圆锥曲线压轴习题锦集

合集下载

(完整word版)高考数学圆锥曲线压轴题分类训练(精华)

(完整word版)高考数学圆锥曲线压轴题分类训练(精华)

卓越个性化教案 GFJW0901学生姓名 年级 高三 授课时间 教师姓名 课时02-圆锥曲线压轴题-分类训练【知识点】1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离0022Ax By C d A B++=+ ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2121AB kx x =+-221212(1)[()4]k x x x x =++- 或12211AB y y k=+- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且 距离式方程:2222()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅< 距离式方程:2222|()()|2x c y x c y a ++--+= (3)抛物线22(0)y px p =>(4)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:3.方法(1)点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba43-(2)联立消元法:设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。

高中数学圆锥曲线压轴题大全

高中数学圆锥曲线压轴题大全

高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。

【高考数学压轴题】圆锥曲线压轴题综合训练题精品(含答案)1

【高考数学压轴题】圆锥曲线压轴题综合训练题精品(含答案)1
7.(上海市静安区2017-2018学年度第一学期高中教学质量检测高三数学)设双曲线 : , 为其左、右两个焦点.
(1)设 为坐标原点, 为双曲线 的右支上任意一点,求 的取值范围;
(2)若动点 与双曲线 的两个焦点 的距离之和为定值,且 的最小值为 ,求动点 的轨迹方程.
8.已知椭圆 的离心率是 .
(1)求抛物线C的方程;
(2)记抛物线C的准线与x轴的交点为N,试问是否存在常数λ∈R,使得 且 都成立?若存在,求出实数λ的值;若不存在,请说明理由.
19.如图,P是抛物线E:y2=4x上的动点,F是抛物线E的焦点.
(1)求|PF|的最小值;
(2)点B,C在y轴上,直线PB,PC与圆(x﹣1)2+y2=1相切.当|PF|∈[4,6]时,求|BC|的最小值.
【高考数学压轴题】圆锥曲线压轴题综合训练题精品(含答案)1
未命名
一、解答题
1.已知离心率为 的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为2 .
(1)求椭圆及双曲线的方程;
(2)设椭圆的左、右顶点分别为A,B,在第二象限内取双曲线上一点P,连接BP交椭圆于点M,连接PA并延长交椭圆于点N,若 ,求四边形ANBM的面积.
20.
已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
(ii)求 面积的最大值.
(3)直线 的斜率存在且不为0时,试问 轴上是否存在一点 使得 ,若存在,求出 点坐标;若不存在,请说明理由.

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。

圆锥曲线大题压轴练-高考数学重点专题冲刺演练(原卷版)

圆锥曲线大题压轴练-高考数学重点专题冲刺演练(原卷版)

圆锥曲线大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·广东·统考一模)已知点A ,点B 和点C 为椭圆2222:1(0)x y C a b a b+=>>上不同的三个点.当点A ,点B 和点C 为椭圆的顶点时,△ABC 恰好是边长为2的等边三角形.(1)求椭圆C 标准方程;(2)若O 为原点,且满足0OA OB OC ++= ,求ABC 的面积.2.(2023·广东广州·统考一模)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线l :(1)(0)y k x k =-≥与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为k '(O 为坐标原点),△APQ 的面积为1S .BPQ V 的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.3.(2023·广东湛江·统考一模)已知12,F F 分别为椭圆()2222:10x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.4.(2023·广东深圳·深圳中学校联考模拟预测)已知双曲线C 以20x =为渐近线,其上焦点F 坐标为()0,3.(1)求双曲线C 的方程;(2)不平行于坐标轴的直线l 过F 与双曲线C 交于,P Q 两点,PQ 的中垂线交y 轴于点T ,问TF PQ 是否为定值,若是,请求出定值,若不是,请说明理由.5.(2023·江苏连云港·统考模拟预测)已知椭圆E :()222210x y a b a b+=>>的焦距为且经过点12P ⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程:(2)过椭圆E 的左焦点1F 作直线l 与椭圆E 相交于A ,B 两点(点A 在x 轴上方),过点A ,B 分别作椭圆的切线,两切线交于点M ,求1ABMF 的最大值.6.(2023·江苏南通·校联考模拟预测)已知A ,B 是椭圆22:143x y C +=上关于坐标原点O 对称的两点,点()4,0D ,连结DA 并延长交C 于点M ,连结DB 交C 于点N .(1)若A 为线段DM 的中点,求点A 的坐标;(2)设DMN ,DAB 的面积分别为12,S S ,若1237S S =,求线段OA 的长.7.(2023·辽宁·哈尔滨三中校联考一模)已知双曲线C :()222210,0x y a b a b-=>>过点(3,A,且渐近线方程为0x =.(1)求双曲线C 的方程;(2)如图,过点()10B ,的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求PB BQ的值.8.(2023·江苏·二模)如图,过y 轴左侧的一点P 作两条直线分别与抛物线24y x =交于,A C 和,B D 四点,并且满足3PC PA = ,3PD PB =.(1)设CD 的中点为M ,证明PM 垂直于y 轴.(2)若P 是双曲线2214x y -=左支上的一点,求PAB 面积的最小值.9.(2023·河北邢台·校联考模拟预测)已知双曲线()2222:10,0x y E a b a b-=>>过点()2,2P ,且P 与E 的两个顶点连线的斜率之和为4.(1)求E 的方程;(2)过点()1,0M 的直线l 与双曲线E 交于A ,B 两点(异于点P ).设直线BC 与x 轴垂直且交直线AP 于点C ,若线段BC 的中点为N ,证明:直线MN 的斜率为定值,并求该定值.10.(2023·山东·日照一中校考模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,斜率为3-的直线l 与双曲线C 交于,A B 两点,点(4,M -在双曲线C 上,且1224MF MF ⋅=.(1)求12MF F △的面积;(2)若0'+= OB OB (O 为坐标原点),点()31N ,,记直线,'NA NB 的斜率分别为12,k k ,问:12k k ⋅是否为定值?若是,求出该定值;若不是,请说明理由.11.(2023·山东潍坊·统考一模)已知椭圆2222:1(0)x y E a b a b+=>>的焦距为率为2,直线():1(0)l y k x k =+>与E 交于不同的两点,M N .(1)求E 的方程;(2)设点()1,0P ,直线,PM PN 与E 分别交于点,C D .①判段直线CD 是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由:②记直线,CD MN 的倾斜角分别为,αβ,当αβ-取得最大值时,求直线CD 的方程.12.(2023·山东·河北衡水中学统考一模)在平面直角坐标系中,已知点P 到点F的距离与到直线x =(1)求点P 的轨迹C 的方程;(2)过点(0,1)且斜率为122k k ⎛⎫≤≤ ⎪⎝⎭的直线l 与C 交于A ,B 两点,与x 轴交于点M ,线段AB 的垂直平分线与x 轴交于点N ,求||||AB MN 的取值范围.13.(2023·湖北·统考模拟预测)已知椭圆22195x y +=的右顶点为A ,左焦点为F ,过点F 作斜率不为零的直线l 交椭圆于,M N 两点,连接AM ,AN 分别交直线92x =-于,P Q 两点,过点F 且垂直于MN 的直线交直线92x =-于点R .(1)求证:点R 为线段PQ 的中点;(2)记MPR △,MRN △,NRQ △的面积分别为1S ,2S ,3S ,试探究:是否存在实数λ使得213S S S λ=+?若存在,请求出实数λ的值;若不存在,请说明理由.14.(2023·江苏·统考一模)已知双曲线C :()22221,0x y a b a b-=>,直线1l :2y x =+C 仅有一个公共点.(1)求双曲线C 的方程(2)设双曲线C 的左顶点为A ,直线2l 平行于1l ,且交双曲线C 于M ,N 两点,求证:AMN 的垂心在双曲线C 上.15.(2023·湖南·模拟预测)已知椭圆2221x y aΓ+=:,(1)a >的上、下顶点是1B ,2B ,左,右顶点是1A ,2A ,点D 在椭圆Γ内,点M 在椭圆Γ上,在四边形12MB DB 中,若11MB B D ⊥,22MB B D ⊥,且四边形12MB DB 面积的最大值为52.(1)求a 的值.(2)已知直线1x my =+交椭圆Γ于P ,Q 两点,直线1A P 与2A Q 交于点S ,证明:当m 变化时,存在不同于2A 的定点T ,使得2A S ST =.16.(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y W a b a b +=>>的离心率为2,椭圆W 上的点与点()0,2P 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线4x =上,点B 关于x 轴的对称点为1B ,直线1,PB PB 分别交椭圆W 于,C D 两点(不同于P 点).求证:直线CD 过定点.17.(2023·湖南郴州·统考三模)已知椭圆方程为22122:1(0)x y C a b a b+=>>,过椭圆的1C的焦点12,F F 分别做x 轴的垂线与椭圆交于四点,依次连接这四个点所得的四边形恰好为正方形.(1)求该椭圆1C 的离心率.(2)若椭圆1C 的顶点恰好是双曲线2C 焦点,椭圆1C 的焦点恰好是双曲线2C 顶点,设椭圆1C 的焦点12,F F ,双曲线2C 的焦点12,,F F A ''为1C 与2C 的一个公共点,记12F AF ∠α=,12F AF ∠β''=,求cos cos αβ⋅的值.18.(2023·湖南岳阳·统考二模)已知点()0,2P -,点,A B 分别为椭圆2222:1(0)x y C a b a b +=>>的左、右顶点,直线BP 交C 于点,Q ABP 是等腰直角三角形,且32PQ QB = .(1)过椭圆C 的上顶点M 引两条互相垂直的直线12,l l ,记C 上任一点N 到两直线12,l l 的距离分别为12,d d ,求2212d d +的最大值;(2)过点()4,0H 且斜率不为零的直线与椭圆C 相交于,E F 两点试问:是否存在x 轴上的定点G ,使得EGO FGH ∠∠=.若存在,求出定点G 的坐标;若不存在,说明理由.19.(2023·浙江·校联考模拟预测)设双曲线2222:1x y C a b-=的右焦点为()3,0F ,F 到其中一条渐近线的距离为2.(1)求双曲线C 的方程;(2)过F 的直线交曲线C 于A ,B 两点(其中A 在第一象限),交直线53x =于点M ,(i )求||||||||AF BM AM BF ⋅⋅的值;(ii )过M 平行于OA 的直线分别交直线OB 、x 轴于P ,Q ,证明:MP PQ =.20.(2023·浙江·校联考三模)设双曲线()2222:10,0x y C a b a b-=>>的右焦点为),右焦点到双曲线的渐近线的距离为1.(1)求双曲线C 的方程;(2)若()()2,1,2,1A B -,点C 在线段AB 上(不含端点),过点C 分别作双曲线两支的切线,切点分别为,P Q .连接PQ ,并过PQ 的中点F 分别作双曲线两支的切线,切点分别为,D E ,求DEF 面积的最小值.21.(2023·广东·校联考模拟预测)已知椭圆C :()222210x y a b a b+=>>的短轴长为2,离心率为2.点()4,2P ,直线l :210x y +-=.(1)证明:直线l 与椭圆C 相交于两点,且每一点与P 的连线都是椭圆的切线;(2)若过点P 的直线与椭圆交于,A B 两点,与直线l 交于点Q ,求证:PA QB PB AQ ⋅=⋅ .22.(2023·江苏南通·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率为2,焦距为2,过E 的左焦点F 的直线l 与E 相交于A 、B 两点,与直线2x =-相交于点M .(1)若()2,1M --,求证:MA BF MB AF ⋅=⋅;(2)过点F 作直线l 的垂线m 与E 相交于C 、D 两点,与直线2x =-相交于点N .求1111MA MB NC ND+++的最大值.23.(2023·河北衡水·河北衡水中学校考模拟预测)已知抛物线22y px =()0p >,点1P 为抛物线焦点.过点1P 作一条斜率为正的直线l 从下至上依次交抛物线于点1A 与点1B ,过点1B 作与l 斜率互为相反数的直线分别交x 轴和抛物线于2P 、2A .(1)若直线12A A 斜率为k ,证明抛物线在点1B 处切线斜率为k -;(2)过点t A ()*N ,>1t t ∈作直线分别交x 轴和抛物线于21t P -、t B ,过点t B 作直线分别交x 轴和抛物线于2t P 、1t A +,且*N t ∀∈,直线t t A B 斜率与直线1t t A B +斜率互为相反数.证明数列{}1n n P P + 为等差数列.24.(2023·河北·河北衡水中学校考模拟预测)椭圆()222210x y a b a b+=>>的上、下顶点分别为A ,B .在椭圆上任取两点C ,D ,直线CD 斜率存在且不过A ,B .BC 交AD 于1P ,AC 交BD 于2P ,直线CD 交y 轴于R ,直线AC 交x 轴于1Q ,直线BD 交x 轴于2Q .(1)若a ,b 为已知量,求1OR OP ⋅ ;(2)分别作1P E ,12Q F P B ⊥于E ,F ,求112112PE Q Q Q F PP ⋅⋅ .25.(2023·福建漳州·统考三模)已知椭圆C 的中心为坐标原点O ,对称轴为x 轴、y 轴,且点和点)2在椭圆C 上,椭圆的左顶点与抛物线()2:20y px p Γ=>的焦点F 的距离为4.(1)求椭圆C 和抛物线Γ的方程;(2)直线():0l y kx m k =+≠与抛物线Γ变于,P Q 两点,与椭圆C 交于,M N 两点.(ⅰ)若m k =,抛物线Γ在点,P Q 处的切线交于点S ,求证:22PF SQ QF SP ⋅=⋅;(ⅱ)若2m k =-,是否存在定点()0,0T x ,使得直线,MT NT 的倾斜角互补?若存在,求出0x 的值;若不存在,请说明理由.26.(2023·山东·沂水县第一中学校联考模拟预测)已知曲线22:163x y E +=,直线:l y x m =+与曲线E 交于y 轴右侧不同的两点,A B .(1)求m 的取值范围;(2)已知点P 的坐标为()2,1,试问:APB △的内心是否恒在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.27.(2023·湖北·宜昌市一中校联考模拟预测)设点A 为双曲线22:13y C x -=的左顶点,直线l 经过点(1,2)-,与C 交于不与点A 重合的两点P ,Q .(1)求直线,AP AQ 的斜率之和;(2)设在射线AQ 上的点R 满足APQ ARP ∠=∠,求直线PR 的斜率的最大值.28.(2023·湖南·模拟预测)已知椭圆C :()222210x y a b a b+=>>的上顶点为B ,O 为坐标原点,,02a P ⎛⎫- ⎪⎝⎭为椭圆C 的长轴上的一点,若45BPO ∠=︒,且△OPB 的面积为12.(1)求椭圆C 的标准方程;(2)椭圆C 与x 轴负半轴交于点A ,过点A 的直线AM ,AN 分别与椭圆C 交于M ,N 两点,直线AM ,AN 的斜率分别为AM k ,AN k ,且112AM AN k k ⋅=-,求证:直线MN 过定点,并求出该定点坐标,求出△AMN 面积的最大值.29.(2023·湖南长沙·湖南师大附中校考一模)已知双曲线2222:1(0)x y C a b a b-=>>的一个焦点为()2,0,F O 为坐标原点,过点F 作直线l 与一条渐近线垂直,垂足为A ,与另一条渐近线相交于点B ,且,A B 都在y 轴右侧,OA OB +=(1)求双曲线C 的方程;(2)若直线1l 与双曲线C 的右支相切,切点为1,P l 与直线23:2l x =交于点Q ,试探究以线段PQ 为直径的圆是否过x 轴上的定点.30.(2023·浙江温州·统考二模)已知点12,F F 分别是双曲线2212:C x y -=的左右焦点,过2F 的直线交双曲线右支于,P A 两点,点P 在第一象限.(1)求点P 横坐标的取值范围;(2)线段1PF 交圆222:(2)8C x y ++=于点B ,记2211,,PF B AF F PAF 的面积分别为12,,S S S ,求12S S S S +的最小值.。

圆锥曲线压轴题-椭圆压轴题大全

圆锥曲线压轴题-椭圆压轴题大全

试卷第1页,总72页一、解答题(题型注释)1.(本小题满分12分)F ,过点F 且与x O 为坐标原点.(Ⅰ)求椭圆C 的方程(Ⅱ)如图所示,设直线l 与圆C 同时相切,切点分别为A ,B ,求|AB|的最大值.【答案】(1(2 【解析】试题分析:(1,以及222c b a +=,由此能求出椭圆方程;(2)联立椭圆方程与直线方程,令△=0,解得点B ,由勾股定理可知,222||||r OB AB -=,结合已知条件可以推导出||AB 的最大值为试题解析:(1)设F (C ,0)F 且与x 轴垂直的直线方程为x=c ,解得b =1,C 4分 (2)依题意直线l 的斜线存在,设直线m kx y l +=:将22222(12)422022y kx m k x kmx m x y =+⎧+++-=⎨+=⎩联立得,令△=0,2(1 OB +∴=ml∴=直线与圆由21m=+222AB OB r∴=-=11≤AB的最大值为.已知中心在坐标原点,焦点在0)(0,2)(Ⅰ)此问是待定系数法求椭圆的标准方程第一步先设椭圆的标准方程是试卷第3页,总72页三步,将点C 的坐标代入椭圆方程,第四步,根据直线与圆相切,得到k 与t 的关系,消参后求λ的范围.试题解析:解:(Ⅰ)由已知得解得 2286a b ⎧=⎪⎨=⎪⎩所以椭圆的标准方程为(Ⅱ) 因为直线l :y kx t =+与圆22(1)1x y -+=相切把t kx y +=代入: 222(34)8(424)0k x ktx t +++-=因为,),(2121y y x x OC ++=λ, 又因为点C 在椭圆上,因为02>t ,所以 所以202λ<<,所以 λ的取值范围为0)(0,2)考点:1.椭圆的标准方程;2.直线与椭圆相交的综合问题.3.(本小题满分14(0a b >>)经过点试卷第4页,总72页左、右焦点分别为()1F 1,0-、()2F 1,0,过椭圆的右焦点2F 作两条互相垂直的直线,分别交椭圆于点A、B 及C 、D . (1)求椭圆的方程; (2 (3 【答案】(1(2(3【解析】试题分析:(1)通过椭圆的定义直接计算可得结论; (2)椭圆的右焦点为20(1)F ,,分直线AB 的斜率不存在与存在两种情况讨论即可; (3)通过然后再利用基本不等式计算即可求出结果.试题解析:解:(1)法一: 由椭圆的定义可知2a ∴=由1c =得法二:由已知得,得2243a b ⎧=⎨=⎩,试卷第5页,总72页xyF 1F 2DC BAO(2)椭圆的右焦点为2(1,0)F ,分两种情况讨论如下:1°当直线AB 的斜率不存在时,AB:1x=,则 CD:0y =.此时||3AB =,||4CD =,2°当直线AB 的斜率存在时,设AB : (1)(0)y k x k =-≠,则 CD又设点1122(,),(,)A x y B x y .联立方程组22(1),3412,y k x x y =-⎧⎨+=⎩消去y 并化简得2222(43)84120k xk x k +-+-=, 所以由题知,直线CD 的斜率为 (3)解:由(II试卷第6页,总72页所以,即||3,||4AB CD ==时取等号考点:1.椭圆方程;2.直线与椭圆的位置关系.4.(本小题满分1212,F F ,点在椭圆上,且2AF 与x 轴垂直。

圆锥曲线经典压轴题

圆锥曲线经典压轴题

圆锥曲线经典压轴题4.设)0(1),(),,(22222211>>=+b a bx xy y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅ay bx ay bx ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 6、设1F 、2F 分别是椭圆22154xy+=的左、右焦点.(Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 7、已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点- (i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.11.在直角坐标平面中,△ABC 的两个顶点为 A (0,-1),B (0, 1)平面内两点G 、M 同时满足①0GA GB GC ++= , ②||M A = ||M B = ||M C ③G M∥A B(1)求顶点C 的轨迹E 的方程(2)设P 、Q 、R 、N 都在曲线E 上 ,定点F 0) ,已知P F ∥F Q , R F ∥FN且P F ·R F= 0.求四边形PRQN 面积S 的最大值和最小值.20、已知圆M P N yx M 为圆点定点),0,5(,36)5(:22=++上的动点,点Q 在NP 上,点G 在MP上,且满足0,2=⋅=NP GQ NQ NP . (I )求点G 的轨迹C 的方程;(II )过点(2,0)作直线l ,与曲线C 交于A 、B 两点,O 是坐标原点,设,OB OA OS += 是否存在这样的直线l ,使四边形OASB 的对角线相等(即|OS|=|AB|)?若存在,求出直线l 的方程;若不存在,试说明理由.23.如图,已知直线l 与抛物线y x 42=相切于点P (2,1),且与x 轴交于点A ,O 为坐标原点,定点B 的坐标为(2,0).(I )若动点M 满足0||2=+⋅AM BM AB ,求点M 的轨迹C ;(II )若过点B 的直线l ′(斜率不等于零)与(I )中的轨迹C 交于不同的两点E 、F (E 在B 、F 之间),试求△OBE 与△OBF 面积之比的取值范围.29、已知椭圆W 的中心在原点,焦点在x轴上,离心率为3,两条准线间的距离为6. 椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C .(Ⅰ)求椭圆W 的方程;(Ⅱ)求证:CF FB λ=(λ∈R ); (Ⅲ)求MBC ∆面积S 的最大值.30、已知抛物线2:ax y C =,点P (1,-1)在抛物线C 上,过点P 作斜率为k 1、k 2的两条直线,分别交抛物线C 于异于点P 的两点A (x 1,y 1),B (x 2,y 2),且满足k 1+k 2=0. (I )求抛物线C 的焦点坐标;(II )若点M 满足MA BM =,求点M 的轨迹方程. 33.设1F ,2F 分别是椭圆C :2222162xymm+=(0)m >的左,右焦点.(1)当P C ∈,且210PF PF =,12||||8PF PF ⋅=时,求椭圆C 的左,右焦点1F 、2F .(2)1F 、2F 是(1)中的椭圆的左,右焦点,已知2F 的半径是1,过动点Q 的作2F 切线Q M ,使得1QF =(M 是切点),如下图.求动点36、已知椭圆C :22ax +22by =1(a >b >0)的离心率为36,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点。

圆锥曲线高考压轴题(精心整理)

圆锥曲线高考压轴题(精心整理)

A. 2: BB. 1: 2C. 1:D. 1: 3 园锥曲线单元检测卷迭様题(共10小陋)1. 椭圆ax2+by2=l 与直线y=l-x 交于A 、B 两点,过原点与銭段AB 中点的直线的斜率为车,则?的值为< ) 2 bA.更B.生C.距D.生 2 3 2 27 2. 点F 为椭圆W-J=l (a>b>0)的一个焦点,若棉圆上存在点A 使△AOF 为正三角形,那么棉圆的离心率为() A.亭 B.学 C.早 0. JJ-11 23. 已知P 是以F|, F2为焦点的棉圖(・>b>0)上的一点,若PFilPFj, tanZPF,F 24,则此神圖的码心率为() a l 戸 2A. -B. -C. -D.亞 2 3 3 3 4. 设F2是戏曲线力>°)的左、右两个焦点,若双曲线右支上存在一点P ,使(乔十折)•和=。

(0为坐a 1标原点),且1戶尸11 = 51”2|,则双曲线的离心率为( )A.罕B.「+lC.擊D.网5. 如圍所示,A, B, C 是双曲线打土=1 <*>0, b>0>上的三个点,AB 经过原点0, AC 经过右焦点F,若 \ [ / BF 丄AC 目|BF| = |CF|,则该双曲线的高心率是< ) \mA.罗B. J10C. ID. 3 6. 已知点F“ F2分别是双曲线W~4=l(a>0, d>0)的左、右焦点,ilFifi 垂直于x 轴的宜线与双曲线交于A, B 两点,若 a 2 b 2F2是锐角三角形,则该戏曲线高心率的取值范围是( )A. (1, JI) 7.设双曲线日-4=1仏>0, 6>0)的右焦点为F (c, 0),方程«x 2-bx-c=0的两支根分别为x“ x 2,则P (x o x 2A 2 b 2A.必在Sx 2-y 2=2内 C.必在Sx 2-y 2=Z± 8.已知点A (2, 0),抛物线C: x 2=4y 的焦点为F,射銭FA 与抛物銭C 相交于点II,与其准线相交于点N,则|FM|: |MN|9. 已知点A (-1, 0) , B (1, 0)及抛物线円2x,若抛物銭上点P 淆足iPAdlPBl,则m 的最大値为( )A. 3B. 2C.D. J2 B.(卩,2j) D. (1,1+41) B.必在圖x2+y2=2外D.以上三种情况都有可能10.已知抛物技C:y2=8x与点M (-2, 2> ,过C的焦点,且斜率为k的直线与C交于A, B两点,若島而“,则k=( )A. }B.手C. J2D. 2二.岫空as (共外顎)11.已知F|、F2分别为双曲线c:§-普=1的左、右焦点,点A€C,点H的坐标为(2, 0) , AM为匕Fg2的平分线,则IW12.已知F为双曲线C:己-己=1的左焦点,P, Q为C上的点,若PQ的长等于虚轴长的2倍,点A (5, 0)在线段PQ上,则^PQF9 16的周长为—.13.已知欄国C:^-+4=l(a>^>0)的高心率为尊,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若a2 b2 27? = 3 荷,则.14.设自姓x-3y-・=0 (-ifcO)与双曲线三书=1 <*>0, b>0)的两条渐近线分别交于点A, B.若点P (», 0)満足|PA|=|PB I ,则该双曲线的高心率是_.15.P是双曲线的右支上一点,M、N分别是圆(X-5) 2-y2=4和(x-5) 2_y2=i上的点,则| PM| | PN |的最大值9 16为—.三.《共6小第〉16.已知欄圜亨t/ = i上两个不同的点A, B关于且线尸皿对称. \f>co求实数■的取值范围;<2)求ZiAOB面积的最大值(0为坐标原点〉. -L——x17.如图,椭斷:1*4=1 (a>b>0)经过S A(O,-1),且离心率为手.A2b2 2< I )求棉圖E的方程;(ID经过点<1, 1> ,且斜牵为k的直线与椭應E交于不同的两点P, Q (均羟于点A〉,证明:直线AP 与AQ斜率之和为2.18.平面直甬坐标系xOy中,已知棉圈C; 4+4=1 (a>b>0>的离心率为华,目点(卩,在棉糜上. a1 b1 2 z< I >求棉圆c的方程j(I】)设椭圆E:土+J=1, P为椭圆C上任意一点,过点P的直线y=kx-m交椭圆E与A, B两点,射线P0交椭圆E于点Q. 4/ 4b2(I)求器的值;(D)求△"()面积的最大值.19.如圈,棉圖E:4+4=1(a>b>0)的陶心辜是孚,点P<o, 1)在短轴CD上,且无吨=T a2 b1 2(I)求欄圖E的方程;<D )设。

高考数学圆锥曲线压轴题精选精练4利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题(解析版)

高考数学圆锥曲线压轴题精选精练4利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题(解析版)

第4讲利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题参考答案与试题解析一.选择题(共10小题)1.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,||OF为半径的圆上,则直线PF的斜率是()A B C.D.2【解答】解:如图所示,设线段PF的中点为M,连接OM.设椭圆的右焦点为F',连接PF'.则//OM PF'.又||||2OM OF c===,11||||(22)122FM PF a c a c==-=-=.设MFOα∠=,在OMF∆中,2222121 cos2214α+-==⨯⨯,sinα∴tanα∴=.故选:A.2.如图,从双曲线22221(0,0)x ya ba b-=>>的左焦点F引圆222x y a+=的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则||||MO MT-与b a-的大小关系为()A .||||MO MT b a ->-B .||||MO MT b a -<-C .||||MO MT b a -=-D .以上三种可能都有【解答】解:将点P 置于第一象限. 设1F 是双曲线的右焦点,连接1PFM 、O 分别为FP 、1FF 的中点,11||||2MO PF ∴=. 又由双曲线定义得, 1||||2PF PF a -=,||FT b ==.故||||MO MT - 11||||||2PF MF FT =-+ 11(||||)||2PF PF FT =-+ b a =-.故选:C .3.从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -等于( )A .c a -B .b a -C .a b -D .c b -【解答】解:如图所示,设F '是双曲线的右焦点,连接PF '. 点M ,O 分别为线段PF ,FF '的中点, 由三角形中位线定理得到:111||||(||2)||222OM PF PF a PF a ='=-=- ||MF a =-,||||||||||OM MT MF MT a FT a ∴-=--=-,连接OT ,因为PT 是圆的切线,则OT FT ⊥,在Rt FOT ∆中,||OF c =,||OT a =,||FT b ∴==.||||OM MT b a ∴-=-.故选:B .4.设1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,点P 在双曲线上,已知1||PF 是2||PF 和12||F F 的等差中项,且12120F PF ∠=︒,则该双曲线的离心率为( )A .1B .32C .52D .72【解答】解:设1||PF m =,2||PF n =,由1||PF 是2||PF 和12||F F 的等差中项,12120F PF ∠=︒, 则点P 在C 的右支上,2m n a ∴-=,12122||||||PF PF F F =+,即22m n c =+, 22m c a ∴=-,24n c a =-,由余弦定理可知:22212111212||||||2||||cos F F PF PF PF PF F PF =+-∠,222(2)(22)(24)2(22)(24)cos120c c a c a c a c a ∴=-+----︒, 整理得222920c ac c -+=,由c e a=, 22970e e ∴-+=,由1e >,解得:72e =, 曲线的离心率为72, 故选:D .5.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且1F M MP ⊥,则||OM 的取值范围是( ) A .(0,)cB .(0,)aC .(,)b aD .(,)c a【解答】解:如图,延长2PF ,1F M ,交于N 点,PM 是12F PF ∠平分线,且1F M MP ⊥,1||||PN PF ∴=,M 为1F N 中点,连接OM ,O 为12F F 中点,M 为1F N 中点 2212111||||||||||||||||222OM F N PN PF PF PF ∴==-=- 在椭圆22221(0,0)x y a b xy a b+=>>≠中,设P 点坐标为0(x ,0)y则10||PF a ex =+,20||PF a ex =-,120000|||||||||2|2||PF PF a ex a ex ex e x ∴-=+-+==P 点在椭圆22221(0,0)x y a b xy a b+=>>≠上,0||(0x ∴∈,]a ,又当0||x a =时,1F M MP ⊥不成立,0||(0,)x a ∴∈ ||(0,)OM c ∴∈.故选:A .6.设1(,0)F c -,2(,0)F c 是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值b C .定值cD .不确定,随P 点位置变化而变化【解答】解:过点1F 作PQ 的垂线,垂足为Q ,交2PF 的延长线于M , 由三角形1PF M 为等腰三角形,可得Q 为1F M 的中点, 由双曲线的定义可得122||||||2PF PF F M a -==, 由三角形的中位线定理可得21||||2OQ F M a ==, 故选:A .7.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线:280l x y +-=与椭圆22:11612x y C +=相切于点P ,椭圆C 的焦点为1F ,2F ,由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线的方程为( ) A .210x y --=B .10x y -+=C .210x y -+=D .10x y --=【解答】解:由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线为法线,即与直线l 垂直的直线,而直线:280l x y +-=,所以设所求的直线的方程为20x y m -+=, 联立222803448x y x y +-=⎧⎨+=⎩,整理可得:2690y y -+=,解得3y =, 代入直线l 的方程可得2380x +⨯-=,可得2x =, 即(2,3)P ,将(2,3)P 代入所求的直线方程可得:2230m ⨯-+=,可得1m =-, 所以12F PF ∠的角平分线所在的直线的方程为210x y --=, 故选:A .8.根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为( )A .B .CD 【解答】解:由已知可得0(A x ,2)在第一象限,将点A 的坐标代入双曲线方程可得:20412x -=,解得0x =A 2), 又由双曲线的方程可得1a =,b,所以c =,则2F , 所以2||2AF =,且点A ,2F都在直线x =12||||OF OF =所以12122||tan ||F F F AF AF ∠==,所以1260F AF ∠=︒, 设2F AM ∠的角平分线为AN ,则21(18060)602F AN ∠=︒-︒⨯=︒, 所以直线AN 的倾斜角为150︒,所以直线的斜率为tan150︒= 故选:B .9.设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是( )AB .32C .52D1【解答】解:由双曲线的方程可知,渐近线为by x a=±,分别与30(0)x y m m -+=≠联立,解得(3am A a b --,)3bm a b --,(3am B a b -+,)3bma b+, AB ∴中点坐标为222(9ma b a -,2223)9mb b a -, 点(,0)P m 满足||||PA PB =, ∴22222230939mb b a ma mb a --=---, 2a b ∴=,c ∴,c e a ∴==. 故选:A .10.椭圆22221(0)x y a b a b +=>>的右焦点为(,0)F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是( )ABCD .35【解答】解:设(,)Q m n ,由题意可得2222221n c m c bn b m cc m n ab ⎧=-⎪-⎪+⎪=⋅⎨⎪⎪+=⎪⎩①②③,由①②可得:322c cb m a -=,222bc n a=,代入③可得:3222222222()()1c cb bc a a a b -+=, 解得2422(441)41e e e e -++=, 可得,62410e e +-=.即64422422210e e e e e -+-+-=, 可得242(21)(21)0e e e -++=解得e . 故选:B .二.多选题(共1小题)11.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,C 的一条渐近线l 的方程为y =,且1F 到l的距离为点P 为C 在第一象限上的点,点Q 的坐标为(2,0),PQ 为12F PF ∠( )A .双曲线的方程为221927x y -=B .12||2||PF PF = C .12||36PF PF += D .点P 到x【解答】解:渐近线l 的方程为y =,∴ba, 1(,0)F c -到l 的距离为|()|bc b ⋅-∴==, 3a ∴=,∴双曲线的标准方程为221927x y -=,即选项A 正确;26c a =+, 1(6,0)F ∴-,2(6,0)F ,由角分线定理知,1122||||82||||4PF FQ PF QF ===,即选项B 正确;由双曲线的定义知,12||||26PF PF a -==, 112||12||PF F F ∴==,2||6PF =,在等腰△12PF F 中,221121||312cos ||124PF PFF F F ∠===, 21sin PF F ∴∠= 222119||||cos 6642P x OF PF PF F ∴=-⋅∠=-⨯=, 221||sin 6P y PF PF F =⋅∠==D正确;||OP ∴=,12|||2|2||PF PF OP OP ∴+===C 错误.故选:ABD .三.填空题(共7小题)12.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则||PF = 2 ;P 点的坐标为 .【解答】解:椭圆22195x y +=的3a =,b 2c =,23e =设椭圆的右焦点为F ',连接PF ',线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得||2||4PF AO '==,设P 的坐标为(,)m n ,可得2343m -=,可得32m =-,n =,由||2||4PF AO '==,||642PF =-=,故答案为:2;3(2-.13.已知F 是抛物线2y x =的焦点,A 、B 是该抛物线上的两点,||||3AF BF +=,则线段AB 的中点到y 轴的距离为54. 【解答】解:由于F 是抛物线2y x =的焦点, 得1(4F ,0),准线方程14x =-,设1(A x ,1)y ,2(B x ,2)y , 1211||||344AF BF x x ∴+=+++=, 解得1252x x +=, ∴线段AB 的中点横坐标为54. ∴线段AB 的中点到y 轴的距离为54. 故答案为:54.14.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为. 【解答】解:设||AF a =,||BF b =,连接AF 、BF ,由抛物线定义,得||||AF AQ =,||||BF BP =,在梯形ABPQ 中,2||||||MN AQ BP a b =+=+. 由余弦定理得,22222||2cos120AB a b ab a b ab =+-︒=++, 配方得,22||()AB a b ab =+-, 又2()2a b ab +, 222213()()()()44a b ab a b a b a b ∴+-+-+=+得到3||()2AB a b +.∴1()||2||3(a b MN AB a b +=+, 即||||MN AB. .15.设抛物线22(0)y px p =>的焦点为F ,已知A ,B 为抛物线上的两个动点,且满足60AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 1 .【解答】解:设||AF a =,||BF b =, 由抛物线定义,得||||AF AQ =,||||BF BP = 在梯形ABPQ 中,2||||||MN AQ BP a b ∴=+=+. 由余弦定理得,22222||2cos60AB a b ab a b ab =+-︒=+- 配方得,22||()3AB a b ab =+-, 又()2a b ab + 2, 222231()3()()()44a b ab a b a b a b ∴+-+-+=+得到1||()2AB a b +. ∴||1||MN AB ,即||||MN AB 的最大值为1. 故答案为:116.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足90AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为. 【解答】解:设||AF a =,||BF b =, 由抛物线定义,得||||AF AQ =,||||BF BP = 在梯形ABPQ 中,2||||||MN AQ BP a b ∴=+=+. 由余弦定理得,22222||2cos90AB a b ab a b =+-︒=+,配方得,22||()2AB a b ab =+-, 又()2a b ab +2, 222211()2()()()22a b ab a b a b a b ∴+-+-+=+得到2||()2AB a b +.∴||22||MN AB ,即||||MN AB 的最大值为.17.已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = 6 .【解答】解:不妨设A 在双曲线的右支上AM 为12F AF ∠的平分线∴1122||||82||||4AF F M AF MF === 又12||||26AF AF a -== 解得2||6AF = 故答案为618.如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是 11(,)22- .【解答】解:由题意知,椭圆C 在点0(P x ,0)y 处的切线方程为00143xx yy +=,且0(2,2)x ∈-, ∴切线的斜率为034x y -,而12F PF ∠的角平分线的斜率为0y x t-, 又切线垂直于12F PF ∠的角平分线, 0000314x y y x t ∴-⋅=--,即011(42t x =∈-,1)2. 故答案为:1(2-,1)2.四.解答题(共8小题)19.已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,P 为椭圆E上除长轴端点外任意一点,△12PF F 周长为12. (1)求椭圆E 的方程;(2)作12F PF ∠的角平分线,与x 轴交于点(,0)Q m ,求实数m 的取值范围.【解答】解:(1)椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,2c ∴=,△12PF F 周长为12, 21248a ∴=-=,4a ∴=,则b =∴椭圆E 的方程为2211612x y +=.(2)在△12PF F 中,1||(,)PF a c a c ∈-+,即1||(2,6)PF ∈, PQ 为12F PF ∠的角平分线,∴1212||||||||QF QF PF PF =, 由合比性质得12121212||||||||21||||||||22QF QF QF QF c PF PF PF PF a +====+, 即111||||(1,3)2QF PF =∈, 1||(2)2QF m m =--=+,2(1,3)m ∴+∈, (1,1)m ∴∈-.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.【解答】解:(1)设所求椭圆方程为22221x y a b+=,则2||5F B =, 由椭圆的性质:12||||2BF BF a +=,所以12||||1(35)422BF BF a +==+=,b ===所以椭圆的方程为2211612x y +=.(2)由椭圆的方程为2211612x y +=,则1(2,0)F -,2(2,0)F .①存在直线8x =,使得P 到2F 和P 到直线x m =的距离之比为定值. 设椭圆上的点0(P x ,0)y ,则2||PF P 到直线x m =的距离0||d m x =-,所以20||PF d = 所以,当8m =时,2||12PF d =(定值). 即存在8m =,使得P 到2F 和P 到直线8x =的距离之比为定值12. ②设椭圆上的点0(P x ,0)y ,则001200,22y y k k x x ==+-, 又椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,证明如下:对于椭圆2211612x y +=,当0y >,y =y '=所以椭圆2211612x y +=在0(P x ,0)y处的切线方程为00)y y x x -=-,又由220011612x y +=,可以整理切线方程为:000003)()4x y y x x x x y -=-=--, 即切线方程为00004()3()y y y x x x -=--,即220000344348x x y y y x +=+=,也即0011612x x y y+=.所以椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,同理可证:当0y <,椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,综述:椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,所以在点0(P x ,0)y 处的切线l 的斜率为034x y -, 又由光学性质可知:直线PQ l ⊥,所以00314x k y -⋅=-,则0043yk x =. 所以0001000424(2)33y x x k k x y x ++=⋅=, 0002000424(2)33y x x k k x y x --=⋅=, 那么0012004(2)4(2)8333x x k k k k x x +-+=+=. 21.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>与直线:()l x m m R =∈,四点(3,1)-,(-,0),(3,1)-,(中有三个点在椭圆C 上,剩余一个点在直线l 上. ()I 求椭圆C 的方程;(Ⅱ)若动点P 在直线l 上,过P 作直线交椭圆C 于M ,N 两点,使得||||PM PN =,再过P 作直线l MN '⊥.证明直线l '恒过定点,并求出该定点的坐标.【解答】()I 解:由题意有3个点在椭圆C 上,根据椭圆的对称性,则点(3,1)-,(3,1)-一定在椭圆C 上, 即22911a b+=①,⋯(2分)若点(-0)在椭圆C上,则点(-,0)必为C 的左顶点,而3>,则点(-0)一定不在椭圆C 上,故点(C上,点(-,0)在直线l 上,⋯(4分)所以22331a b+=②, 联立①②可解得212a =,24b =,所以椭圆C 的方程为221124x y +=; ⋯(6分)(Ⅱ)证明:由()I 可得直线l的方程为x =-设(P -0)y,0(y ∈, 当00y ≠时,设1(M x ,1)y 、N 2(x ,2)y ,显然12x x ≠, 又PM PN =,即P 为线段MN 的中点,M ,N 代入椭圆方程相减可得直线MN⋯(10分) 又l MN '⊥,所以直线l '的方程为0y y x -=+,⋯(13分)即y x =, 显然l '恒过定点(,0),⋯(15分) 当00y =时,直线MN即x =-l '为x轴亦过点(,0); 综上所述,l '恒过定点(3-,0). ⋯(16分) 22.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,上顶点为B .Q 为抛物线224y x =的焦点,且10F B QB ⋅=,12120F F QF += (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过定点(0,4)P 的直线l 与椭圆C 交于M ,N 两点(M 在P ,N 之间),设直线l 的斜率为(0)k k >,在x 轴上是否存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形?若存在,求出实数m 的取值范围;若不存在,请说明理由.【解答】解:(Ⅰ)由已知(6,0)Q ,1F B QB ⊥, 1||46QF c c ==+,所以2c =.⋯(1分)在Rt △1F BQ 中,2F 为线段1F Q 的中点, 故2||24BF c ==,所以4a =.⋯(2分)于是椭圆C 的标准方程为2211612x y +=.(Ⅱ)设:4(0)l y kx k =+>,1(M x ,1)y ,2(N x ,2)y ,取MN 的中点为0(E x ,0)y . 假设存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形,则AE MN ⊥. 联立22224(43)3216011612y kx k x kx x y =+⎧⎪⇒+++=⎨+=⎪⎩△102k >⇒>. 1202232164343k k x x x k k --+=∴=++,00212443y kx k =+=+. 因为AE MN ⊥,所以1kAE k=-. 2221211644()34343434k k m m k k k k k k=-⨯--⇒=-=-++++.12k >,∴31443,34k k k k+∈+所以[m ∈. 23.在①离心率12e =,②椭圆C过点3(1,)2,③△12PF F中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、F ,过1F 且斜率为k 的直线l 交椭圆于P 、Q 两点,已知椭圆C的短轴长为_____. (1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:1||||PQ NF 为定值. 【解答】解:(1)选择①离心率12e =,可得12c e a ==,2b =,即b , 解得2a =,1c =,即有椭圆的方程为22143x y +=;选②椭圆C 过点3(1,)2,即有221914a b +=,又2b =,即b =2a =,即有椭圆的方程为22143x y +=;选③△12PF F可得P 位于短轴的端点时,取得最大值,且为1232c b =,即为bc=2b =,即b =,1c =,2a ==,即有椭圆的方程为22143x y +=;(2)证明:设直线l 的方程为(1)y k x =+,联立椭圆方程可得2222(34)84120k x k x k +++-=,设1(P x ,1)y ,2(Q x ,2)y ,可得2122834k x x k +=-+,212241234k x x k -=+,可得4222221212222264164812(1)||()41(34)3434k k k PQ x x x x kk k k -+=+-=+-=+++,设PQ 的中点为(,)H t s ,可得21224234x x k t k +==-+,2334ks k =+, 由题意可得2223134434HNN kk k k k x k +==---+,解得2234N k x k =-+, 可得221223(1)|||1|3434k k NF k k+=-+=++, 可得1||4||PQ NF =,即为定值.24.已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【解答】解:()I 四边形OABC 为菱形,B 是椭圆的右顶点(2,0)∴直线AC 是BO 的垂直平分线,可得AC 方程为1x =设(1,)A t ,得22114t +=,解之得t =(舍负)A ∴的坐标为,同理可得C 的坐标为(1,因此,||AC =,可得菱形OABC 的面积为1||||32S AC BO == ()II 四边形OABC 为菱形,||||OA OC ∴=,设||||(1)OA OC r r ==>,得A 、C 两点是圆222x y r +=与椭圆22:14x W y +=的公共点,解之得22314x r =-设A 、C 两点横坐标分别为1x 、2x ,可得A 、C 两点的横坐标满足 21231x x r ==-,或2131x r -且2231x r =-,①当2121x x r ==-时,可得若四边形OABC 为菱形,则B 点必定是右顶点(2,0);②若2131x r -且2231x r =-,则120x x +=,可得AC 的中点必定是原点O ,因此A 、O 、C 共线,可得不存在满足条件的菱形OABC 综上所述,可得当点B 不是W 的顶点时,四边形OABC 不可能为菱形.25.已知过抛物线2:2(0)C y px p =>的焦点,斜率为1(A x ,1)y 和2(B x ,212)()y x x <两点,且9||2AB =.(1)求抛物线C 的方程; (2)若抛物线C 的准线为l ,焦点为F ,点P 为直线:20m x y +-=上的动点,且点P 的横坐标为a ,试讨论当a 取不同的值时,圆心在抛物线C 上,与直线l 相切,且过点P 的圆的个数.【解答】解:(1)抛物线22y px =的焦点(2p F ,0),准线方程为2px =-∴直线AB 的方程为)2py x =-, 代入22y px =可得2281020x px p -+= 1254x x p ∴+=, 由抛物线的定义可知,1299||||||42AB AF BF x x p p =+=++==, 2p ∴=,∴抛物线C 的方程为24y x =;(2)设(,2)P a a -,则过P 与直线:20m x y +-=垂直的直线方程为22y x a =+-, 与24y x =联立,可得2244840x ax a a -+-+=,∴△22164(484)3216a a a a =--+=-, ∴△0>,12a >,满足条件的圆的个数是2个;△0=,12a =,满足条件的圆的个数是1个;△0<,12a <,满足条件的圆的个数是0个. 26.设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解答】解:(1)方法一:抛物线2:4C y x =的焦点为(1,0)F , 设直线AB 的方程为:(1)y k x =-,设1(A x ,1)y ,2(B x ,2)y ,则2(1)4y k x y x =-⎧⎨=⎩,整理得:22222(2)0k x k x k -++=,则21222(2)k x x k ++=,121x x =, 由21222(2)||28k AB x x p k+=++=+=,解得:21k =,则1k =, ∴直线l 的方程1y x =-;方法二:抛物线2:4C y x =的焦点为(1,0)F ,设直线AB 的倾斜角为θ,由抛物线的弦长公式2224||8p AB sin sin θθ===,解得:21sin 2θ=,4πθ∴=,则直线的斜率1k =,∴直线l 的方程1y x =-;(2)由(1)可得AB 的中点坐标为(3,2)D ,则直线AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+,设所求圆的圆心坐标为0(x ,0)y ,则00220005(1)(1)162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得:0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩,因此,所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.。

第三章 圆锥曲线的方程【压轴题专项训练】(解析版)

第三章 圆锥曲线的方程【压轴题专项训练】(解析版)

第三章圆锥曲线的方程【压轴题专项训练】一、单选题1.已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x 交于不同的两点A 、B ,若x 轴是∠APB 的角平分线,则直线l 一定过点A .(12,0)B .(1,0)C .(2,0)D .(-2,0)【答案】B 【分析】根据抛物线的对称性,分析得出直线过的顶点应该在x 轴上,再设出直线的方程,与抛物线方程联立,设出两交点的坐标,根据角分线的特征,得到所以AP 、BP 的斜率互为相反数,利用斜率坐标公式,结合韦达定理得到参数所满足的条件,最后求得结果.【详解】根据题意,直线的斜率不等于零,并且直线过的定点应该在x 轴上,设直线的方程为x ty m =+,与抛物线方程联立,消元得2220y ty m --=,设1122(,),(,)A x y B x y ,因为x 轴是∠APB 的角平分线,所以AP 、BP 的斜率互为相反数,所以1212011y yx x +=++,结合根与系数之间的关系,整理得出12122(1)()0ty y m y y +++=,即2(2)220t m tm t -++=,2(1)0t m -=,解得1m =,所以过定点(1,0),故选B.【点睛】该题考查的是有关直线过定点问题,涉及到的知识点有直线与抛物线的位置关系,韦达定理,角平分线的性质,两点斜率坐标公式,思路清晰是正确解题的关键.2.已知1F ,2F 分别为椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 是椭圆上位于第二象限内的点,延长1PF 交椭圆于点Q ,若2PF PQ ⊥,且2PF PQ =,则椭圆的离心率为A-B 1C D .2【答案】A 【分析】由题意可得2PQF 为等腰直角三角形,设|PF 2|=t ,运用椭圆的定义可得|PF 1|=2a ﹣t ,再由等腰直角三角形的性质和勾股定理,计算可得离心率.【详解】解:PF 2⊥PQ 且|PF 2|=|PQ |,可得△PQF 2为等腰直角三角形,设|PF2|=t ,则|QF 2|,由椭圆的定义可得|PF 1|=2a ﹣t,24t a=则t =2(2a ,在直角三角形PF 1F 2中,可得t 2+(2a ﹣t )2=4c 2,4(6﹣)a 2+(12﹣a 2=4c 2,化为c 2=(9﹣a 2,可得e =ca-.故选A.【点睛】本题考查椭圆的定义、方程和性质,主要是离心率的求法,考查等腰直角三角形的性质和勾股定理,以及运算求解能力.3.已知12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 2|>|PF 1|,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为()A .4B .6C.D .8【答案】D 【分析】由题意可得112||||2PF F F c ==,再设椭圆和双曲线得方程,再利用椭圆和双曲线的定义和离心率可得2133e e +的表达式,化简后再用均值不等式即可求解.【详解】由题意得:112||||2PF F F c ==,设椭圆方程为221122111(0)x y a b a b +=>>,双曲线方程为222222221(0,0)x y a b a b -=>>,又∵121212||||2,||||2PF PF a PF PF a +=-=.∴2122||+22,||22PF c a PF c a =-=,∴122a a c -=,则22112122393333e a a a c c e a c ca ++=+=2222229(2)3633c a a c a c ca c a ++==++2236683a cc a =++≥+=,当且仅当2233a c c a =,即23e =时等号成立.则2133e e +的最小值为8.故选:D 【点睛】考查椭圆和双曲的定义,焦半径公式以及离心率,其中将2133e e +化为22911(18)(218)833a c c a ++≥=为解题关键,注意取等号.4.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为()AB .3C .6D【答案】C 【分析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+,再利用均值不等式得到答案.【详解】设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F F F P c ==,又1211222,2F P F P a F P F P a +=-=,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=,()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++.,22222a cc a +≥=,当且仅当2222a c c a =时取等号,21e 2e 2∴+的最小值为6,故选:C .【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+是解题的关键,意在考查学生的计算能力.5.已知点A 是抛物线()2:20C x py p =>的对称轴与准线的交点,点F 为抛物线的焦点,过A 作抛物线的一条切线,切点为P,且满足PA =C 的方程为()A .28x y =B .24x y =C .22x y=D .2x y=【答案】C 【分析】本题首先可根据题意得出点0,2p A ⎛⎫- ⎪⎝⎭,然后设切线方程为2p y kx =-、切点为(),P P P x y ,通过联立抛物线与切线方程解得1k =±,最后对1k =、1k =-两种情况分别进行讨论,通过PA =.【详解】由题意可知,抛物线准线方程为2py =-,点0,2p A ⎛⎫- ⎪⎝⎭,切线斜率k 一定存在,设过点A 与抛物线相切的直线方程为2py kx =-,切点(),P P P x y ,联立抛物线与切线方程222p y kx x py⎧=-⎪⎨⎪=⎩,转化得2220x pkx p -+=,222440p k p ∆=-=,解得1k =±,当1k =时,直线方程为2py x =-,2220x px p -+=,解得P x p =,则22P P p p y x =-=,因为PA =2222PP p x y ⎛⎫++= ⎪⎝⎭,解得1p =;当1k =-时,同理得1p =,综上所述,抛物线方程为22x y =,故选:C.【点睛】本题考查抛物线方程的求法,考查直线与抛物线相切的相关问题的求解,考查判别式的灵活应用,考查两点间距离公式,考查转化与化归思想,考查计算能力,是中档题.6.已知点E 是抛物线2:2(0)C y px p =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在EFP ∆中,若sin sin EFP FEP μ∠=⋅∠,则μ的最大值为()ABCD【答案】C 【分析】利用抛物线的几何性质,求得,E F 的坐标.利用抛物线的定义以及正弦定理,将题目所给等式转化为1cos PEFμ=∠的形式.根据余弦函数的单调性可以求得μ的最大值.【详解】由题意得,准线:2p l x =-,,02p E ⎛⎫- ⎪⎝⎭,,02p F ⎛⎫⎪⎝⎭,过P 作PH l ⊥,垂足为H ,则由抛物线定义可知PH PF =,于是sin sin EFP PEFEP PFμ∠==∠11cos cos PE PH EPH PEF ===∠∠,cos y x =在()0,π上为减函数,∴当PEF ∠取到最大值时(此时直线PE 与抛物线相切),计算可得直线PE 的斜率为1,从而45PEF ∠=︒,max μ∴,故选C.【点睛】本小题主要考查抛物线的几何性质,考查直线和抛物线的位置关系,还考查了正弦定理.属于中档题.7.抛物线22(0)y px p =>的焦点为F ,准线为l ,A 、B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是A .23B .1C .32D .16【答案】B【详解】设|AF|=a ,|BF|=b ,连接AF 、BF ,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ 中,2|MN|=|AQ|+|BP|=a+b .由余弦定理得,|AB|2=a 2+b 2﹣2abcos60°=a 2+b 2﹣ab ,配方得,|AB|2=(a+b )2﹣3ab ,又∵ab≤2(2a b +∴(a+b )2﹣3ab≥(a+b )2﹣34(a+b )2=14(a+b )2得到|AB|≥12(a+b ).∴||MN AB≤1,即||MN AB的最大值为1.故选B .点睛:本题难点在寻找解题的思路,作为一个最值的问题,这里首先要联想到函数的思想,先求出|MN|,|AB|,再利用基本不等式解答.8.设抛物线22y x =的焦点为F,过点0)M 的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,||2BF =,则BCF △与ACF 的面积之比BCF ACFS S等于A .45B .23C .47D .12【答案】A【详解】如图过B 作准线12l x =-:的垂线,垂足分别为11A B ,,BCF ACFBC S SAC=,又11,B BC A AC ∽11BC BB ACAA =,,由拋物线定义112BB BF AA AFAF ==.由12BF BB ==知32B B x y ,==02AB y x ∴-=-:把22y x =代入上式,求得22A A y x ==,,15 2AF AA ∴==.故24552BCF ACFBF SSAF===.故选A .9.已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率.详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP得,222tan sin cos PAF PAF PAF ∠=∴∠∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,π54sin()3c a c e a c PAF =∴==+-∠,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为AB .105C.3D.5【答案】D【详解】分析:由题意可知:可设A (-c ,2b a),C (x ,y ),由S △ABC =3S △BCF2,可得222=AF F C ,根据向量的坐标运算求得x=2c ,y=22b a-,代入椭圆方程,根据离心率公式即可求得椭圆的离心率.详解:设椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0),由x=-c ,代入椭圆方程可得by x a=±可设A (﹣c ,),C (x ,y ),由,可得222=AF F C ,即有2(2,)2(,)b c x c y a -=-),即2c=2x-2c ,可得:x=2c ,22b y a=-代入椭圆得:,根据离心率公式可知:16e 2+1-e 2=4,解得0<e<1,则D 点睛:本题考查椭圆的标准方程及简单几何性质,考查向量的坐标运算,考查计算能力,属于中档题.二、多选题11.已知椭圆22:143x y C +=的左、右焦点分别为F 、E ,直线x m =()11m -<<与椭圆相交于点A 、B ,则()A .椭圆C 的离心率为2B .存在m ,使FAB 为直角三角形C .存在m ,使FAB 的周长最大D .当0m =时,四边形FBEA 面积最大【答案】BD 【分析】直接求出椭圆的离心率判断A ;利用椭圆的对称性及角AFB 的范围判断B ;利用椭圆定义及数学转化分析FAB ∆的周长判断C ;由四边形面积公式分析D 正确.【详解】解:如图所示:对于A ,由椭圆方程可得,2a =,b =1c =,椭圆C 的离心率为12e =,故A 错误;对于B ,当0m =时,可以得出3AFE π∠=,若取1m =时,得3tan 1tan44AFE π∠=<=,根据椭圆的对称性,存在m 使FAB 为直角三角形,故B 正确;对于C ,由椭圆的定义得,FAB 的周长||||||AB AF BF =++||(2||)(2||)4||||||AB a AE a BE a AB AE BE =+-+-=+--,||||||AE BE AB + ,||||||0AB AE BE ∴-- ,当AB 过点E 时取等号,||||||4||||||4AB AF BF a AB AE BE a ∴++=+-- ,即直线x m =过椭圆的右焦点E 时,FAB 的周长最大,此时直线AB 的方程为1x m c ===,但是11m -<<,∴不存在m ,使FAB 的周长最大,故C 错误;对于D ,||FE 一定,根据椭圆的对称性可知,当0m =时,||AB 最大,四边形FBEA 面积最大,故D 正确.故选:BD .【点睛】本题考查椭圆的几何性质,考查数形结合的解题思想,考查分析问题与求解问题的能力.12.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为1F ,点A 坐标为()0,1,点P 双曲线左支上的动点,且1APF △的周长不小于14,则双曲线C 的离心率可能为()AB .2C D .3【答案】ABC 【分析】1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9,2||||2PA PF a ++的最小值不小于9,分析出当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +,可得a 的范围,从而可得答案.【详解】由右焦点为1F ,点A 的坐标为(0,1),1||5AF ==,1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9又2F 为双曲线的左焦点,可得12||||2PF PF a =+,1||||PA PF +=2||||2PA PF a ++,当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +所以529a +≥,即2a ≥,因为c =可得c e a=.故选:ABC .【点睛】求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围13.已知O 为坐标原点,()1,2M ,P 是抛物线C :22y px =上的一点,F 为其焦点,若F 与双曲线2213x y -=的右焦点重合,则下列说法正确的有()A .若6PF =,则点P 的横坐标为4BC .若POF 外接圆与抛物线C 的准线相切,则该圆面积为9πD .PMF △周长的最小值为3【答案】ACD 【分析】先求出4p =,选项A 求出点P 的横坐标为042PF x p-==,判断选项A 正确;选项B 求出抛物线的准线被双曲线所截得的线段长度为22b a ==B 错误;选项C 先判断POF 外接圆的圆心的横坐标为1,再判断POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,最后求出半径和外接圆面积,判断选项C 正确;选项D 直接求出PMF △的周长为3C ≥+D 正确.【详解】解:因为双曲线的方程为2213x y -=,所以23a =,21b =,则2c ==,因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以=22p ,即4p =,选项A :若6PF =,则点P 的横坐标为042PF x p-==,所以选项A 正确;选项B :因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以抛物线的准线被双曲线所截得的线段长度为223b a =,所以选项B 错误;选项C :因为(0,0)O 、(2,0)F ,所以POF 外接圆的圆心的横坐标为1,又因为POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,所以圆心在抛物线上且到准线的距离为3,所以3r =,所以该外接圆面积为29S r ππ==,所以选项C 正确;选项D :因为PMF △的周长为()2232P P M pC PF PM MF x PM x PM x =++=++=+++=选项D 正确.故选:ACD 【点睛】本题考查抛物线的定义的几何意义,双曲线的通径长,14.已知抛物线212x y =的焦点为F ,()11,M x y ,()22,N x y 是抛物线上两点,则下列结论正确的是()A .点F 的坐标为1,08⎛⎫⎪⎝⎭B .若直线MN 过点F ,则12116x x =-C .若MF NF λ=,则MN 的最小值为12D .若32MF NF +=,则线段MN 的中点P 到x 轴的距离为58【答案】BCD 【分析】由抛物线标准方程写出焦点坐标判断A ,根据焦点弦性质判断B ,由向量共线与焦点弦性质判断C ,利用抛物线定义把抛物线上的点到焦点的距离转化为到准线的距离,结合中点坐标公式判断D .【详解】解:易知点F 的坐标为10,8⎛⎫⎪⎝⎭,选项A 错误;根据抛物线的性质知,MN 过焦点F 时,212116x x p =-=-,选项B 正确;若MF NF λ=,则MN 过点F ,则MN 的最小值即抛物线通经的长,为2p ,即12,选项C 正确,抛物线212x y =的焦点为10,8⎛⎫⎪⎝⎭,准线方程为18y =-,过点M ,N ,P 分别做准线的垂直线MM ',NN ',PP ',垂足分别为M ',N ',P ',所以MM MF '=,NN NF '=.所以32MM NN MF NF ''+=+=,所以线段34MM NN PP ''+'==所以线段MN 的中点P 到x 轴的距离为13158488PP '-=-=,选项D 正确.故选:BCD .【点睛】本题考查抛物线的定义与标准方程,考查抛物线的焦点弦性质,对抛物线22y px =,AB 是抛物线的过焦点的弦,1122(,),(,)A x y B x y ,则212y y p =-,2124p x x =,12AB x x p =++,AB最小时,AB 是抛物线的通径.三、填空题15.过抛物线C :y 2=4x 的焦点F 的动直线交C 于A ,B 两点,线段AB 的中点为N ,点P (12,4).当|NA |+|NP |的值最小时,点N 的横坐标为____.【答案】9【分析】根据椭圆定义问题可转化为|MN |+|NP |的最小值问题,数形结合可得M ,N ,P 三点共线时有最小值.【详解】分别过点A ,B ,N 作准线的垂线,垂足为A 1,B 1,M ,如图所示,由抛物线的定义知,|AA 1|=|AF |,|BB 1|=|BF |,∴|AB |=|AF |+|BF |=|AA 1|+|BB 1|=2|MN |,∴|NA |+|NP |=12|AB |+|NP |=|MN |+|NP |,故原问题可转化为|MN |+|NP |的最小值问题,当M ,N ,P 三点共线时,|MN |+|NP |取得最小值,此时y N =y P =4,设A (x 1,y 1),B (x 2,y 2),则21122244y x y x ⎧=⎨=⎩,两式相减得,1212y y x x --=124y y +=42N y =41242=⨯,即直线AB 的斜率为12,又直线AB 经过点F (1,0),∴直线AB 的方程为y =12(x ﹣1),把4N y =代入,得14(1)2N x =-解得N x =9,∴当|NA |+|NP |的值最小时,点N 的横坐标为9.故答案为:916.已知抛物线C :()220y px p =>的焦点为F ,过点Fl 交C 于A ,B两点,以线段AB 为直径的圆交y 轴于M ,N 两点,设线段AB 的中点为Q ,若点F 到C 的准线的距离为3,则sin QMN ∠的值为______.【答案】58【分析】由题意得3p =,可得抛物线的方程和直线AB 的方程,联立直线AB 方程和抛物线方程,运用韦达定理和中点坐标公式可得AB 的中点Q 的坐标和弦长AB ,可得圆Q 的半径,在QMN 中,由锐角三角函数的定义可得所求值【详解】解:抛物线C :()220y px p =>的焦点为(,0)2p F ,准线方程为2p x =-,由题意得3p =,则抛物线方程为236,(,0)2y x F =,则直线AB的方程为3)2y x =-,由23)26y x y x⎧=-⎪⎨⎪=⎩,得22731504x x -+=,设,A B 的横坐标分别为12,x x ,则125x x +=,所以AB 的中点Q 的坐标为5(2,12538AB x x p =++=+=,则圆Q 的半径为4,在QMN 中,552sin 48QMN ∠==,故答案为:58【点睛】关键点点睛:此题考查抛物线的定义、方程和性质,以及直线与抛物线的位置关系,解题的关键是联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式进行转化,考查方程思想和计算能力,属于中档题17.已知双曲线E :22221(0,0)x y a b a b-=>>的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M ,N 两点(点F 1位于点M 与点N 之间),且13MN F N =,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e 为__.【分析】由对称性得ON ⊥MN ,由点到直线距离公式得1F N ,然后由勾股定理求得,,a b c 的关系得出离心率.【详解】解:双曲线E :22221(0,0)x y a b a b -=>>的渐近线方程为b y x a=±,∵|ON |=OP |,且F 1P ⊥OM ,可得△PF 1O ≌△NF 1O ,ON ⊥MN ,双曲线的一条渐近线方程为bx ﹣ay =0,则|F 1N |=|F 1P |b .∵13MN F N =,∴|MN |=3b ,|MF 1|=2b ,由勾股定理可得,|ON |=|OP |a =,|PM |,又|MN |2+|ON |2=|OM |2,∴(3b )2+a 2=(a )2,整理可得a ,即3c 2=4a 2,∴3c e a ==.18.已知椭圆C :2222x y a b+=1(a >b >0)的焦距为4,直线l :y =2x 与椭圆C 相交于点A 、B ,点P 是椭圆C 上异于点A 、B 的动点,直线PA 、PB 的斜率分别为k 1、k 2,且k 1•k 2=59-,则椭圆C 的标准方程是__.【答案】2295x y +=1【分析】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),代入作差法表示出k 1•k 2=59-,与224a b -=联立,即可求出椭圆的标准方程.【详解】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),则2200221x y a b+=,2211221x y a b +=,两式作差得22220101220x x y y a b --+=.因为直线PA ,PB 的斜率都存在,所以2201x x -≠0.所以22b a=﹣22012201y y x x --=﹣01010101y y y y x x x x --⨯+-=﹣k 1•k 2=59,则22590a b -=,又因为焦距为4,则224a b -=,联立两式可得229,5a b ==所以该椭圆的方程为:2295x y +=1故答案为:2295x y +=1四、解答题19.已知椭圆2222:1(0)x y C a b a b+->>的左、右焦点分别是F 1、F 2,上、右顶点分别是A 、B ,满足∠F 1AF 2=120°,||AB =.(1)求椭圆C 的标准方程;(2)与圆x 2+y 2=1相切的直线l 交椭圆C 于P 、Q 两点,求|PQ |的最大值及此时直线l 的斜率.【答案】(1)22:14x C y +=;(2)|PQ |max =2;直线l的斜率为2k =±.【分析】(1)由焦点12AF F △得出,,a b c 的关系,解得,,a b c 得椭圆标准方程;(2)设直线方程为x =ty +m ,由直线与圆相切得,t m 关系,直线方程代入椭圆方程,计算出0∆>,设设P (x 1,y 1),Q (x 2,y 2),由韦达定理得1212,y y y y +,求得12y y -,得弦长PQ ,=n换元后用基本不等式得最值及直线斜率.【详解】解:(1)因为2tan ∠=cOAF b,||AB =,得tan 60cb︒==,又a 2=b 2+c 2,所以=c ,a 2=4b 2,5b 2=5,解得b =1,a =2,椭圆的标准方程为22:14x C y +=;(2)由题意知直线l 不能平行于x 轴,所以设为x =ty +m ,由已知得(0,0)到x ﹣ty ﹣m =0的距离为11=,所以m 2=t 2+1,联立直线和椭圆得(ty +m )2+4y 2=4,即(t 2+4)y 2+2tmy +m 2﹣4=0,得△=(2tm )2﹣4(t 2+4)(m 2﹣4)=﹣4(4m 2﹣4t 2﹣16)=16(t 2﹣m 2+4)=16×3,设P (x 1,y 1),Q (x 2,y 2),则|y 2﹣y 1|==,||PQ =y 2﹣y 1|=n ,则n ≥1,2||233PQ n n n==≤++,当3=n n,即n =|PQ |max =2,此时t =l 的斜率为1=t 20.已知双曲线E :2222x y a b -=1(a >0,b >0)的右焦点为F ,离心率e =2,直线l :x =2a c与E 的一条渐近线交于Q ,与x 轴交于P ,且|FQ |(1)求E 的方程;(2)过F 的直线交E 的右支于A ,B 两点,求证:PF 平分∠APB .【答案】(1)2213y x -=;(2)证明见解析.【分析】(1)先将直线l 的方程与渐近线方程联立求出点Q 的坐标,求出PF 的长,从而可求出|FQ |,再由|FQ |b 的值,再结合离心率可求出a 的值,从而可求出E 的方程;(2)设过点F 得直线方程为:x =my +2,设A (x 1,y 1),B (x 2,y 2),直线方程与双曲线方程联立方程组,消去x ,再利用根与系数的关系,然后表示出k P A ,k PB ,相加化简,若等于零,可得PF 平分∠APB 【详解】解:(1)不妨设直线l :x =2a c与E 的一条渐近线b y x a =交于Q ,则由2a x cb y xa ⎧=⎪⎪⎨⎪=⎪⎩得y Q =ab c ,又PF =c ﹣2a c =2b c,∴|FQ |2=(ab c )2+(2b c)2=b 2=3,∴b ,又离心率e =2,∴2224a b a +=,∴a =1.∴E 的方程为:2213y x -=.(2)设过点F 得直线方程为:x =my +2,A (x 1,y 1),B (x 2,y 2).联立22233x my x y =+⎧⎨-=⎩,可得(3m 2﹣1)y 2+12my +9=0,则1221231my y m -+=-,122931y y m =-,∵过F 的直线交E 的右支于A ,B 两点,∴y 1y 2<0,可得﹣3<m<3,又P (12,0),∴k P A +k PB =12121122y y x x +--=12211233()()2211()()22y my y my x x +++--,∴122133(()22y my y my +++=2my 1y 2+123()2y y +=2293122031231mm m m -⋅+⨯=--∴k P A +k PB =0,∴PF 平分∠APB .21.已知0a b >>,曲线Γ由曲线()22122:10x y C y a b +=≥和曲线22222:1(0)x y C y a b-=<组成,其中曲线1C 的右焦点为()12,0F ,曲线2C 的左焦点()26,0F -.(1)求,a b 的值;(2)若直线l 过点2F 交曲线1C 于点,A B ,求1ABF 面积的最大值.【答案】(1)4a b ⎧=⎪⎨=⎪⎩(2【分析】(1)根据椭圆和双曲线的焦点即可列出式子求解;(2)设出直线l 的方程,与椭圆联立,利用韦达定理可表示出三角形的面积,即可求出最值.【详解】解:(1)由题意:12(2,0),(6,0)F F -,2222364a b a b ⎧+=∴⎨-=⎩,解得222016a b ⎧=⎨=⎩即4a b ⎧=⎪⎨=⎪⎩(2)由(1)知,曲线221:1(0)2016x y C y +=≥,点2(6,0)F -,设直线l 的方程为:6(0)x my m =->,联立22612016x my x y =-⎧⎪⎨+=⎪⎩得:()225448640m y my +-+=,22(48)464(54)0m m ∴∆=-⨯⨯+>,又0m >,1m ∴>,设()()1122,,,A x y B x y ,1224854m y y m ∴+=+,1226454y y m =+,12y y ∴=-,1ABF ∴面积21222111165118225454S F F y y m m =-=⨯⨯=++,令0t =>,221m t ∴=+,94S t t∴=+,当且仅当32t =,即2m =时等号成立,所以1ABF【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.22.已知抛物线()220C y px p =>:的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若,A B 是C 上的两个动点,且,A B 两点的横坐标之和为8.(ⅰ)设线段AB 的中垂线为l ,证明:l 恒过定点.(ⅱ)设(ⅰ)中定点为D ,当AB 取最大值时,且P ,D 位于直线AB 两侧时,求四边形PADB 的面积.【答案】(1)24y x =;(2)(ⅰ)证明见解析;(ⅱ).【分析】(1)根据题意得0t >,22242pp t pt⎧+=⨯⎪⎨⎪=⎩,进而解方程即可得答案;(2)(ⅰ)设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,进而分12x x =和12x x ≠两种情况求解直线l 方程,以证明直线过定点;(ⅱ)直线AB 与抛物线24y x =联立方程消去x ,根据韦达定理与弦长公式求得||10AB ≤当且仅当26n =时等号成立,进而得直线:220AB x ±-=,再讨论P ,D 位于直线AB 两侧时得:220AB x -=,进而根据点到直线的距离求解点,P D 到直线AB 的距离以求解四边形的面积.【详解】解:(1)由抛物线的性质得0t >,所以根据抛物线的定义得:22242pp t pt⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,且128x x +=.(ⅰ)证明:设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,当12x x =时,0l y =:;当12x x ≠时,2121222121214()42AB y y y y k x x y y y y n--====--+,则2l nk =-,:(4)2n l y n x -=--,令0y =,得6x =,故直线过定点()6,0综上,l 恒过定点()6,0.(ⅱ)由(ⅰ)知直线2:(4)AB y n x n-=-,即()42n x y n =-+,所以直线AB 与抛物线24y x =联立方程消去x ,整理得2222160y ny n -+-=,由0∆>,得21216,2n y y n +<=,212216y y n =-,2212416|||102n n AB y y ++-=-≤=,当且仅当26n =时等号成立,所以AB 的最大值为10,此时直线AB 的方程为:220AB x -=.对于直线220x -=,(2602)21(2)20⎡⎤⨯⨯-⨯⨯-->⎣⎦,所以点,P D 在同侧,不合题意,对于直线220x +-=,满足P ,D 位于直线AB 两侧,所以直线:220AB x +-=,点P 到直线AB 的距离1d =点D 到直线AB 的距离2d =所以()1212PADB S AB d d =⋅+=。

历年圆锥曲线经典压轴题目

历年圆锥曲线经典压轴题目

圆锥曲线经典题目1. 已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为F 1、F 2,点()11,P x y 是椭圆上任意一点,且124PF PF +=,椭圆的离心率1.2e = (I )求椭圆E 的标准方程;(II )直线1PF 交椭圆E 于另一点()12,Q x y ,椭圆右顶点为A ,若3AP AQ ⋅=,求直线1PF 的方程;(III )过点11,04M x ⎛⎫⎪⎝⎭作直线1PF 的垂线,垂足为N ,当1x 变化时,线段PN 的长度是否为定值?若是,请写出这个定值,并证明你的结论;若不是,请说明理由.2.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为2(I )求椭圆C 的方程(II )A,B 为椭圆C 上满足AOB ∆的面积为4E 为线段AB 的中点,射线OE 交椭圆C 与点P ,设OP tOE =,求实数t 的值3. 已知椭圆C 的离心率2e =,长轴的左、右端点分别为12(2,0),(2,0)A A -. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1x my =+与椭圆C 交于R ,Q 两点,直线1A R 与2A Q 交于点S .试问:当m 变化时,点S 是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.4. 在平面直角坐标系xOy 中,已知椭圆C :22221(1)x y a b a b+=>≥的离心率 ,且椭圆C 上一点N 到点Q (0,3)的距离最大值为4,过点M (3,0)的直线交椭圆C 于点A 、B.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当AB 数t 的取值范围5. 已知椭圆C :222210x y (a b )a b+=>>的离心率与等轴双曲线的离心率互为倒数关系,直线0l :x y -=与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设M 是椭圆的上顶点,过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,证明:直线AB 过定点(12-,-l).6. 已知椭圆(a b y a x 12222=+>b >)0的离心率为22,且过点.23,22⎪⎪⎭⎫ ⎝⎛ (I )求椭圆的方程;(II )已知点()0,m C 是线段OF 上一个动点(O 为原点,F 为椭圆的右焦点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,使BC AC =,并说明理由7.已知椭圆221:1164y x C +=,椭圆C 2以C 1的短轴为长轴,且与C 1有相同的离心率. (I )求椭圆C 2的方程;(II )设直线l 与椭圆C 2相交于不同的两点A 、B ,已知A 点的坐标为()2,0-,点()00,Q y 在线段AB 的垂直平分线上,且4QA QB ⋅=,求直线l 的方程.8. 已知抛物线22x py =上点(2,2)处的切线经过椭圆2222:1(0)x y E a b a b+=>>的两个顶点。

圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S=|AB|•d=.△ABC综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1..(2)由题意可知,点O为PP′的中点,则=2S△POQ设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S=|OF|•|y1﹣y2|=.△POQ设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l的斜率存在,设为k,则直线l的方程为:y=kx,由y=kx和y=x2﹣1,得x2﹣kx﹣1=0.设A(x1,y1),B(x2,y2),于是x1+x2=k,x1•x2=﹣1,又点M的坐标为(0,﹣1).所以k MA•k MB=•====﹣1.故MA⊥MB,即MD⊥ME;(Ⅱ)设直线MA的斜率为k1,则直线MA的方程为y=k1x﹣1.联立y=x2﹣1可得或则点A的坐标为(k1,k12﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为(﹣,﹣1).于是S1=|MA|•|MB|=|k1|•••|﹣|•=.由椭圆方程x2+4y2=4和y=k1x﹣1,得(1+4k12)x2﹣8k1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵,∴a2=2c2=b2+c2,b=c,a2=2b2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b2=4,a2=8,所以椭圆C的方程为:;(2)当直线l斜率存在时,设直线l方程:y=kx+1,由得(2k2+1)x2+4kx﹣6=0,△=16k2+24(2k2+1)>0,设,假设存在定点Q(0,t)符合题意,∵∠PQA=∠PQB,∴k QA=﹣k QB,∴=,∵上式对任意实数k恒等于零,∴4﹣t=0,即t=4,∴Q(0,4),当直线l斜率不存在时,A,B两点分别为椭圆的上下顶点(0,﹣2),(0,2),显然此时∠PQA=∠PQB,综上,存在定点Q(0,4)满足题意.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由点在椭圆C上可得:,整理为:9a2+4b2=4a2b2,由椭圆C的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a>b>0可解得:,故椭圆C的方程为:.(2)设点P、Q的坐标分别为(x1,y1),(x2,y2),点A的坐标为(﹣2,0),故,可得y1y2=2(x1+2)(x2+2),设直线PQ的方程为y=kx+m(直线PQ的斜率存在),可得(kx1+m)(kx2+m)=2(x1+2)(x2+2),整理为:,联立,消去y得:(4k2+3)x2+8kmx+(4m2﹣12)=0,由△=64k2m2﹣4(4k2+3)(4m2﹣12)=48(4k2﹣m2+3)>0,有4k2+3>m2,有,,故有:,整理得:44k2﹣32km+5m2=0,解得:m=2k或,当m=2k时直线PQ的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意,当时直线PQ的方程为,即,过定点.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.【解答】解:(1)椭圆Γ:=1(0<b<2)的a=2,向量与的夹角为,可得|BF1|=|BF2|=a==2b=2,即b=1,则椭圆方程为+y2=1;(2)设P(m,n),可得+n2=1,即n2=1﹣,•=(1﹣m,﹣n)•(﹣m,﹣n)=m2﹣m+n2=m2﹣m+1=(m﹣)2+,由﹣2≤m≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6,则•的范围是[,6];(3)证明:当直线l的斜率不存在时,设M(x1,y1),N(x2,y2),由k BM+k BN=+==1,x1=x2,y1=﹣y2,得x1=﹣2,此时M,N重合,不符合题意;设不经过点P的直线l方程为:y=kx+m,M(x1,y1),N(x2,y2),由得(1+4k2)x2+8ktx+4t2﹣4=0,x1+x2=﹣,x1x2=,k BM+k BN=+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I)根据题意,解得,故椭圆C的方程为.…(5分)(II)根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)(III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ的中点.要使四边形OPMQ为平行四边形,则N为OM的中点,所以.要使点M在椭圆C上,则,即12k2+9=0,此方程无解.所以在椭圆C上不存在点M,使得四边形OPMQ为平行四边形.….(14分)13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF2⊥x轴,|OD|=1,∴AB∥OD,∵O为F1F2为的中点,∴D为BF1的中点,∵AD⊥F1B,∴|AF1|=|AB|=2|AF2|=4|OD|=4,∴2a=|AF1|+|AF2|=4+2=6,∴a=3,∴|F1F2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y0),直线PA1:y﹣=x,令y=0,得x M=;直线PA2:y+=x,令y=0,得x N=;|OM|•|ON|=,∵+=1,∴6﹣y02=x02,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=,∴2a=|EF1|+|EF2|=+=4,∴a=2,∴b2=a2﹣c2=8﹣2=6,∴椭圆方程为+=1,(Ⅱ)设点P的坐标为(0,t),当直线MN的斜率不存在时,可得M,N分别是椭圆的两端点,可得t=±,当直线MN的斜率存在时,设直线MN的方程为y=kx+t,M(x1,y1),N(x2,y2),则由=2可得x1=﹣2x2,①,由,消y可得(3+4k2)x2+8ktx+4t2﹣24=0,由△>0,可得64k2t2﹣4(3+4k2)(4t2﹣24)>0,整理可得t2<8k2+6,由韦达定理可得x1+x2=﹣,x1x2=,②,由①②,消去x1,x2可得k2=,由,解得<t2<6,综上得≤t2<6,又以F1P为直径的圆面积S=π•,∴S的范围为[,2π).15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由题意可得:,∵平行于x轴的直线交椭圆于A,B两点,且.∴,a=,∴c=2,b2=a2=﹣c2=2.∴椭圆C的方程为(Ⅱ)设直线l的方程为y=k(x﹣2),代入椭圆C的方程,得(3k2+1)x2﹣12k2x+12k2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k2+3)x2+8kx﹣8=0.其判别式△>0,x1+x2=﹣,x1x2=﹣.∴•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)],=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.【解答】解:(1)设F1,F2分别为(﹣c,0),(c,0)可得,b2=c2﹣a2=3a2,又点(1,)在双曲线C上,∴,解得,c=1.连接PQ,∵OF1=OF2,OP=OQ,∴四边形PF1QF2的周长为平行四边形.∴四边形PF1+PF2=2>2,∴动点P的轨迹是以点F1、F2分别为左右焦点的椭圆(除左右顶点),∴动点P的轨迹方程(y≠0);(2)∵x12+x22=2,,∴y12+y22=1.∴|OG|•|MN|=•=•=.∴当3﹣2x1x2﹣2y1y2=3+2x1x2+2y1y2⇒x1x2+y1y2=0时取最值,此时OM⊥ON,△OMN为直角三角形.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.【解答】解:(I)设B(,y1),C(,y2),∵AB⊥AC,∴+y1y2=0,∴y1y2=﹣4p2.∴设BC的中点M(x,y),则=x,y1+y2=2y,∵y12+y22=(y1+y2)2﹣2y1y2,∴px=4y2+8p2,∴M的轨迹方程为:y2=(x﹣8p).(II)A(,t0),设直线BC的方程为y=kx+b,B(,y1),C(,y2),∴k AB==,k AC==,∵AB⊥AC,∴•=﹣1.即y1y2+t0(y1+y2)+t02+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t02+4p2=0.解得b=﹣t0﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t0,∴直线BC过定点(2p+,﹣t0).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF 2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y0),则H(﹣x0,﹣y0),不妨设x0<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即k GP=﹣k HP,所以,化简得x0y0=﹣6,即,代入,化简得,解得x 0=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。

2024年高考数学专题18 圆锥曲线高频压轴解答题(16大题型)(练习)(原卷版)

2024年高考数学专题18 圆锥曲线高频压轴解答题(16大题型)(练习)(原卷版)

专题18 圆锥曲线高频压轴解答题目录01 轨迹方程 (2)02 向量搭桥进行翻译 (3)03 弦长、面积背景的条件翻译 (4)04 斜率之和差商积问题 (5)05 弦长、面积范围与最值问题 (6)06 定值问题 (7)07 定点问题 (9)08 三点共线问题 (10)09 中点弦与对称问题 (11)10 四点共圆问题 (12)11 切线问题 (13)12 定比点差法 (14)13 齐次化 (16)14 极点极线问题 (16)15 同构问题 (18)16 蝴蝶问题 (19)01 轨迹方程1.(2024·重庆·高三重庆南开中学校考阶段练习)已知双曲线22221(0,0)x y a b a b-=>>的一条浙近线方程为y x =,且点P在双曲线上.(1)求双曲线的标准方程;(2)设双曲线左右顶点分别为,A B ,在直线1x =上取一点()()1,0P t t ¹,直线AP 交双曲线右支于点C ,直线BP 交双曲线左支于点D ,直线AD 和直线BC 的交点为Q ,求证:点Q 在定直线上.2.(2024·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.3.(2024·福建莆田·统考一模)曲线C 上任意一点P 到点(2,0)F 的距离与它到直线4x =的距离之比等于(4,0)M 且与x 轴不重合的直线l 与C 交于不同的两点,A B .(1)求C 的方程;(2)求证:ABF △内切圆的圆心在定直线上.02 向量搭桥进行翻译4.(2024·陕西咸阳·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是双曲线2213x y -=的离心率的倒数,椭圆C 的左、右焦点分别为12,F F ,上顶点为P ,且122PF PF ×=-uuu r uuu u r.(1)求椭圆C 的方程;(2)当过点()0,2Q 的动直线l 与椭圆C 相交于两个不同点,A B 时,设AQ QB l =uuu ruuu r,求l 的取值范围.5.(2024·上海奉贤·统考一模)已知椭圆22221(0)x y a b a b +=>>的焦距为,椭圆的左右焦点分别为1F 、2F ,直角坐标原点记为O .设点()0,P t ,过点P 作倾斜角为锐角的直线l 与椭圆交于不同的两点B 、C .(1)求椭圆的方程;(2)设椭圆上有一动点T ,求()12PT TF TF ×-uuu r uuu r uuu r的取值范围;(3)设线段BC 的中点为M ,当t ³Q ,使得非零向量OM uuuu r与向量PQ uuu r 平行,请说明理由.6.(2024·云南昆明·高三统考期末)已知动点P 到定点()0,4F 的距离和它到直线1y =距离之比为2;(1)求点P 的轨迹C 的方程;(2)直线l 在x 轴上方与x 轴平行,交曲线C 于A ,B 两点,直线l 交y 轴于点D .设OD 的中点为M ,是否存在定直线l ,使得经过M 的直线与C 交于P ,Q ,与线段AB 交于点N ,PM PN l =uuuu r uuu r ,MQ QN l =uuuur uuu r 均成立;若存在,求出l 的方程;若不存在,请说明理由.03 弦长、面积背景的条件翻译7.(2024·陕西榆林·统考一模)已知椭圆()2222:10x y C a b a b +=>>经过()830,1,,55A P æö-ç÷èø两点.(1)求C 的方程;(2)斜率不为0的直线l 与椭圆C 交于,M N 两点,且点A 不在l 上,AM AN ^,过点P 作y 轴的垂线,交直线=1x -于点S ,与椭圆C 的另一个交点为T ,记SMN V 的面积为1S ,TMN △的面积为2S ,求12S S .8.(2024·四川绵阳·高三绵阳南山中学实验学校校考阶段练习)已知椭圆()2222:10x y E a b a b +=>>的左、右焦点为1F ,2F ,若E 上任意一点到两焦点的距离之和为4,且点æççè在E 上.(1)求椭圆E 的方程;(2)在(1)的条件下,若点A ,B 在E 上,且14OA OB k k ×=-(O 为坐标原点),分别延长AO ,BO 交E 于C ,D 两点,则四边形ABCD 的面积是否为定值?若为定值,求四边形ABCD的面积,若不为定值,请说明理由.9.(2024·上海·高三上海市大同中学校考期末)已知双曲线H :2214x y -=的左、右焦点为1F ,2F ,左、右顶点为1A ,2A ,椭圆E 以1A ,2A 为焦点,以12F F 为长轴.(1)求椭圆E 的离心率;(2)设椭圆E 交y 轴于1B ,2B ,过1B 的直线l 交双曲线H 的左、右两支于C ,D 两点,求2B CD △面积的最小值;(3)设点(),M m n 满足224m n <.过M 且与双曲线H 的渐近线平行的两直线分别交H 于点P ,Q .过M 且与PQ 平行的直线交H 的渐近线于点S ,T .证明:MSMT为定值,并求出此定值.04 斜率之和差商积问题10.(2024·贵州铜仁·校联考模拟预测)在平面直角坐标系中,已知过动点(),M x y 作x 轴垂线,分别与1y =和4y =-交于P ,Q 点,且()12,0A -,()22,0A ,若实数l 使得212OP OQ MA MA l ×=×uuu r uuu r uuuu r uuuu r成立(其中O 为坐标原点).(1)求M l 为何值时M 点的轨迹为椭圆;(2)当l =()4,0B 的直线l 与轨迹M 交于y 轴右侧C ,D 两点,证明:直线1A C ,2A D 的斜率之比为定值.11.(2024·安徽·高三校联考期末)已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的准线的距离为72.(1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值.12.(2024·海南海口·统考模拟预测)在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,焦点到渐近线的距离为2.直线l 过点(),0(02)P t t <<,且垂直于x 轴,过P 的直线l ¢交C 的两支于,G H 两点,直线,AG AH 分别交l 于,M N 两点.(1)求C 的方程;(2)设直线,AN OM 的斜率分别为12,k k ,若1212k k ×=,求点P 的坐标.05 弦长、面积范围与最值问题13.(2024·陕西商洛·镇安中学校考模拟预测)已知12,F F 分别为椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,直线1l 过点2F 与椭圆交于,A B 两点,且12AF F △的周长为(2a +.(1)求椭圆M 的离心率;(2)直线2l 过点2F ,且与1l 垂直,2l 交椭圆M 于,C D 两点,若a =ACBD 面积的范围.14.(2024·河南·统考模拟预测)已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN V 面积的最小值.15.(2024·上海嘉定·统考一模)抛物线24y x =上有一动点(,),0P s t t >.过点P 作抛物线的切线l ,再过点P 作直线m ,使得m l ^,直线m 和抛物线的另一个交点为Q .(1)当1s =时,求切线l 的直线方程;(2)当直线l 与抛物线准线的交点在x 轴上时,求三角形OPQ 的面积(点O 是坐标原点);(3)求出线段||PQ 关于s 的表达式,并求||PQ 的最小值;06 定值问题16.(2024·全国·模拟预测)如图,已知12,F F 分别为椭圆C :()222210x y a b a b +=>>的左、右焦点,P 为椭圆C 上一点,若12124PF PF PF PF +=-=uuu r uuu u r uuu r uuu u r,122PF F S =△.(1)求椭圆C 的标准方程;(2)若点P 坐标为),设不过点P 的直线l 与椭圆C 交于A ,B 两点,A 关于原点的对称点为A ¢,记直线l ,PB ,PA ¢的斜率分别为k ,1k ,2k ,若1213k k ×=,求证:直线l 的斜率k 为定值.17.(2024·安徽·高三校联考阶段练习)已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上.(1)求C 的方程.(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点(不同于双曲线的顶点),问:2211AF BF -是否为定值?若是,求出该定值;若不是,请说明理由.18.(2024·全国·高三阶段练习)如图所示,已知抛物线()21,0,1,,y x M A B =-是抛物线与x 轴的交点,过点M 作斜率不为零的直线l 与抛物线交于,C D 两点,与x 轴交于点Q ,直线AC 与直线BD 交于点P .(1)求CM DM CD×的取值范围;(2)问在平面内是否存在一定点T ,使得TP TQ ×uur uuu r为定值?若存在,求出点T 的坐标;若不存在,请说明理由.07 定点问题19.(2024·广东广州·广东实验中学校考一模)设抛物线2:2(0)E y px p =>,过焦点F 的直线与抛物线E 交于点()11,A x y 、()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线E 的标准方程.(2)已知点()1,0P ,直线AP 、BP 分别与抛物线E 交于点C 、D .求证:直线CD 过定点.20.(2024·宁夏银川·高三银川一中校考阶段练习)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB =uuu r uuu r ,3AF FB ×=uuu r uuu r .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率不为零的动直线l 与椭圆交于M 、N 两点,试问x 轴上是否存在异于点F 的定点T ,使||||||||MF NT NF MT ×=×恒成立?若存在,求出T 点坐标,若不存在,说明理由.21.(2024·四川甘孜·统考一模)在平面直角坐标系xOy 中,抛物线2:2(0)E y px p =>的焦点为,F E 的准线l 交x 轴于点K ,过K 的直线l 与抛物线E 相切于点A ,且交y 轴正半轴于点P .已知E 上的动点B 到点F 的距离与到直线2x =-的距离之和的最小值为3.(1)求抛物线E 的方程;(2)过点P 的直线交E 于,M N 两点,过M 且平行于y 轴的直线与线段OA 交于点T ,点H 满足MT TH =uuur uuu r.证明:直线HN 过定点.08 三点共线问题22.(2024·广东·高三校联考阶段练习)点F 是抛物线G :22y px =(0p >)的焦点,O 为坐标原点,过点F 作垂直于x 轴的直线l ,与抛物线G 相交于A ,B 两点,AB 4=,抛物线G 的准线与x 轴交于点K .(1)求抛物线G 的方程;(2)设C 、D 是抛物线G 上异于A 、B 两点的两个不同的点,直线AC 、BD 相交于点E ,直线AD 、BC 相交于点G ,证明:E 、G 、K 三点共线.23.(2024·贵州毕节·校考模拟预测)已知F 是抛物线2:2(0)C y px p =>的焦点,过点F 的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,2AB =.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线AO 于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为,E AE 的中点为G ,证明:,,G B D 三点共线.24.(2024·贵州贵阳·高三贵阳一中校考期末)已知A ,B 为椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP 与直线BP 的斜率之积为14-,且椭圆C 过点12ö÷ø.(1)求椭圆C 的标准方程;(2)若直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线BM 与椭圆C 交于另一点Q ,证明:A ,N ,Q 三点共线.09 中点弦与对称问题25.(2024·福建福州·高三福建省福州格致中学校考期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,椭圆上的点到焦点的最小距离是3.(1)求椭圆C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.26.(2024·全国·高三专题练习)已知圆22:(3)4M x y ++=,圆22:(3)100N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C (1)求C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.27.(2024·贵州黔东南·高三校考阶段练习)已知椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0F -,且点F 到C 的左、右顶点的距离之积为5.(1)求椭圆C 的标准方程;(2)过点F 作斜率乘积为1-的两条直线1l ,2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点,线段AB ,DE 的中点分别为M ,N .证明:直线MN 与x 轴交于定点,并求出定点坐标.10 四点共圆问题28.(2024·湖北·高三校联考阶段练习)已知双曲线22:1x C a =的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM V .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.29.(2024·河南·高三校联考阶段练习)已知椭圆2222:1x y C a b+=()0a b >>的左、右焦点分别为1F ,2F ,点D 在C 上,132DF =,252DF =,212DF F F >,且12DF F △的面积为32.(1)求C 的方程;(2)设C 的左顶点为A ,直线:6l x =-与x 轴交于点P ,过P 作直线交C 于G ,H 两点直线AG ,AH 分别与l 交于M ,N 两点,O 为坐标原点,证明:O ,A ,N ,M 四点共圆.30.(2024·江苏南通·统考模拟预测)已知动圆M 过点(1,0)F 且与直线=1x -相切,记动圆圆心M 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线():0l x m m =<与x 轴相交于点P ,点B 为曲线C 上异于顶点O 的动点,直线PB 交曲线C 于另一点D ,直线BO 和DO 分别交直线l 于点S 和T .若,,,O F S T 四点共圆,求m 的值.11 切线问题31.(2024·河南周口·高三校联考阶段练习)已知点()2,1A 的椭圆2222:1(0)x y M a b a b +=>>上,点,B C 为椭圆M 上异于点A 的两点.(1)求椭圆M 的方程;(2)若AB AC ^,过点,B C 两点分别作椭圆M 的切线,这两条切线的交点为D ,求AD 的最小值.32.(2024·山东德州·高三德州市第一中学校考阶段练习)如图所示,已知椭圆C :22163x y +=与直线l :163xy +=.点P 在直线l 上,由点P 引椭圆C 的两条切线PA 、PB ,A 、B 为切点,O 是坐标原点.(1)若点P 为直线l 与y 轴的交点,求PAB V 的面积S ;(2)若OD AB ^,D 为垂足,求证:存在定点Q ,使得DQ 为定值.(注:椭圆22221x ya b+=在其上一点处()00,M x y 的切线方程为00221x x y ya b+=)33.(2024·辽宁辽阳·高三统考期末)在平面直角坐标系xOy 内,已知定点()2,0F ,定直线3:2l x =,动点P 到点F 和直线l P 的轨迹为曲线E .(1)求曲线E 的方程.(2)以曲线E 上一动点M 为切点作E 的切线l ¢,若直线l ¢与直线l 交于点N ,试探究以线段MN 为直径的圆是否过x 轴上的定点.若过定点.求出该定点坐标;若不过,请说明理由.12 定比点差法34.(2024·吉林·统考一模)已知抛物线21:2(0)C y px p =>的焦点F 到其准线的距离为4,椭圆22222:1(0)x y C a b a b +=>>经过抛物线1C 的焦点F .(1)求抛物线1C 的方程及a ;(2)已知O 为坐标原点,过点(1,1)M 的直线l 与椭圆2C 相交于A ,B 两点,若=uuuu r uuurAM mMB ,点N 满足=-uuu r uuu r AN mNB ,且||ON 最小值为125,求椭圆2C 的离心率.35.(2024·江苏·高二专题练习)已知椭圆()2222:10x y a b a bG +=>>的离心率为23,半焦距为()0c c >,且1a c -=.经过椭圆的左焦点F ,斜率为()110k k ¹的直线与椭圆交于A 、B 两点,O 为坐标原点.(1)求椭圆G 的标准方程;(2)当11k =时,求AOB S V 的值;(3)设()1,0R ,延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为2k ,求证:12k k 为定值.36.(2024·安徽合肥·统考一模)在平面直角坐标系xOy 中,F 是抛物线()2:20C x py p =>的焦点,M是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为N ,点N 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)当过点()4,1P 的动直线l 与抛物线C 相交于不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ×=×u u u r u u u r u u u r u u r,证明:点Q 总在某定直线上.13 齐次化37.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ 过定点.38.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.39.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.14 极点极线问题40.(2024·江苏南通·高二统考开学考试)已知双曲线C :22221x y a b -=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l ¢与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.41.(2024·安徽六安·校联考一模)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.42.(2024·北京海淀·统考模拟预测)已知椭圆M :22221x y a b +=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.15 同构问题43.(2024·广东广州·统考一模)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,圆M 与y 轴相切,且圆心M 与抛物线C 的焦点重合.(1)求抛物线C 和圆M 的方程;(2)设()()000,2P x y x ¹为圆M 外一点,过点P 作圆M 的两条切线,分别交抛物线C 于两个不同的点()()1122,,,A x y B x y 和点()()3344,,,Q x y R x y .且123416y y y y =,证明:点P 在一条定曲线上.44.(2024·湖北襄阳·襄阳五中校考一模)已知抛物线21:C y x =,圆()222:41C x y -+=.(1)求圆心2C 到抛物线1C 准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A 、B 两点,若直线2PC 的斜率为1k ,直线AB 的斜率为2k ,125·24k k =-,求点P 的坐标.45.(2024·内蒙古呼和浩特·统考一模)拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ^.已知点M 的坐标为()4,0,M e 与直线l 相切.(1)求抛物线C 和M e 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M e 相切.判断直线12A A 与M e 的位置关系,并说明理由.46.(2024·浙江杭州·高二萧山中学校考期末)已知圆C 的方程为:()()22210x y r r ++=>(1)已知过点15,22M æö-ç÷èø的直线l 交圆C 于,A B 两点,若1r =,求直线l 的方程;(2)如图,过点()1,1N -作两条直线分别交抛物线2y x =于点P ,Q ,并且都与动圆C 相切,求证:直线PQ 经过定点,并求出定点坐标.16 蝴蝶问题47.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图,B ,A 是椭圆22:14x C y +=的左、右顶点,P ,Q 是椭圆C 上都不与A ,B 重合的两点,记直线BQ ,AQ ,AP 的斜率分别是BQ k ,AQ k ,AP k .(1)求证:14BQ AQ k k ×=-;(2)若直线PQ 过定点6,05æöç÷èø,求证:4AP BQ k k =.48.(2024·江苏宿迁·高二统考期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为1(F ,且过点P .(1)求椭圆C 的标准方程;(2)已知12,A A 分别为椭圆C 的左、右顶点,Q 为直线1x =上任意一点,直线12,AQ A Q 分别交椭圆C 于不同的两点,M N .求证:直线MN 恒过定点,并求出定点坐标.49.如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x轴的情形)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【题文】已知抛物线上异于坐标原点的两不同动点、满足求的面积的最小值.【参考答案】解:令设直线方程为由得,则又点到直线的距离为【题文】已知抛物线:,直线:与抛物线有且只有一个公共点.求抛物线的方程以及点坐标;设为坐标原点,直线平行于与交于不同的两点,,且与直线交于点,是否存在常数,使得?若存在,求出的值,若不存在,请说明理由.【参考答案】解:因为直线:与抛物线有且只有一个公共点,而由得,所以,解得,因此抛物线的方程为.将代入得,解得,因此点坐标为.由知,因此直线的斜率为,而直线平行于,所以可设直线的方程为.又因为直线与直线交于点,所以由得点的坐标为,因此.又因为直线与抛物线交于不同的两点,,若,,由得,所以,,因此,,所以.假设存在常数,使得成立,则,解得,因此存在常数,使得成立.【试题解析】本题考查了两条直线的交点坐标,两点间的距离公式和直线与抛物线的位置关系,考查了学生的运算能力,属于较难题.利用直线与抛物线相切,把直线的方程代入到抛物线的方程得,再利用判别式,计算得抛物线的方程为,再把将代入,计算得点的坐标;利用题目条件设直线的方程为,利用两条直线的交点坐标得点的坐标,再利用两点间的距离公式得,再设,,由由得,,再利用两点间的距离公式得,最后结合题目条件,计算得结论.【题文】已知点,点为抛物线上任意一点,且点为的中点,设动点的轨迹为曲线.Ⅰ求曲线的方程;Ⅱ已知点关于的对称点为点,是否存在斜率为的直线交曲线于、两点,且为以为底边的等腰三角形?若存在,请求出的面积;若不存在,请说明理由.【参考答案】解:Ⅰ设,,是的中点,则,因为为抛物线上,所以,即,所以,故曲线的方程为:;Ⅱ由题意得,设直线:,设,,将的方程代入得,所以,,,所以,的中点,因为,所以,所以符合,所以直线存在,所以化为,,,所以:,所以.【试题解析】本题考查求轨迹方程及直线与抛物线的综合,及面积公式,属于较难题.Ⅰ设的坐标,可得的中点的坐标,由在抛物线上可得的方程;Ⅱ设直线的方程,直线与抛物线联立求出两根之和及两根之积,可得的中点的坐标,由为以为底边的等腰三角形可得,所以可得,求出直线的方程,及弦长及的值,代入面积公式求出面积【题文】顺次连接椭圆的四个顶点得到边长为的菱形,且该菱形的对角线长度之比为.求椭圆的标准方程;设椭圆的右焦点为,定点,过点的直线与椭圆交于两点,设直线的斜率分别为,求证:.【参考答案】解:依题意得解得,所以椭圆的标准方程为.由知,证明:当直线的斜率不存在时,直线,的倾斜角互补,所以.当直线的斜率存在时,设其方程为,代入椭圆的方程,整理得,设,则,,综上所述,【试题解析】本题考查椭圆的标准方程,考查椭圆的性质和几何意义,考查直线与椭圆的位置关系,考查圆锥曲线中的定值问题,属于中档题.根据椭圆的方程结合椭圆的性质和几何意义得解方程组即可.当直线的斜率不存在时,直线,的倾斜角互补,所以当直线的斜率存在时,设其方程为,代入椭圆的方程,整理根据韦达定理得,从而化简即可求解.【题文】已知动点到点的距离比到直线的距离大.求动点的轨迹的方程;过点的直线与相交于,两点,直线与轴的交点为求证:.【参考答案】解:设点的坐标为,则点到直线的距离,由题意,点满足集合,所以,化简得,故动点的轨迹的方程为.证明:显然直线的斜率不为,故设直线的方程为,设,把代入,化简得到,则,且,由题意知,显然直线、的斜率都存在,分别设为,则,所以.【试题解析】本题考查圆锥曲线中的轨迹问题以及直线与圆锥曲线的位置关系,属于中档题.设点的坐标为,则点到直线的距离,写出点满足的条件,用坐标来表示,化简即可得到答案;显然直线的斜率不为,故设直线的方程为,设,设直线、的斜率分别为,把直线方程代入抛物线方程得到,结合韦达定理证明即可.【题文】已知椭圆的焦点在轴上,过作垂直于轴的直线,交椭圆于两点且,的周长为.求椭圆的方程;动点在直线上,由点引椭圆的两条切线,切点分别是,求证:直线过定点.【参考答案】解:的周长为,,.把代入椭圆方程中,可得,,,椭圆方程为.在直线上,,设,,设处的切线方程为假设斜率存在,联立方程得:,直线与椭圆相切,,方程有两个等根,,即,代入切线方程,可得:当斜率不存在时,也成立,同理,因为,都过点,,根据上式,可得直线的方程为:,把式代入上式,化简得:,直线过定点.【试题解析】本题考查椭圆的标准方程的求解、直线与椭圆的位置关系、圆锥曲线中定点问题的求解,属于中档题.根据椭圆的定义求出的值,再根据,得到,求出,从而得到椭圆的标准方程;先根据在直线上,得到,设,,,再设出处的切线方程假设斜率存在,并与椭圆方程联立,根据直线与椭圆相切,得到当斜率不存在时,也成立,同理得到,进而得到直线的方程为:,再结合式,化简得到直线过定点.【题文】已知椭圆的一个焦点坐标为,一条斜率为的直线分别交,轴于点,,交椭圆于点,,且点,三等分.求该椭圆的方程若是第一象限内椭圆上的点,其横坐标为,过点的两条不同的直线分别交椭圆于点,,且直线,的斜率之积,求证:直线恒过定点,并求出定点的坐标.【参考答案】解:不妨设,,,,则,即,,则由题意知,,或,,分别代入椭圆的方程得消去,整理得,,又,所以,.故该椭圆的方程为.解法一由题意得,直线的斜率存在,且不为,设直线的方程为,代入椭圆的方程整理得,.设,,由根与系数的关系得,由得,即,所以,即,整理得,.由求根公式得,,故或.若,则直线的方程为,直线过点,即点,舍去.若,则直线的方程为,恒过定点.解法二由题意得,直线的斜率存在,且不为,设直线的方程为,,,,,,.把代入椭圆的方程整理得,,即.把代入直线的方程并整理得,②,由得,,整理得,,又,所以.故直线的方程为,直线恒过定点.【试题解析】本题考查椭圆的方程与几何性质、直线与椭圆的位置关系,考查函数与方程思想、运算求解能力.分别设出点,的坐标,用相关参数表示,的坐标,代入椭圆方程,求出,的值设出直线的方程,利用条件求出相关参数关系,即可求得定点坐标.【题文】已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程.【参考答案】解:设抛物线的方程为,则消去得,,,,则,即,解得或,或.【题文】设分别是直线和上的动点,且,设为坐标原点,动点满足.求动点的轨迹方程斜率为的直线不经过原点,且与动点的轨迹相交于,两点,为线段的中点,直线与直线能否垂直?证明你的结论。

【参考答案】解:设,,,,,动点的轨迹方程.直线与直线不垂直.设,,联立,直线的斜率为,,直线的斜率为,直线与直线不垂直.【试题解析】本题考查轨迹方程的求法,直线与圆锥曲线位置关系的综合应用,考查转化思想以及计算能力.设出,坐标,的坐标,利用向量关系,距离即可求动点的轨迹方程;直线与直线不垂直.设,,利用平方差法转化求解即可.【题文】已知焦点在轴上,中心在原点,离心率为的椭圆经过点,动点,不与定点重合均在椭圆上,且直线与的斜率之和为,为坐标原点.求椭圆的方程;求证直线经过定点;求的面积的最大值.【参考答案】解:设椭圆:的离心率为,可知,又因为,所以.由定点在椭圆上可得,故,.所以椭圆的方程为.当直线与轴垂直时,设,则.由题意得,即,所以直线的方程为.当直线不与轴垂直时,可设直线为,,,将代入得,所以,.由直线与的斜率之和为可得①,将和代入①并整理得:②,将,代入②并整理得:,分解因式可得,因为直线:不经过点,所以,故.所以直线的方程为,经过定点.综上所述,直线经过定点.由可得,..因为坐标原点到直线的距离为,所以的面积.令,则,且,当且仅当,即时的面积取得最大值.【题文】已知抛物线,点,若斜率为的弦过点,且以为弦中点.Ⅰ求抛物线方程;Ⅱ若是抛物线过点的任一弦,点是抛物线准线与轴的交点,直线分别与抛物线交于两点,求证:直线的斜率为定值,并求的取值范围.【参考答案】解:设以点为中点的弦所在的直线交抛物线于,则有,于是,,得,抛物线方程为.设,则直线的方程为,代入得,,或,且,直线:,代入得,为点的纵坐标,点,同理,为定值,,由,得【试题解析】本题考查抛物线的定义,中点弦问题以及直线与抛物线的位置关系的综合问题.利用“点差法”,找到中点坐标与弦所在直线的斜率的关系,即可求解;将直线的方程整理代入抛物线方程中消元,由判别式可得,或,再由根与系数的关系写出两交点,坐标的关系.设出直线的方程,代入抛物线方程中,可以得到点,坐标之间的关系,这样就可把点表示成,同理,根据直线的斜率公式,化简得出,为定值.由两点之间的距离公式可把弦表示为,继而得到的取值范围.【题文】如图,过点作两条直线和:分别交抛物线于,和,其中,位于轴上方,直线,交于点.Ⅰ试求,两点的纵坐标之积.Ⅱ求证点的横坐标为定值,并求这个定值.Ⅲ若,求的最小值.【参考答案】解:Ⅰ将直线的方程代入抛物线得:,设点,则,Ⅱ由题得,则,,直线的方程为,直线的方程为,联立两直线方程消去得,将代入上式得,故点的横坐标为定值,并求这个定值为Ⅲ,,又,,令,则,当且仅当即时,取到最小值.【试题解析】本题考查直线与抛物线的位置关系及定值定点问题,同时考查利用基本不等式求最值.Ⅰ联立直线与抛物线的方程得:,点,根据韦达定理得,即可求得结果.Ⅱ由题得求出,的坐标,然后写出直线,的方程,求出交点的横坐标即可求解Ⅲ将表示为的函数,然后利用换元法以及基本不等式求解即可.【题文】已知椭圆,过点作椭圆的切线,在第一象限的切点为,过点作与直线倾斜角互补的直线,恰好经过椭圆的下顶点.求椭圆的方程为椭圆的右焦点,过点且与轴不垂直的直线交椭圆于,两点,点关于轴的对称点为,则直线是否过定点,若是,求出定点坐标若不是,请说明理由.【参考答案】解:由题意可知直线的斜率存在且不为,设直线的方程为,与椭圆方程联立,得化简整理得,,得,所以方程可化为,可得切点,由已知得,所以,即,得,所以椭圆的方程为.由知,设直线的方程为,与椭圆方程联立,得化简整理得,设,,则,.由,可得,则的方程为,即,所以当时,,即过定点.【试题解析】本题主要考查椭圆的标准方程、几何性质,直线的倾斜角与方程,点关于直线对称,直线与椭圆的位置关系,考查数形结合思想和运算求解能力.设出直线的方程,联立直线与椭圆方程,利用相切得到根的判别式为,进而得到切点坐标,再根据两直线倾斜角之间的关系,得到的值,从而得椭圆的方程设出直线的方程,联立直线与椭圆方程,设出,,可得,及坐标,写出直线的方程,化简,根据方程的特点,即得过定点.【题文】已知椭圆的左、右焦点分别为,且关于直线的对称点在直线上.求椭圆的离心率若的长轴长为且斜率为的直线交椭圆于,两点,问是否存在定点,使得,的斜率之和为定值若存在,求出所有满足条件的点坐标若不存在,请说明理由.【参考答案】解:依题意知,设,则且,解得即.在直线上,,,.存在由及题设得且,,,.椭圆方程为.设直线的方程为,代入椭圆方程消去整理得.依题意,即.设,,则,.如果存在使得为定值,那么的取值将与无关,,令,则为关于的恒等式,解得或综上可知,满足条件的定点是存在的,坐标为或【试题解析】本题考查了椭圆的标准方程,考查了直线与椭圆的位置关系,考查了定点与定值问题,考查计算能力与推理能力,属于难题.依题意知,设,则且,计算得出,根据在直线上,代入即可得解.先由及题设得出椭圆的方程,设直线的方程为,代入椭圆方程消去整理得依题意,设,,设存在使得为定值,,利用为关于的恒等式,即可得解.【题文】如图,已知定点,动点,分别在轴和轴上移动,延长至点,使,且.求动点的轨迹;圆:,过点的直线依次交于,两点从左到右,交于,两点从左到右,求证:为定值.【参考答案】解:方法一:设,,,则由,及,得化简得,所以动点的轨迹是顶点在原点,开口向上的抛物线;方法二:设,由,得,,所以,,由,得,即,化简得,所以动点的轨迹是顶点在原点,开口向上的抛物线;证明:由题意,得,的圆心即为抛物线的焦点,设,,则,同理,直线的斜率显然存在,设直线的方程为,联立得,所以,所以,,所以.所以为定值.【试题解析】本题考查了平面向量数量积的坐标运算,抛物线的概念与标准方程,轨迹方程问题,直线与抛物线的位置关系,抛物线中的定值问题,属于中档题.设,由,得,化简得,即可求出动点的轨迹;由由已知得,的圆心即为抛物线的焦点,设出直线的方程与抛物线方程联立,由,即可证明为定值.【题文】在平面直角坐标系中,抛物线的方程为,过点的直线与抛物线交于,两点,与轴交于点,设,.当为抛物线的焦点时,直线的方程为,求抛物线的标准方程;求证:为定值.【参考答案】解:直线的方程为,令,则,即,得:,抛物线的标准方程为;设,由得:,所以,由题意,直线的斜率存在,设直线,得:,所以故,即为定值为【试题解析】本题考查抛物线方程的求法,圆锥曲线中的定值问题,属中档题.求出焦点坐标,根据抛物线定义计算即可;利用,得到,然后直线与抛物线联立,利用韦达定理代入上式,即可得到定值.【题文】已知椭圆,是坐标原点,分别为其左右焦点,,是椭圆上一点,的最大值为.求椭圆的方程若直线与椭圆交于,两点,且,中点为试问点到直线的距离是否是定值?若是,请求出此定值,若不是,请说明理由.【参考答案】解:由题意得,所以,当位于上下端点时,最大,此时,所以,,所以椭圆的方程为.由,所以,即,①当、的斜率都存在,且不为时,设直线:,、,由得,,同理得,,所以,所以,所以,设到的距离为,则,即,即,即,所以为定值;②当、的斜率一个为,一个不存在时,,可得也为定值,综上所述点到的距离为定值.【试题解析】本题考查椭圆的标准方程、椭圆的性质以及直线与椭圆的位置关系,属于综合题,属于难题.由题意即可求得、的值,从而求得椭圆的方程;分类讨论,当、的斜率存在时,设出、的方程,代入到椭圆方程中,求得、点的坐标,即可求得的值,再由到的距离为,可得距离为定值.【题文】在平面直角坐标系中,椭圆的离心率为,一个焦点坐标为,动点在椭圆上,点是的中点,过点作直线和直线不重合与椭圆相交于,两点,.求椭圆的标准方程;若直线,的斜率分别为,,且,求的值.【参考答案】解:由题设可知:,,,故,故椭圆的标准方程为;设,,,,,,即,,,,同理,,,,,,,,又,,,即,或,当时,,两点重合,舍去,经检验符合题意.故的值为.【试题解析】本题考查椭圆的概念及标准方程,椭圆的性质及几何意义,椭圆中的向量问题,关键在于通过消元得到关于的方程,进而求解.根据焦点坐标和离心率求出标准方程;设,,,,由得到,将点的坐标带入椭圆方程,又点是的中点,得,,得到,根据,得到,得到关于的方程,解方程即可求解,注意检验.【题文】如图,椭圆的离心率是,点在短轴上,且.求椭圆的方程设为坐标原点,过点的动直线与椭圆交于,两点是否存在常数,使得为定值若存在,求出的值若不存在,请说明理由.【参考答案】解:由已知,点,的坐标分别为,,又点的坐标为,且,于是解得,,所以椭圆的方程为.存在理由如下:当直线的斜率存在时,设直线的方程为,,的坐标分别为,,联立得,其判别式,所以,,从而.所以当时,,此时为定值.当直线斜率不存在时,直线即为直线,此时.故存在常数,使得为定值.【试题解析】本题考查椭圆的概念及标准方程、直线与椭圆的位置关系以及圆锥曲线中的定点与定值问题,属于较难的题目.由已知,建立,,的方程组,即可求解;当直线的斜率存在时,设直线的方程为,,的坐标分别为,,联立直线与椭圆方程,利用根与系数的关系化简可得,即可求解,得到的值;当直线斜率不存在时,直线即为直线,直接计算即可得解.【题文】在平面直角坐标系中,曲线与直线交于,两点,当时,分别求在点和处的切线方程在轴上是否存在点,使得当变动时,总有请说明理由.【参考答案】解:由题设可得,,或,.又,故在处的导数值为,曲线在点处的切线方程为,即.在处的导数值为,曲线在点处的切线方程为,即.故所求切线方程为和.存在符合题意的点,理由如下:设为符合题意的点,,,直线,的斜率分别为,.将代入的方程得.恒成立,故,.从而.当时,有,则直线的倾斜角与直线的倾斜角互补,故,所以存在点,使得当变动时,总有.【试题解析】本题主要考查了导数的几何意义,直线与抛物线的位置关系,考查计算能力,属于中档题.求出,的坐标,求导,代值得出斜率,进而得出直线方程;将代入的方程得,结合韦达定理得出当时,有,得出结果.【题文】设椭圆的右焦点为,以原点为圆心,短半轴长为半径的圆恰好经过椭圆的两焦点,且该圆截直线所得的弦长为.求椭圆的标准方程;过定点的直线交椭圆于两点、,椭圆上的点满足,试求的面积.【参考答案】解:以原点为圆心,短半轴长为半径的圆的方程为.圆过椭圆的两焦点,.圆截直线所得的弦长为.,解得..椭圆的标准方程为.设过点的直线方程为.两点的坐标分别为,,联立方程,得,,,,,点,点在椭圆上,有,即,,即,解得,,.【试题解析】本题考查直线与椭圆的综合问题,较难.先求圆的方程为,由该圆截直线所得的弦长为得,求出,进而求,即可;设过点的直线方程为,联立方程,消得:,利用韦达定理,利用,得,由点在椭圆上,有,即,求出,再求,.【题文】已知椭圆:,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.若,点在椭圆上,、分别为椭圆的两个焦点,求的范围;若过点,射线与椭圆交于点,四边形能否为平行四边形?若能,求此时直线斜率;若不能,说明理由.【参考答案】解:时,椭圆:,两个焦点,,设,则,,,,的范围是;设,设直线,即,由的结论可知,代入椭圆方程得,,由与,联立得,若四边形为平行四边形,那么也是的中点,所以,即,整理得.解得,经检验满足题意,所以当时,四边形为平行四边形.【试题解析】本题考查了椭圆的性质,直线与椭圆的位置关系,以及圆锥曲线的探索性问题,属于中档题.设,则,,得出结论;设直线斜率为,求出点坐标,令为的中点得出的值.。

相关文档
最新文档