠的正切值,即可得解;(2)计算出五边形1EFBB A 的面积,并推导出CF ⊥平面11AA B B ,再利用锥体的体积公式可计算出五棱锥11C EFBB A -的体积11C EFBB A V -. 【详解】 (1)连接1A B ,E 、F 分别为1AA 、AB 的中点,所以,1//A B EF ,于是1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角, 在1A BC 中,2BC =,221125AC AA AC =+=,221126A B AA AB =+=,22211A C BC A B ∴+=,所以1BC A C ⊥,所以,1125tan 525BC BAC AC ∠===. 所以,异面直线1A C 与EF 所成角的大小为5arctan5;(2)由于111111822722AEFEFBB A ABB A S S S AB AA AE AF =-=⋅-⋅==五边形矩形 连接CF ,2AC BC ==,F 为AB 的中点,90ACB ∠=,CF AB ∴⊥,且122CF AB == 1AA ⊥平面ABC ,CF ⊂平面ABC ,1CF AA ∴⊥,1AB AA A ⋂=,CF ∴⊥平面11AA B B ,所以11111114722333C EFBB A EFBB A V S CF -=⋅=⨯⨯=五边形. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.18.(2020·上海大学附属中学高三三模)如图,正四棱锥P ABCD -中.(1)求证:BD ⊥平面PAC ; (2)若2AB =,423P ABCD V -=,求二面角A PB C --的余弦值. 【答案】(1)证明见解析;(2)1arccos 3⎛⎫- ⎪⎝⎭【分析】(1)先证明PO BD ⊥,结合,BD AC ⊥利用线面垂直的判定定理可得结论;(2)由423P ABCD V -=求出棱锥的高,可求得侧棱长,判定侧面的形状后可得二面角的平面角,利用余弦定理可得答案. 【详解】(1)因为P ABCD -是正棱锥,P ∴在面ABCD 内射影是AC 与BD 的交点O ,即PO ⊥面ABCD ,PO BD ∴⊥,又,BD AC PO ⊥与AC 在面PAC 内相交,BD ∴⊥面PAC ;(2)2142233P ABCD V PO -=⨯⨯=, 2PO ∴=,222PB =+=,则PAB △与PBC 为边长是2的正三角形,取PB 的中点E ,连,AE CE , 则AE PB ⊥,CE PB ⊥,AEC ∠是二面角的平面角,3381cos 3233AEC +-∠==-⨯⨯,1cos 3AEC arc ⎛⎫∠=- ⎪⎝⎭【点睛】本题主要考查线面垂直的证明以及二面角的求解,考查了正四棱锥的性质,属于中档题.19.(2019·上海市建平中学高三月考)如图:四面体ABCD 的底面ABC 是直角三角形,AC BC ⊥,3AC =,4BC =,DA ⊥平面ABC ,5DA =,E 是BD 上的动点(不包括端点).(1)求证:AE 与BC 不垂直;(2)当AE DC ⊥时,求DEEB的值. 【答案】(1)证明见解析;(2)259.【分析】(1)利用反证法,先假设AE 与BC 垂直,然后根据条件推出与题设矛盾的结论,即可证明出AE与BC 不垂直;(2)先作辅助线//EF BC ,利用AE DC ⊥以及BC ⊥平面DAC 得到DC ⊥平面AEF ,由此得到AF DC ⊥,从而确定出F 点位置,再由DE DFEB FC=得到结果. 【详解】(1)假设AE BC ⊥,因为DA ⊥平面ABC ,所以DA BC ⊥,且DA AE A =,所以BC ⊥平面DAE ,又因为AB平面DAE ,所以BC AB ⊥,又因为由条件可知BC AC ⊥,所以BC AB ⊥不成立, 故假设不成立,所以AE 与BC 不垂直;(2)过E 作//EF BC ,交DC 于F ,连接AF ,因为AC BC ⊥,DA BC ⊥且DA AC A =,所以BC ⊥平面DAC ,因为//EF BC ,所以EF ⊥平面DAC ,所以EF DC ⊥, 又因为AE DC ⊥,EF DC ⊥,EF AE E =,所以DC ⊥平面AEF ,所以DC AF ⊥,又cos 25934AD ADC DC ∠===+,所以cos cos 34DF ADF ADC AD ∠=∠==, 所以34DF =,所以34FC =,所以259DF FC =,所以由相似可知259DE DF EB FC ==. 【点睛】本题考查空间中的垂直关系的判断与证明,难度一般.空间中的不平行、不垂直关系的证明,如果正面证明比较麻烦,可采用反证法去证明.20.(2020·上海市七宝中学高三其他模拟)如图,四边形11ABB A 是圆柱1OO 的轴载面,4AB =,12OO =,以圆柱上底面为底面作高为2的圆锥1PO ,C 、1C 分别在AB 、11A B 上,2AOC π∠=,1113AO C π∠=.(1)求这个几何体的表面积和体积; (2)求二面角111O AC C --的余弦值. 【答案】(1)表面积为(1242π+,体积为323π;(23823-. 【分析】(1)计算出圆锥的母线长,利用圆锥的侧面积公式和圆柱的侧面积、底面积公式可计算出几何体的表面积,结合柱体和锥体的体积公式可求得几何体的体积;(2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,利用空间向量法可求得二面角111O AC C --的余弦值. 【详解】(1)由题意可知,圆柱的底面半径为22ABr ==, 因为1PO 为圆锥的高,且12PO =,所以,圆锥的母线长为221122PA PO r =+=,又12OO =,因此,该几何体的表面积为(22+2222221242S ππππ=⨯⨯⨯+⨯=+.该几何体的体积为22132222233V πππ=⨯⨯+⨯⨯⨯=; (2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则点()10,0,2O ,()12,0,2A ,()13,2C ,()0,2,0C ,设平面11A CC 的一个法向量为(),,m x y z =,()113,0AC =-,()12,2,2AC =--, 由11100m AC m AC ⎧⋅=⎪⎨⋅=⎪⎩,得302220x x y z ⎧-=⎪⎨-+-=⎪⎩,令3x =1y =,13z =所以,平面11A CC 的一个法向量为(3,1,13m =,易知平面111O AC 的一个法向量为()0,0,1n =,()()22233cos ,82331131m n m n m n⋅<>===⋅-++-⨯,由图象可知,二面角111O AC C --31823--【点睛】本题考查组合体的表面积与体积的计算,同时也考查了利用空间向量法计算二面角的余弦值,考查计算能力,属于中等题.21.(2020·上海高三其他模拟)如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC ,且VC=2,点M 为线段VB 的中点.(1)求证:BC ⊥平面VAC ;(2)若直线AM 与平面V AC 所成角为4π.求三棱锥B-ACM 的体积. 【答案】(1))祥见解析;(2)试题分析:(1)由线面垂直得VC ⊥BC ,由直径性质得AC ⊥BC ,由此能证明BC ⊥平面V AC .(2)首先由(1)作出直线AM 与平面V AC 所成的角:取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面VAC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;这样就可求出AC 的长,且而求得体积.试题解析:(1)证明:因为VC ⊥平面ABC ,BC ABC ⊂平面,所以VC ⊥BC ,又因为点C 为圆O 上一点,且AB 为直径,所以AC ⊥BC ,又因为VC ,AC ⊂平面V AC ,VC∩AC=C ,所以BC ⊥平面V AC.(2)如图,取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面V AC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;令AC=a,则29-a ,MN=292a -;因为VC=2,M 为VC 中点,所以21a + 所以,292a -=21a +,解得a=1 因为MN ∥BC,所以考点:1.直线与平面垂直的判定;2. 棱柱、棱锥、棱台的体积;3. 直线与平面所成的角.22.(2020·上海高三其他模拟)已知正方体1111ABCD A B C D -,12AA =,E 为棱1CC 的中点.(1)求异面直线AE 与1DD 所成角的大小(结果用反三角表示);(2)求C 点到平面ABE 的距离,并求出三锥C ADE -的体积.【答案】(1)1arccos 3;(2)C 点到平面ABE 25,三锥C ADE -的体积为23. 【分析】(1)由已知得AEC ∠(或补角)是异面直线AE 与1DD 所成角,求解AEC 可得答案;(2)利用等体积E ABC C ABE V V --=,可求得设C 点到平面ABE 的距离,利用C ADE A CDE V V --=,可求得三锥C ADE -的体积.【详解】解:(1)连接AC ,因为11//CC DD ,所以AEC ∠(或补角)是异面直线AE 与1DD 所成角, 在AEC 中,()22221cos 3221EC AEC AE AC EC ∠====++, 所以异面直线AE 与1DD 所成角是1arccos 3;(2)设C 点到平面ABE 的距离为h ,因为E ABC C ABE V V --=,即1133ABC ABE S EC S h ⋅=⋅△△, 又正方体1111ABCD A B C D -中,AB ⊥面11BB C C ,所以ABE △是Rt ABE △,又2222215BE BC EC =+=+=, 所以1111221253232h ⨯⨯⨯⨯=⨯⨯⨯⋅,解得255h =, 所以C ADE A CDE V V --=111212332DCE S AD ⎛⎫=⋅=⨯⨯⨯⨯ ⎪⎝⎭△23=.【点睛】本题考查空间中异面直线所成的角,运用等体积法求点到面的距离以及三棱锥的体积,属于中档题.。
高中立体几何典型及解析
高中立体几何典型及解析1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111C解析:11BC ⊥平面AB 111,B C PB ∴⊥,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
立体几何知识点和例题(含有答案)
【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
高一 立体几何知识点+例题+练习 含答案
1.空间几何体的结构特征 (1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形. ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. ③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. (2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到. ②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到. ④球可以由半圆或圆绕直径所在直线旋转得到. 2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.柱、锥、台和球的表面积和体积名称几何体表面积体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1. (3)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × ) (4)圆柱的侧面展开图是矩形.( √ )(5)台体的体积可转化为两个锥体的体积之差来计算.( √ ) (6)菱形的直观图仍是菱形.( × )1.(教材改编)下列说法正确的是________.①相等的角在直观图中仍然相等; ②相等的线段在直观图中仍然相等; ③正方形的直观图是正方形;④若两条线段平行,则在直观图中对应的两条线段仍然平行. 答案 ④解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.故④正确. 2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________ cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2(cm).3.(2014·陕西改编)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是________. 答案 2π解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.4.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为________. 答案212a 3解析 O 是AC 的中点,连结DO ,BO ,△ADC ,△ABC 都是等腰直角三角形.因为DO =BO =AC 2=22a ,BD =a ,所以△BDO 也是等腰直角三角形.又因为DO ⊥AC ,DO ⊥BO ,AC ∩BO =O ,所以DO ⊥平面ABC ,即DO 就是三棱锥D -ABC 的高.因为S △ABC =12a 2,所以三棱锥D -ABC 的体积为13×12a 2×22a =212a 3.5. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是__________________________________________.答案 ①解析平面图形的直观图为正方形,且其边长为1,对角线长为2,所以原平面图形为平行四边形,且位于x轴上的边长仍为1,位于y轴上的对角线长为2 2.题型一空间几何体的结构特征例1(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是________.(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是________.(3)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案(1)0(2)③⑤(3)①④解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.图1图2(2)这条边若是直角三角形的斜边,则得不到圆锥,①错;这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面是显然成立的,③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.(3)命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形.题型二 空间几何体的直观图例2 已知△A ′B ′C ′是△ABC 的直观图,且△A ′B ′C ′是边长为a 的正三角形,求△ABC 的面积.解 建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,边A ′B ′在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a 2.引申探究1.若本例改为“已知△ABC 是边长为a 的正三角形,求其直观图△A ′B ′C ′的面积”,应如何求?解 由斜二测画法规则可知,直观图△A ′B ′C ′一底边上的高为32a ×12×22=68a , 故其面积S △A ′B ′C ′=12a ×68a =616a 2.2.本例中的直观图若改为如图所示的直角梯形,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原图形的面积为________. 答案 2+22解析 如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E ,则在Rt △ABE 中,AB =1,∠ABE =45°, ∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1.∴BC =BE +EC =22+1. 由此可还原原图形如图②,是一个直角梯形.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴原图形的面积为S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连结而画出.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________. ①正方形; ②矩形;③菱形; ④一般的平行四边形. 答案 ③解析 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm. ∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,∴四边形OABC 是菱形.题型三 求空间几何体的表面积例3 (1)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 由题意知该六棱锥为正六棱锥,∴设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积. 解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,又由题意知A ′E ⊥AB ,A ′F ⊥AC , 得Rt △A ′AE ≌Rt △A ′AF , ∴A ′E =A ′F ,∴DE =DF , ∴AD 平分∠BAC ,又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′, 而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2.思维升华 (1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积.解 (1)设O 1、O 分别为正三棱台ABC —A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32,因O 1D 1=36×3=32,OD =36×6=3, 则DE =OD -O 1D 1=3-32=32. 在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3(cm). 故三棱台斜高为 3 cm.(2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732 (cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2). 故三棱台的侧面积为2732 cm 2,表面积为9934cm 2.题型四 求空间几何体的体积例4 (2015·山东改编)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________. 答案42π3解析 如图,设等腰直角三角形为△ABC ,∠C =90°,AC =CB =2,则AB =2 2.设D 为AB 中点,则BD =AD =CD = 2.∴所围成的几何体为两个圆锥的组合体,其体积V =2×13×π×(2)2×2=42π3.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(2014·课标全国Ⅱ改编)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 在正△ABC 中,D 为BC 的中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , AD ⊥BC ,AD ⊂平面ABC , ∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴V 三棱锥A -B 1DC 1=13S △DB 1C 1·AD =13×3×3=1.题型五 与球有关的切、接问题例5 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________. 答案132解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52, OM =12AA 1=6, 所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r .又正方体的棱长为4,故其体对角线长为43,从而V 外接球=43πR 3=43π×(23)3=323π, V 内切球=43πr 3=43π×23=32π3. 2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为 (32)2-(12×6)2=3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案 2 解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径), ∴(x 2)2+(x 2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.15.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案96温馨提醒(1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练(时间:45分钟)1.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.答案 ①2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数为________.答案 10解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为________________________________________________________________________. 答案 100π解析 依题意,设球半径为R ,满足R 2=32+42=25,∴S 球=4πR 2=100π.4.(2015·课标全国Ⅰ改编)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.答案 22解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛). 5.如图,在三棱柱ABC —A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.答案 2 解析 因为AA 1⊥平面AB 1C 1,AB 1⊂平面AB 1C 1,所以AA 1⊥AB 1,又知AA 1=1,A 1B 1=2,所以AB 1=22-12=3,同理可得AC 1=3,又知在△AB 1C 1中,B 1C 1=2,所以△AB 1C 1的B 1C 1上的高为h =3-1=2,其面积S △AB 1C 1=12×2×2=2,于是三棱锥A —A 1B 1C 1的体积V 三棱锥A —A 1B 1C 1=V 三棱锥A 1—AB 1C 1=13×S △AB 1C 1×AA 1=23,进而可得此三棱柱ABC —A 1B 1C 1的体积V =3V 三棱锥A —A 1B 1C 1=3×23= 2. 6.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 7.(2015·课标全国Ⅱ改编)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为________.答案 144π解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥COAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.8.(2015·盐城一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3. 又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3,则其体积比为932. 9.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和 30 cm ,且其侧面积等于两底面面积之和,求棱台的高. 解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.10.如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.解 方法一 连结A 1C 1,B 1D 1交于点O 1,连结B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离.∵平面B 1D 1D ⊥平面B 1EDF ,平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高.∵△B 1O 1H ∽△B 1DD 1,∴O 1H =B 1O 1·DD 1B 1D =66a . ∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连结EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF=13·S △C 1EF ·(h 1+h 2)=16a 3. B 组 专项能力提升(时间:30分钟)11.已知某圆锥体的底面半径r =3,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是________.答案 36π解析 由已知沿圆锥体的母线把侧面展开后得到的扇形的弧长为2πr =6π,从而其母线长为l =6π2π3=9,从而圆锥体的表面积为S 侧+S 底=12×9×6π+9π=36π. 12.三棱锥P —ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D —ABE 的体积为V 1,P —ABC的体积为V 2,则V 1V 2=________. 答案 14解析 V 1=V D —ABE =V E —ABD =12V E —ABP =12V A —BEP =12×12V A —BCP =12×12V P —ABC =14V 2. 13.已知圆台的母线长为4 cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是________cm 2.答案 24π解析 如图是将圆台还原为圆锥后的轴截面,由题意知AC =4 cm ,∠ASO =30°,O 1C =12OA ,设O 1C =r , 则OA =2r ,又O 1C SC =OA SA=sin 30°,∴SC =2r ,SA =4r , ∴AC =SA -SC =2r =4 cm ,∴r =2 cm.∴圆台的侧面积为S =π(r +2r )×4=24π cm 2.14.(2015·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt △AEC中,可得EG=32x. 由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥EACD的体积V EACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.15.如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=3,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.解 (1)如图,连结OM ,则OM ⊥AB ,设OM =r ,OB =3-r ,在△BMO 中,sin ∠ABC =r 3-r =12⇒r =33. ∴S =4πr 2=43π. (2)∵△ABC 中,∠ACB =90°,∠ABC =30°,BC =3, ∴AC =1.∴V =V 圆锥-V 球=13π×AC 2×BC -43πr 3 =13π×1×3-43π×39=5327π.。
高中几何体试题及答案解析
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
立体几何高考题及解析
立体几何高考题及解析
以下是一道关于立体几何的高考题及解析:
题目:一个圆锥的底面半径是3cm,母线长为4cm。
若其高为h,求出圆锥的体积与表面积的比。
解析:
首先我们需要知道圆锥的体积和表面积的公式:
圆锥体积公式:V = 1/3 * π * r^2 * h
圆锥表面积公式:S = π * r * l + π * r^2
其中,r为底面半径,h为高,l为母线长。
给定的条件是底面半径为3cm,母线长为4cm。
我们需要求出圆锥的体积与表面积的比,即V/S。
首先计算出底面圆周长:
C = 2 * π * r = 2 * π * 3 = 6π
然后计算出母线的长度l:
l = 根号下(r^2 + h^2) = 根号下(3^2 + h^2)
代入母线长为4cm的条件,得到方程:
根号下(3^2 + h^2) = 4
解方程,得到h = 根号下(7)
将求得的h代入到圆锥体积公式和表面积公式中,求出圆锥的体积和表面积:
V = 1/3 * π * r^2 * h = 1/3 * π * 3^2 * 根号下(7) = 3π * 根号下(7) S = π * r * l + π * r^2 = π * 3 * 4π + π * 3^2 = 12π^2 + 9π
最后计算出圆锥的体积与表面积的比:
V/S = (3π * 根号下(7)) / (12π^2 + 9π) = (根号下(7)) / (4π + 3)
因此,圆锥的体积与表面积的比为(根号下(7)) / (4π + 3)。
高中数学立体几何题型详解
高中数学立体几何题型详解立体几何是高中数学中的一个重要部分,涉及到空间中的各种几何体及其性质。
在考试中,常常会出现与立体几何相关的题目,考察学生对几何体的认识和应用能力。
本文将针对高中数学中常见的立体几何题型进行详细解析,帮助学生和家长更好地理解和应对这类题目。
一、平行四边形的体积计算平行四边形是一个常见的几何体,其体积的计算是高中数学中的基础知识。
考虑一个平行四边形的底面积为S,高为h的立体,其体积V可以通过公式V=S*h来计算。
例如,给定一个底边长为a,高为h的平行四边形,求其体积。
根据公式V=S*h,我们可以得到V=a*h,其中a为底边长,h为高。
这个公式的应用非常广泛,可以解决各种与平行四边形体积相关的问题。
二、正方体的表面积计算正方体是另一个常见的几何体,其表面积的计算也是高中数学中的基础知识。
一个边长为a的正方体,其表面积S可以通过公式S=6*a^2来计算。
例如,给定一个边长为a的正方体,求其表面积。
根据公式S=6*a^2,我们可以得到S=6*a*a=6*a^2,其中a为边长。
这个公式的应用非常广泛,可以解决各种与正方体表面积相关的问题。
三、立方体的体积和表面积计算立方体是一种特殊的正方体,其体积和表面积的计算也是高中数学中的基础知识。
一个边长为a的立方体,其体积V可以通过公式V=a^3来计算,表面积S可以通过公式S=6*a^2来计算。
例如,给定一个边长为a的立方体,求其体积和表面积。
根据公式V=a^3和S=6*a^2,我们可以得到V=a*a*a=a^3,S=6*a*a=6*a^2,其中a为边长。
这两个公式的应用非常广泛,可以解决各种与立方体体积和表面积相关的问题。
四、棱柱的体积和表面积计算棱柱是另一个常见的几何体,其体积和表面积的计算也是高中数学中的基础知识。
一个底面积为S,高为h的棱柱,其体积V可以通过公式V=S*h来计算,表面积S可以通过公式S=S底+S侧来计算,其中S底为底面积,S侧为侧面积。
立体几何高考考点梳理及真题分类解析
第九章立体几何(2021年文科数学高考备考版)第一节空间几何体的三视图和直观图一、高考考点梳理(一)、空间几何体的结构特征1.多面体①棱柱:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成(一)、简单几何体的结构特征的几何体叫作棱柱.②棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.③棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.2.旋转体①圆锥可以由直角三角形绕其任一直角边旋转得到.②圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.③球可以由半圆或圆绕直径旋转得到.(二)、三视图1.三视图的名称:几何体的三视图包括主视图、左视图、俯视图.2.三视图的画法①画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图.③观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.(三)、直观图简单几何体的直观图常用斜二测画法来画,其规则是:1.在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使∠x′O′y′=45°,它们确定的平面表示水平平面;2.已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴和y′轴的线段;3.已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的1 2.二、历年高考真题题型分类突破题型一空间几何体的三视图【例1】(2020全国Ⅲ卷)右图为某几何体的三视图,则该几何体的表面积是()A.B.C.D. D.解析:由三视图可知几何体的直观图如图:几何体是正方体的一个角,,、、两两垂直,故,几何体的表面积为:,故选:C.【例2】(2018全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:所求最短路径MN为四份之一圆柱侧面展开图对角线的长.故选B.【例3】(2017全国Ⅱ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 1=π×32×4=36π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积V 2=12×(π×32×6)=27π,∴该组合体的体积V =V 1+V 2=63π.故选B .题型二 与球有关的几何体【例4】(2020全国Ⅰ卷)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为∆ABC 的外接圆,若⊙O 1的面积为4π,AB=BC=AC=OO 1,则球O 的表面积为( ) A .64πB .48πC .36πD .32π解析:设球O 半径为R ,⊙O 1的半径为r ,依题πr 2=4π,∴r =2。
重点高中简单立体几何体(附例题详解)
2.简单几何体知识网络简单几何体结构简图画龙点晴点的字母表示,如五棱柱可表示为:棱柱ABCDE-A/B/C/D/E/,或棱柱AC/.棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形;(3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质:直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。
平行六面体:底面是平行四边形的四棱柱叫做平行六面体.长方体:底面是矩形的直平行六面体叫做长方体,长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.即,11由三垂线定理得A 1M ⊥AB,A 1N ⊥AD.∵ ∠A 1AM=∠A 1AN,∴ Rt △A 1NA ≌Rt △A 1MA.∴ A 1M=A 1N. ∴ OM=ON.∴ 点O 在∠BAD 的平分线上. (2),232133cos 1=⨯==πAA AM23=∴AN ,∴侧面AB 1和侧面DC 1的面积都等于423⨯=6,侧面AD 1和侧面BC 1的面积都等于523⨯=7.5,又AB ⊥AD ,∴两底面面积都等于45⨯=20,∴平行六面体的表面积为2(6+7.5)+20=47.[例2]如图,A 1B 1C 1-ABC 是直三棱柱,过点A 1、B 、C 1的平面和平面ABC 的交线记作l . (1)(2)[(2)又l 作11.5131)512(22121=+=+=∴A A AE E A 故点A 1到直线l 的距离为513. 解法二:同解法一得l ∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt △ABC ∽Rt △BEA,AE:BC=AB:AC,ACABBC AE ⨯=∴,以下同解法一. [例3]如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数. [题解](1)∵A 1B 1C 1-ABC 是正三棱柱,∴四边形B 1BCC 1是矩形.又(2)影∵角设DF 取2EF 16341432=⋅=∴EF ,即EF=43..14343tan ===∠∴EF DF DEF ∴∠DEF=45°.故二面角α为45°. 概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类:按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥…… 棱锥的表示法:棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母棱锥的中截面:过棱锥的高的中点并且平行于底面的截面叫做棱锥的中截面. 公式正棱锥的侧面积和全面积:正棱锥的侧面积等于底面周长C 与斜高/h 乘积的一半.即/21h C S ⋅=正棱锥侧.[活用实例][例4]如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC.求证:SC垂直于截面MAB.[影面°从[).因由NSC.以下同证法一,故SC⊥截面MAB.[题解3]连结DM,DS.因为M,N分别在△SDC的两边上,所以SN和DM都在平面内,且相交于一点P.又因PN是底面的垂线,AB⊥DN,所以AB⊥DM(据三垂线定理).∴∠MDC是截面与底面所成二面角的平面角,∠MDC=∠NSC.又∠MDC=∠NSC,∠DCS是△DCM和△SCN的公共角,故∠DMC=∠SNC=90°.从而DM⊥SC.从AB⊥DM,AB⊥DC,可知AB⊥平面MDC.因为SC是平面MDC内的直线,所以AB⊥SC. 从AB⊥SC,DM⊥SC,可知SC⊥截面MAB.,正多面体的种类:正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形,正六面体的面是正方形,正十二面体的面是正五边形。
人教版高中数学必修2立体几何题型归类总结资料讲解
仅供学习与交流,如有侵权请联系网站删除 谢谢7
精品资料
图 14 15.一个棱锥的三视图如图图 9-3-7,则该棱锥的全面积(单位: cm2 )_____________.
正视图
左视图
俯视图 图 15
16.图 16 是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________.
D'
C'
A'
C'
A'
B'
O
O
D
C
A
B
A
c
注:球的有关问题转化为圆的问题解决.
球面积、体积公式:
S球
4
R2 ,V球
4 3
R3 (其中
R
为球的半径)
平行垂直基础知识网络★★★
平行与垂直关系可互相转化
平行关系 平面几何知
1. a ,b a // b 2. a ,a // b b
3. a , a //
仅供学习与交流,如有侵权请联系网站删除 谢谢3
精品资料
另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二 证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;
2 求直线与平面所成的角 0,90 :关键找“两足”:垂足与斜足
正视图
俯视图
图 10
11. 如图 11 所示,一个空间几何体的主视图和左视图都是边长为 1 的正方形,俯视图是一
个直径为 1 的圆,那么这个几何体的全面积为_____________.
图
图 11
图 12
图 13
经典高考立体几何知识点和例题(理科学生用)
高考立体几何知识点总结整体知识框架:一 、空间几何体 〔一〕 空间几何体的类型1 多面体:由假设干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
〔二〕 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式ch S =直棱柱侧〔c 是底周长,h 是高〕S 直棱柱外表 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 2.1 棱锥的定义〔1〕 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
〔2〕正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎〔c 为底周长,'h 为斜高〕 体积:13V Sh =棱椎〔S 为底面积,h 为高〕 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
立高中数学必修二立体几何知识点总结及例题
立体几何初步一、柱、锥、台、球的图形(1)棱柱: (2)棱锥 (3)棱台: (4)圆柱:(5)圆锥: (6)圆台: (7)球体:二、空间几何体的三视图三视图:主视图、左视图、俯视图【注:主视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;左视图反映了物体的高度和宽度。
】三、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
四、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,h ’为斜高,l 为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V = ; S =五、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
【】公理2:经过不在同一条直线上的三点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
【 】ch S =直棱柱侧面积rh S π2=圆柱侧'21ch S =正棱锥侧面积rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥'1()3V S S h =+台'2211()()33V S S h r rR R h π=+=++圆台球343R π球面24R π,,,A l B l A B l ααα∈∈∈∈⇒⊂公理4:平行于同一条直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
高中数学典型例题解析立体几何
高中数学典型例题分析 第六章 立体几何初步§6.1 两条直线之间的位置关系一、知识导学1. 平面的基本性质.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和这条直线外的一点,,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系,包括:相交、平行、异面.3. 公理4:平行于同一条直线的两条直线平行.定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4. 异面直线.异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5. 反证法.会用反证法证明一些简单的问题. 二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围. 3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b α⊂,A α∈且A b ∉,a A =⋂α,则a 与b 异面. 三、经典例题导讲[例1]在正方体ABCD-A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM( ).A .是AC 和MN 的公垂线.B .垂直于AC 但不垂直于MN. C .垂直于MN ,但不垂直于AC.D .与AC 、MN 都不垂直. 错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影. 正解:A. [例2]如图,已知在空间四边形ABCD 中,E,F 分别是AB,AD 的中点,G,H 分别是BC,CD 上的点,且2==HCDH GCBG,求证:直线EG,FH,AC相交于一点.错解:证明:E 、F 分别是AB,AD 的中点,EF ∴∥BD,EF=21BD,又2==HCDH GCBG ,∴ GH ∥BD,GH=31BD,∴四边形EFGH 是梯形,设两腰EG,FH 相交于一点T,2=HCDH ,F 分别是AD.∴AC 与FH 交于一点.∴直线EG,FH,AC 相交于一点正解:证明:E 、F 分别是AB,AD 的中点,EF ∴ ∥BD,EF=21BD,又2==HCDH GCBG ,∴GH ∥BD,GH=31BD,∴四边形EFGH 是梯形,设两腰EG,FH 相交于一点T, ⊂EG 平面ABC,FH ⊂平面ACD,∴T ∈面ABC,且T ∈面ACD,又平面ABC 平面ACD=AC, AC T ∈∴,∴直线EG,FH,AC 相交于一点T.[例3]判断:若a,b 是两条异面直线,P 为空间任意一点,则过P 点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P 在其中一条线上,或a 与P 确定平面恰好与b 平行,此时就不能过P 作平面与a 平行. 正解:假命题.[例4] 如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上). 分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线. 证明 ∵ AB//CD , AB ,CD 确定一个平面β. 又∵AB ∩α=E ,AB β,∴ E ∈α,E ∈β, 即 E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴ E,F ,G ,H 四点必定共线.点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=l.设梯形ABCD 中,AD∥BC,且AB α,CDβ,求证:AB ,CD ,l共点(相交于一点).分析:AB ,CD 是梯形ABCD 的两条腰,必定相交于一点M ,只要证明M 在l 上,而l 是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明: ∵ 梯形ABCD 中,AD∥BC, ∴AB,CD 是梯形ABCD 的两条腰. ∴ AB,CD 必定相交于一点, 设 AB ∩CD=M .又∵ AB α,CD β,∴ M∈α,且M∈β. ∴ M∈α∩β. 又∵α∩β=l ,∴ M∈l ,即AB ,CD ,l 共点.点 评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1º若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点 A ∴ 直线d 和A 确定一个平面α.又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则 A ,E ,F ,G∈α. ∵ A ,E∈α,A ,E∈a, ∴ a α. 同理可证 b α,c α. ∴ a,b ,c ,d 在同一平面α内. 2º当四条直线中任何三条都不共点时,如图. ∵ 这四条直线两两相交, 则设相交直线a ,b 确定一个平面α. 设直线c 与a ,b 分别交于点H ,K , 则 H ,K∈α.又∵ H,K∈c,∴ c α. 同理可证 d α.∴ a,b ,c ,d 四条直线在同一平面α内.点 评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义. [例7] 在立方体ABCD -A 1B 1C 1D 1中,(1)找出平面AC 的斜线BD 1在平面AC 内的射影; (2)直线BD 1和直线AC 的位置关系如何?(3)直线BD 1和直线AC 所成的角是多少度?解:(1)连结BD, 交AC 于点O 上的射影在平面就是斜线平面AC BD BD AC DD 11,∴⊥ . (2)BD 1和AC 是异面直线.(3)过O 作BD 1的平行线交DD 1于点M ,连结MA 、MC ,则∠MOA 或其补角即为异面直线AC 和BD 1所成的角.不难得到MA =MC ,而O 为AC 的中点,因此MO ⊥AC ,即∠MOA =90°,∴异面直线BD 1与AC 所成的角为90°.[例8] 已知:在直角三角形ABC 中,∠A 为直角,PA⊥平面ABC ,BD⊥PC,垂足为D ,求证:AD⊥PC 证明:∵ PA ⊥平面ABC∴ PA⊥BA 又∵ BA⊥AC ∴ BA⊥平面PAC ∴ AD 是BD 在平面PAC 内的射影又∵ BD ⊥PC ∴ AD ⊥PC .(三垂线定理的逆定理) 四、典型习题导练1.如图, P 是△ABC 所在平面外一点,连结PA 、PB 、PC 后,在包括AB 、BC 、CA 的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD 、ABEF 所在的平面互相垂直,则异面直线AC 和BF 所成角的大小为 .3. 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,体对角线DB 1与面对角线BC 1所成的角是 ,它们的距离是 .4.长方体ABCD A B C D -1111中,BC CD DD ===2214251,,,则A C B D 111和所成角的大小为_ ___.5.关于直角AOB 在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD 中,AB ⊥CD ,AH ⊥平面BCD ,求证:BH ⊥CD7.如图正四面体中,D 、E 是棱PC 上不重合的两点;F 、H 分别是棱PA 、PB 上的点,且与P 点不重合. 求证:EF 和DH 是异面直线.§6.2直线与平面之间的位置关系一、知识导学1.掌握空间直线与平面的三种位置关系(直线在平面内、相交、平行).2.直线和平面所成的角,当直线与平面平行或在平面内时所成的角是 0,当直线与平面垂直时所成的角是9 0,当直线与平面斜交时所成的角是直线与它在平面内的射影所成的锐角.3.掌握直线与平面平行判定定理(如果平面外的一条直线和平面内的一条直线平行,那么这条直线和平面平行)和性质定理(如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行).4.直线与平面垂直的定义是:如果一条直线和一个平面内所有直线垂直,那么这条直线和这个平面垂直;掌握直线与平面垂直的判定定理(如果一条直线和平面内的两条相交直线都垂直,那么这条直线垂直于这个平面)和性质定理(如果两条直线同垂直于一个平面,那么这两条直线平行).5.直线与平面的距离(一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离).6.三垂线定理(在平面内的一条直线,如果和这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直)、逆定理(在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直).7.从平面外一点向这个平面所引的垂线段和斜线段中:①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短.二、疑难知识导析1.斜线与平面所成的角关键在于找射影,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.2.在证明平行时注意线线平行、线面平行及面面平行判定定理和性质定理的反复运用.3.在证明垂直时注意线线垂直、线面垂直及面面垂直判定定理和性质定理的反复运用,同时还要注意三垂线定理及其逆定理的运用.要注意线面垂直的判定定理中的“两条相交直线”,如果用“无数”或“两条”都是错误的.4.直线与平面的距离一般是利用直线上某一点到平面的距离.“如果在平面的同一侧有两点到平面的距离(大于0)相等,则经过这两点的直线与这个平面平行.”要注意“同一侧”、“距离相等”.三、经典例题导讲l⊂平面α,点P∈直线l,平面α、β间的距离为8,则在β内[例1]已知平面α∥平面β,直线l的距离为9的点的轨迹是()到点P的距离为10,且到A.一个圆B.四个点C.两条直线 D .两个点错解:A.错因:学生对点线距离、线线距离、面面距离的关系掌握不牢.正解:B.[例2] a和b为异面直线,则过a与b垂直的平面( ).A .有且只有一个B .一个面或无数个C .可能不存在D .可能有无数个 错解:A.错因:过a 与b 垂直的平面条件不清. 正解:C.[例3]由平面α外一点P 引平面的三条相等的斜线段,斜足分别为A,B,C ,O 为⊿ABC 的外心,求证:OP α⊥.错解:因为O 为⊿ABC 的外心,所以OA =OB =OC ,又因为PA =PB =PC ,PO 公用,所以⊿POA ,⊿POB ,⊿POC 都全等,所以∠POA =∠POB=∠POC =2π,所以OP α⊥. 错因:上述解法中∠POA =∠POB =∠POC =RT ∠,是对的,但它们为什么是直角呢?这里缺少必要的证明.正解:取BC 的中点D ,连PD 、OD ,,,,,,,AB PO PO .PB PC OB OC BC PD BC OD BC POD BC PO α==∴⊥⊥∴⊥∴⊥⊥∴⊥面同理,[例4]如图,在正三棱柱ABC-A 1B 1C 1中,AB=3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 点的最短路线长为29,设这条最短路线与C 1C 的交点为N,求: (1)该三棱柱的侧面展开图的对角线长;(2)PC 和NC 的长;(3)平面NMP 和平面ABC 所成二面角(锐角)的大小(用反三角函数表示)错因:(1)不知道利用侧面BCC 1 B 1展开图求解,不会找29 的线段在哪里;(2)不会找二面角的平面角.正解:(1)正三棱柱ABC-A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为974922=+(2)如图,将侧面BC 1旋转120使其与侧面AC 1在同一平面上,点P 运动到点P 1的位置,连接MP 1 ,则MP 1就是由点P 沿棱柱侧面经过CC 1到点M 的最短路线. 设PC =x ,则P 1C =x ,在2,292)3221==+∆x x MAP Rt +中,(54,5211=∴==∴NC A P C P MA NC (3)连接PP 1(如图),则PP 1就是平面NMP 与平面ABC 的交线,作NH 1PP ⊥于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理的逆定理得,1PP CH ⊥.所成二面角的平面角。
高中数学总复习——专题 立体几何(附带答案及详细解析)
高中数学总复习——专题 立体几何数学考试姓名:__________ 班级:__________考号:__________一、单选题1.(2020高二上·天津期末)已知空间向量 a ⃗=(1,−1,0) , b ⇀=(m,1,−1) ,若 a ⃗⊥b ⃗⃗ ,则实数 m = ( )A. -2B. -1C. 1D. 2 2.一空间几何体的三视图如图,则该几何体的体积为( )A. 2π+2√3 B. 4π+2√3 C. 2π+2√33D. 4π+2√333.(2020高二上·夏津月考)在三棱锥 P −ABC 中, PC ⊥ 底面ABC , ∠BAC =90∘ , AB =AC =4 , ∠PBC =60∘ ,则点C 到平面PAB 的距离是 ( ) A. 3√427B. 4√427C. 5√427D. 6√4274.下列几种关于投影的说法不正确的是级………A. 平行投影的投影线是互相平行的B. 中心投影的投影线是互相垂直的影C. 线段上的点在中心投影下仍然在线段上D. 平行的直线在中心投影中不平行 5.下列说法正确的是( )A. 三点确定一个平面B. 平面α和β有不同在一条直线上的三个交点C. 梯形一定是平面图形D. 四边形一定是平面图形6.(2019高二上·定远期中)已知底面为正方形,侧棱相等的四棱锥S -ABCD 的直观图和正视图如图所示,则其侧视图的面积为( )A. B. C. 2 D. 27.火星的半径约是地球半径的一半,则地球的体积是火星的( )A. 4倍B. 8倍C. 14倍 D. 18倍 8.(2018·海南模拟)某几何体的三视图如图所示,其中圆的半径均为1,则该几何体的体积为( )A. 208+4π3B. 216+4π3C. 208+32π3D. 216+32π39.(2020高二上·深圳期末)如图,正方体 ABCD −A 1B 1C 1D 1 中, E 、 F 分别是边 AA 1 和 AB 的中点,则 EF 和 BC 1 所成的角是( )A. 30°B. 60°C. 45°D. 120°10.(2020高三上·宣城期末)在三棱锥P−ABC中,PA⊥平面ABC,AP=2,AB=2√2,AC=4,∠BAC=45°,则三棱锥P−ABC外接球的表面积是()A. 14πB. 16πC. 18πD. 20π11.(2019·上海)已知平面α、β、γ两两垂直,直线a、b、c满足:a⊆α,b⊆β,c⊆γ,则直线a、b、c不可能满足以下哪种关系()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面12.(2019高三上·宁德月考)某长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的表面积为()A. 16B. 20C. 16+2√6D. 20+2√613.(2018高二上·鄞州期中)设m,n是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A. ,,则B. ,,,则C. ,,则D. ,,,,则14.(2015高二上·城中期末)已知A,B是球O的球面上两点,∠AOB=60°,C为该球面,则球O的表面积为()上的动点,若三棱锥O﹣ABC体积的最大值为16√33A. 36πB. 64πC. 144πD. 256π15.(2018·茂名模拟)如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是( )A. 1B. 2C. 3D. 416.(2018高二上·嘉兴期中)设l是直线,α,β是两个不同的平面,下列命题正确的是()A. 若l//α,l//β,则α//βB. 若l//α,l⊥β,则α⊥βC. 若α⊥β,l⊥α,则l//βD. 若α⊥β,l//α,则l⊥β17.(2016高二上·青海期中)如图,在正方体ABCD﹣A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD②B1D⊥面EFG③面EFG∥面ACC1A1④EF∥面CDD1C1正确结论的序号是()A.①和②B. ②和④C. ①和③D. ③和④18.(2019·浙江模拟)已知正三棱锥P−ABC(底面是正三角形,顶点在底面的射影是正三角形的中心),直线BC//平面α,E,F,G分别是棱PA,AB,PB上一点(除端点),将正三棱锥P−ABC绕直线BC旋转一周,则能与平面α所成的角取遍区]一切值的直线可能是()间[0,π2A. EFB. FGC. EGD. EF,FG,EG中的任意一条二、填空题19.(2020高一下·徐州期中)如图所示,正方体ABCD﹣A1B1C1D1中,E,F分别是棱BC,CC1的中点,则异面直线EF与B1D1所成的角为________.20.(2016高二上·金华期中)过平面外一点可以作________直线与已知平面平行.21.(2018高二上·雅安月考)在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是________.22.(2019高二上·丽水期末)我国古代数学经典名著《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥P−ABC为鳖臑,且PA⊥平面ABC, PA=AB=2,且该鳖臑的外接球的表面积为9π, 则该鳖臑的表面积为________.23.(2020高二上·临沂期末)在空间直角坐标系O−xyz中,点M(1,−1,1)关于x轴的对称点坐标是________.24.(2020高二下·嘉定期末)有一个倒圆锥形的容器,其底面半径是5厘米,高是10厘米,容器内放着49个半径为1厘米的玻璃球,在向容器倒满水后,再把玻璃球全部拿出来,则此时容器内水面的高度为________厘米25.(2018高二上·淮安期中)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,真命题的序号是________.26.已知向量a⇀=(0,−1,1),b⇀=(4,1,0),|λa⇀+b⇀|=√29,且λ>0,则λ=________.27.(2017高三上·邯郸模拟)已知一个四面体ABCD的每个顶点都在表面积为9π的球O 的表面上,且AB=CD=a,AC=AD=BC=BD= √5,则a=________.28.某四棱锥的三视图如图所示,该四棱锥的体积为________29.(2016高一上·广东期末)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2 √3,PD=CD=2,则二面角A﹣PB﹣C的正切值为________.30.(2019高二上·慈溪期中)正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值等于________31.(2020高二下·济南月考)已知a⇀=(2,1,3),b⇀=(−4,2,x),且a⇀⊥b⇀,则|a⇀−b⇀|=________.32.(2019高三上·上海期中)某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为3,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.33.如图所示,在四边形ABCD中,AB=AD=CD=1,BD= √2,BD⊥CD,将四边形ABCD 沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.①A′C⊥BD;②∠BA′C=90°;③四面体A′﹣BCD的体积为1.634.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则此棱锥的体积为________三、解答题35.(2020高二上·郓城月考)已知三点 A(0,2,3),B(−2,1,6),C(1,−1,5) (1)求以 AB ,AC 为邻边的平行四边形面积 (2)求平面 ABC 一个法向量(3)若向量 a ⃗ 分别与 AB ⃗⃗⃗⃗⃗⃗ , AC ⃗⃗⃗⃗⃗⃗ 垂直,且 |a ⃗|=√3 求 a ⃗ 的坐标.36.(2020·盐城模拟)如图,在四棱锥P —ABCD 中,底面ABCD 是菱形,PC ⊥BC , 点E 是PC 的中点,且平面PBC ⊥平面ABCD . 求证:(1)求证:PA ∥平面BDE ; (2)求证:平面PAC ⊥平面BDE.37.(2018高一上·镇原期末)某几何体的三视图如图所示:(1)求该几何体的表面积;(2)求该几何体的体积.38.(2018高二上·万州月考)如图,在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,E为PB中点,PB=4 √2.(I)求证:PD∥面ACE;(Ⅱ)求三棱锥E﹣ABC的体积。
必修二立体几何知识点+例题+练习+答案
学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除立体几何知识点一、空间几何体1.多面体:由若干个多边形围成的几何体,叫做多面体。
围成多面体的各个多边形叫做多面体的面 , 相邻两个面的公共边叫做多面体的棱 , 棱与棱的公共点叫做多面体的顶点 .2.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都平行,由这些面所围成的多面体叫做棱柱。
两个互相平行的面叫做底面, 其余各面叫做侧面 .3.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
底面是正多边形,且各侧面是全等的等腰三角形的棱锥叫做正棱锥。
正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形;顶点在底面上的射影是底面正多边形的中心。
4.棱台:用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
由正棱锥截得的棱台叫做正棱台。
正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平行于底面的截面是相似的正多边形5.旋转体:由一个平面图形绕一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫做旋转体的轴,6.圆柱、圆锥、圆台:分别以矩形的一边、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。
圆柱、圆锥、圆台的性质:平行于底面的截面都是圆;过轴的截面 ( 轴截面 ) 分别是全等的矩形、等腰三角形、等腰梯形。
注:在处理圆锥、圆台的侧面展开图问题时,经常用到弧长公式 l R7.球: 以半圆的直径为旋转轴,旋转一周所成的曲面叫做球面 . 球面所围成的几何体叫做球体 ( 简称球 )8.简单空间图形的三视图:一个投影面水平放置,叫做水平投影面,投影到这个平面内的图形叫做俯视图。
一个投影面放置在正前方,这个投影面叫做直立投影面,投影到这个平面内的图形叫做主视图 ( 正视图 ) 。
和直立、水平两个投影面都垂直的投影面叫做侧立投影面,通常把这个平面放在直立投影面的右面,投影到这个平面内的图形叫做左视图( 侧视图) 。
高中数学立体几何解题技巧及常见题型详解
高中数学立体几何解题技巧及常见题型详解立体几何是数学中的一个重要分支,它研究的是空间中的图形和体积。
在高中数学中,立体几何是一个重要的考点,也是考试中难度较大的部分之一。
本文将介绍一些高中数学立体几何解题技巧,并详细解析几种常见的立体几何题型,帮助读者更好地应对这一考点。
一、平行六面体的体积计算平行六面体是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定底面积和高,进而计算体积。
例如,有一平行六面体的底面积为A,高为h,求其体积。
解题技巧:首先,我们需要明确平行六面体的定义,即六个面都是平行的。
其次,根据平行六面体的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的平行六面体。
因此,平行六面体的体积可以通过底面积乘以高来计算,即V = Ah。
举例说明:假设有一个平行六面体,其底面积为5平方厘米,高为10厘米。
那么,它的体积可以通过计算5乘以10得到,即V = 5 × 10 = 50立方厘米。
二、正方体的表面积计算正方体是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定正方体的边长,进而计算表面积。
例如,有一个正方体的边长为a,求其表面积。
解题技巧:首先,我们需要明确正方体的定义,即六个面都是正方形。
其次,根据正方体的性质,我们可以将其看作一个立方体,因为立方体是一种特殊的正方体。
因此,正方体的表面积可以通过边长的平方乘以6来计算,即S = 6a²。
举例说明:假设有一个正方体,其边长为3厘米。
那么,它的表面积可以通过计算6乘以3的平方得到,即S = 6 × 3² = 54平方厘米。
三、棱柱的体积计算棱柱是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定底面积和高,进而计算体积。
例如,有一个棱柱的底面积为A,高为h,求其体积。
解题技巧:首先,我们需要明确棱柱的定义,即底面是一个多边形,顶面与底面的对应点通过直线相连。
其次,根据棱柱的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的棱柱。
高中简单立体几何体(附例题 详解)
2. 简单几何体知识网络 简单几何体结构简图画龙点晴概念棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。
两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.棱柱的分类: 按侧棱与底面的关系,棱柱可分为:斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.正棱柱:底面是正多边形的直棱柱叫做正棱柱.按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱……棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱可表示为:棱柱ABCDE-A/B/C/D/E/,或棱柱AC/.棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形;(3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。
平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.正方体: 棱长都相等的长方体叫做正方体.公式棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C与高的乘积, 即, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C1与侧棱长的乘积,即, 棱柱的全面积等于侧面积与两底面积的和.[活用实例][例1] 如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=,(1)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(2)求这个平行六面体的表面积.[题解](1) 如图,连结A1O,则A1O⊥底面ABCD.作OM⊥AB交AB于M,作ON⊥AD交AD于N,连结A1M,A1N.由三垂线定理得A1M⊥AB,A1N⊥AD.∵∠A1AM=∠A1AN,∴Rt△A1NA≌Rt△A1MA.∴A1M=A1N.∴OM=ON. ∴点O在∠BAD的平分线上.(2),侧面AB1和侧面DC1的面积都等于4=6,侧面AD1和侧面BC1的面积都等于5=7.5,又ABAD,两底面面积都等于4=20,平行六面体的表面积为2(6+7.5)+20=47.[例2] 如图,A1B1C1-ABC是直三棱柱,过点A1、B、C1的平面和平面ABC的交线记作.(1)判定直线A1C1和的位置关系,并加以证明;(2)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线的距离.[题解](1)根据棱柱的定义知平面A1B1C1和平面ABC平行.由题设知直线A1C1=平面A1B1C1∩平面A1BC1,直线=平面A1BC1∩平面ABC.根据两平面平行的性质定理有∥A1C1.(2)解法一:过点A1作A1E⊥于E,则A1E的长为点A1到l的距离.连结AE.由直棱柱的定义知A1A⊥平面ABC.∴ 直线AE是直线A1E在平面ABC上的射影.又 在平面ABC上,根据三垂线定理的逆定理有AE⊥.由棱柱的定义知A1C1∥AC,又∥A1C1, ∥AC.作BD⊥AC于D,则BD是Rt△ABC斜边AC上的高,且BD=AE,从而AE=BD=在Rt△A1AE中,∵ A1A=1,∠A1AE=90°,故点A1到直线的距离为.解法二:同解法一得∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt△ABC∽Rt△BEA,AE:BC=AB:AC,, 以下同解法一.[例3] 如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.[题解](1)∵A1B1C1-ABC是正三棱柱, ∴四边形B1BCC1是矩形.连结B1C交BC1于E,则B1E=EC.连结DE.在△AB1C中,∵AD=DC,∴DE∥AB1.又平面DBC1, DE平面DBC1, ∴AB1∥平面DBC1.(2)作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连结EF,则EF是ED在平面B1BCC1上的射影.∵AB1⊥BC1,由(1)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,∴∠DEF 是二面角α的平面角.设AC=1, 则DC=∵△ABC是正三角形,∴在Rt△DCF中,CF=取BC中点G.∵EB=EC,∴EG⊥BC. 在Rt△BEF中,AC=1,又BF=BC-FC=, GF=,, 即EF=.∴∠DEF=45°. 故二面角α为45°.概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥……棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示.例如,棱锥S-ABCDE,或棱锥S-AC.正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥.正棱锥的性质:(1)各侧棱相等,各侧面是全等的等腰三角形;(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。
高中立体几何基础知识点全集(图文并茂)
高中立体几何基础知识点全集(图文并茂)立体几何知识点整理 2. 线面平行:姓名: 方法一:用线线平行实现。
一、直线和平面的三种位置关系:1.线面平行lim lm⊂aI=a}⇒IBa符号表示:2.线面相交方法二:用面面平行实现。
α//βI⊂β⇒Iα符号表示:3.线在面内符号表示:方法三:用平面法向量实现。
若n为平面α的一个法向量。
⃗⃗且/ɑα.则111α. 3. 面面平行:二. 平行关系:方法一:用线线平行实现。
1. 线线平行:方法一:用线面平行实现。
lIIaI ⇒lIm方法二:用面面平行实现。
方法三:用线面垂直实现。
1//rm∥m'l. m=β且相交 ⇒α∥βl',m'cα且相交方法二:用线面平行实现。
1/1am//α ⇒α∥β 1. m ⊂β且相交)三.垂直关系:1.线面垂直:若/⊥α,m⊥α,则|∥m.方法四:用向量方法:若向量i 和向量 ⃗共线且1. m 不重合,则|//m 。
方法一:用线线垂直实现。
IA方法二:用面面垂直实现。
2.面面垂直:方法一:用线面垂直实现。
方法二:计算所成二面角为直角。
3. 线线重直:方法一:用线面垂直实现。
方法二:三重线定理及其逆定理。
方法三:用向量方法:若向量/和向量⃗的数量积为0,则/⊥m.三.夹角问题。
(一)异面直线所成的角:(1) 范围: (0°,90°](2)求法:方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理)(计算结果可能是其补角)方法二:向量法。
转化为向量的夹角(二)线面角(1)定义:直线/ 上任取一点P(交点除外),作PO⊥α于O,连结AO,则AO为斜线PA 在面α内的射影,∠PAO(图中θ)为直线t与面α所成的角。
(2)范围: [0°.90°]当θ=0°时, 1cα或1//α当θ=90°时, 1⊥α(3)求法:方法一:定义法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 简单几何体知识网络简单几何体结构简图画龙点晴 概念棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。
两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.棱柱的分类: 按侧棱与底面的关系,棱柱可分为: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱. 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱. 正棱柱:底面是正多边形的直棱柱叫做正棱柱.按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱……棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱可表示为:棱柱ABCDE-A /B /C /D /E /,或棱柱AC /. 棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形; (3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。
平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.正方体: 棱长都相等的长方体叫做正方体.公式棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C 与高h 的乘积, 即Ch S =直棱柱, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C 1与侧棱长l 的乘积, 即l C S ⋅=1斜棱柱侧, 棱柱的全面积等于侧面积与两底面积的和.[活用实例][例1] 如图,在平行六面体ABCD-A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π, (1)求证:顶点A1在底面ABCD 的射影O 在∠BAD 的平分线上;(2)求这个平行六面体的表面积.[题解](1) 如图,连结A 1O,则A 1O ⊥底面ABCD. 作OM ⊥AB 交AB 于M,作ON ⊥AD 交AD 于N,连结A 1M,A 1N. 由三垂线定理得A 1M ⊥AB,A 1N ⊥AD.∵ ∠A 1AM=∠A 1AN,∴ Rt △A 1NA ≌Rt △A 1MA.∴ A 1M=A 1N.∴ OM=ON. ∴ 点O 在∠BAD 的平分线上.(2),232133cos1=⨯==πAA AM 23=∴AN , ∴侧面AB 1和侧面DC 1的面积都等于423⨯=6,侧面AD 1和侧面BC 1的面积都等于523⨯=7.5, 又AB ⊥AD ,∴两底面面积都等于45⨯=20,∴平行六面体的表面积为2(6+7.5)+20=47. [例2] 如图,A 1B 1C 1-ABC 是直三棱柱,过点A 1、B 、C 1的平面和平面ABC 的交线记作l . (1)判定直线A 1C 1和l 的位置关系,并加以证明;(2)若A 1A=1,AB=4,BC=3,∠ABC=90°,求顶点A 1到直线l 的距离.[题解](1)根据棱柱的定义知平面A 1B 1C 1和平面ABC 平行.由题设知直线A 1C 1=平面A 1B 1C 1∩平面A 1BC 1,直线l =平面A 1BC 1∩平面ABC. 根据两平面平行的性质定理有l ∥A 1C 1.(2)解法一:过点A 1作A 1E ⊥l 于E,则A 1E 的长为点A 1到l 的距离. 连结AE.由直棱柱的定义知A 1A ⊥平面ABC. ∴ 直线AE 是直线A 1E 在平面ABC 上的射影.又 l 在平面ABC 上,根据三垂线定理的逆定理有AE ⊥l . 由棱柱的定义知A 1C 1∥AC,又l ∥A 1C 1,∴ l ∥AC. 作BD ⊥AC 于D,则BD 是Rt △ABC 斜边AC 上的高,且BD=AE, 从而AE=BD=.512534=⨯=⨯AC BC AB在Rt △A 1AE 中,∵ A 1A=1,∠A1AE=90°,.5131)512(22121=+=+=∴A A AE E A 故点A 1到直线l 的距离为513. 解法二:同解法一得l ∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt △ABC ∽Rt △BEA,AE:BC=AB:AC,ACABBC AE ⨯=∴ , 以下同解法一. [例3] 如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数.[题解](1)∵A 1B 1C 1-ABC 是正三棱柱, ∴四边形B 1BCC 1是矩形. 连结B 1C 交BC 1于E,则B 1E=EC.连结DE. 在△AB1C 中,∵AD=DC,∴DE ∥AB 1.又⊄1AB 平面DBC 1, DE ⊂平面DBC 1, ∴AB 1∥平面DBC 1.(2)作DF ⊥BC,垂足为F,则DF ⊥面B 1BCC 1,连结EF,则EF 是ED 在平面B 1BCC 1上的射影.∵AB 1⊥BC 1,由(1)知AB 1∥DE,∴DE ⊥BC 1,则BC 1⊥EF,∴∠DEF 是二面角α的平面角. 设AC=1, 则DC=.21∵△ABC 是正三角形,∴在Rt △DCF 中, ,43sin =⋅=C DC DF CF=.41cos =⋅C DC 取BC 中点G.∵EB=EC,∴EG ⊥BC. 在Rt △BEF 中,AC=1, ,2GF BF EF ⋅= 又BF=BC-FC=43, GF=41, 16341432=⋅=∴EF , 即EF=43..14343tan ===∠∴EF DF DEF ∴∠DEF=45°. 故二面角α为45°.概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥……棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示. 例如,棱锥S-ABCDE,或棱锥S-AC.正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥. 正棱锥的性质:(1)各侧棱相等,各侧面是全等的等腰三角形;(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。
一般棱锥的性质: 如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于等于截得的棱锥的高和已知棱锥的高的平方比;截得棱锥与已知棱锥的侧面积之比也等于它们相应的高的平方比。
棱锥的中截面: 过棱锥的高的中点并且平行于底面的截面叫做棱锥的中截面.公式正棱锥的侧面积和全面积: 正棱锥的侧面积等于底面周长C 与斜高/h 乘积的一半. 即/21h C S ⋅=正棱锥侧. [活用实例][例4] 如图,在三棱锥S-ABC 中,S 在底面上的射影N 位于底面的高CD 上;M 是侧棱SC 上的一点,使截面MAB 与底面所成的角等于∠NSC. 求证:SC 垂直于截面MAB.[题解1]因为SN 是底面的垂线,NC 是斜线SC 在底面上的射影,AB ⊥NC,所以AB ⊥SC(据三垂线定理). 连结DM.因为AB ⊥DC,AB ⊥SC,所以AB 垂直于DC 和SC 所决定的平面. 又因DM 在这平面内,所以AB ⊥DM.∴∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC.在△MDC 和△NSC 中,因为∠MDC=∠NSC,∠DCS 是公共角,所以∠DMC=∠SNC=90°从而DM ⊥SC. 从AB ⊥SC,DM ⊥SC,可知SC ⊥截面MAB.[题解2]连结DS,DM ,因为SN 是底面的垂线,AB ⊥DN,所以AB ⊥DS(据三垂线定理).从而AB ⊥平面SDC.因SC,DM 都在平面SDC 内,故AB ⊥SC,AB ⊥DM.由AB ⊥DM,AB ⊥DC,可知∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC. 以下同证法一,故SC ⊥截面MAB.[题解3]连结DM,DS. 因为M,N 分别在△SDC 的两边上,所以SN 和DM 都在平面内,且相交于一点P. 又因PN 是底面的垂线,AB ⊥DN,所以AB ⊥DM(据三垂线定理). ∴∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC.又∠MDC=∠NSC,∠DCS 是△DCM 和△SCN 的公共角,故∠DMC=∠SNC=90°.从而DM ⊥SC. 从AB ⊥DM,AB ⊥DC,可知AB ⊥平面MDC.因为SC 是平面MDC 内的直线,所以AB ⊥SC. 从AB ⊥SC,DM ⊥SC,可知SC ⊥截面MAB.[例5] 如图,正四棱锥的棱长和底面边长均为a,求:(1)侧面与底面所成角α的余弦; (2)相邻两个侧面所成二面角β的余弦。
[题解](1)作SO ⊥面ABCD 于O ,作SE ⊥BC 于E ,连接OE ,则BC ⊥OE ,∠∴SEO=α, .33cos ,21,23==∴==SE OE a OE a SE α (2)设SA 的中点为F ,连接BF 、DF ,∆ SAB 和∆SAD 都是正三角形, .,,β=∠∴⊥⊥∴BFD SA DF SA BF.312cos ,2,23222-=⋅⋅-+=∴===BF DF BD BF DF a BD a DF BF β 概念多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.两个面的公共边叫做多面体的棱.若干个面的公共顶点叫做多面体的顶点.凸多面体: 把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.正多面体:每个面都是有相同边数的正多边形,且以每个顶点这其一端都有相同数目的棱的凸多面体叫做正多面体.正多面体的种类: 正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形,正六面体的面是正方形,正十二面体的面是正五边形。