12v升压48v电路图大全(五款模拟电路设计原理图详解)
电动车用48V转12V电源转换器芯片3845分解图册
电动车用48V转12V的DC/DC转换器电路图发现一款长通牌48V转12V电源转换器,电路简洁,用料少,便于自制,特分解后绘制出电路图供爱好DIY的朋友们赏玩。
工作原理:本图是根据实物剖析而来,电源经36K电阻为TD3845A提供12V左右的电压,6脚输出脉冲经22欧电阻驱动D1振荡,输出电流通过电感T经220uF电容滤波后向负载供电,当D1截止时,变压器式电感T将磁能转变为电能,其极性左负右正,续流二极管D2导通,电流通过二极管继续向负载供电,使负载得到平滑的直流电。
集成电路3脚为过流检测,通过1K电阻对场管电流取样。
集成电路2脚为过压检测,通过FR157将输出电压反馈到集成电路7脚,一方面给7脚供电,一方面经36K电阻提供给2脚做过压检测。
材料的选用:电阻和电容等常用件已标注在电路图上,主要是电感的绕制,应选EI
28x21x11mm的磁芯,磁芯中间要留1mm的磁隙,避免磁饱和,线径用0.67mm(千分尺实测)漆包线4线并绕15圈半即可。
电路外装5A保险管,外壳采用铝合金做为散热基板。
场效应管可采用60A75V的大功率管,D2可用20A100V的肖特基整流管,厂家用场管型号已标注在电路图上。
本人购于2011年6月29日,该电源转换器在电动车配件市场售价17元。
【特性 脚功能】
UC3845其引脚的主要功能如下: 引脚 主要功能
1 内部误差放大器输出补偿端
2 电压负反馈信号输入端
3 电流取样检测端
4 内部振荡器Rt、Cr连接端
5 接地端
6 脉宽调制脉冲输出端
7 直流辅助电源+极
8 5V基准电源输出端
调这个大小可
以调输出电压大小。
48v电动车操控器电路图
48v电动车操控器电路图国内有些具有代表性的电动自行车操控器整机电路,并指出与别的商品的纷歧样的本地及其特征。
所列电路均是依据什物进行测绘所得,图中元件号为笔者所标。
经过介绍具体实例,抵达触类旁通的意图。
1.有刷操控器实例电路方框图见图1。
1)电路原理电路原理图见图2所示,该操控器由稳压电源电路、PWM发作电路、电机驱动电路、蓄电池放电指示电路、电机过流及蓄电池过放电维护电路等构成。
稳压电源由V3(TL431),Q3等元件构成,从36V蓄电池经过串联稳压后得到+12V电压,给操控电路供电,调度VR6可校准+12V 电源。
PWM电路以脉宽调制器TL494为基地构成。
R3、C4与内部电路发作振动,频率大概为12kHz。
H是高变低型霍尔速度操控转把,由松开到旋紧时,其输出端可得到4V一;1V的电压。
该电压加到TL494的②脚,与①脚电压进行比照,在⑧脚得到调宽脉冲。
②脚电压越低,⑧脚输出的调宽脉冲的低电平有些越宽,电机转速越高,电位器VR2用于零速调度,调度VR2使转把松开时电机停转再过一点。
电机驱动电路由Q1、Q2、Q4等元件构成。
电机MOTOR为永磁直流有刷电机。
TL494的⑧脚输出的调宽脉冲,经Q1反相拓宽驱动VDMOS管Q2。
TL494的⑧脚输出的调宽脉冲低电平有些越宽,则Q2导通时刻越长,电机转速越高。
D1是电机续流二极管,避免Q2击穿。
TL494的⑧脚输出低电往常,Q1、D2导通,Q4截止,Q2导通;TL494的⑧脚输出高电往常,Q1、D2截止,Q4导通,活络将Q2栅极电荷泄放,加快Q2的截止进程,对下降Q2温度有十分首要的效果。
蓄电池放电指示电路由LM324构成四个比照器,12V由R24、VR1、VR4、VR3、VR5、R21分压构成四个纷歧样基准电压别离加到四个比照器的反相端。
蓄电池电压经R23和R22分压加到每个比照器的同相端,该电压和蓄电池电压成份额。
VA=VB*R22/(R22+R23)。
12V开关电源电路原理图
+12V、0.5A单片开关稳压电源电路+12V、0.5A单片开关稳压电源的电路如图所示。
其输出功率为6W。
当输入交流电压在110~260V范围内变化时,电压调整率Sv≤1%。
当负载电流大幅度变化时,负载调整率SI=5%~7%。
为简化电路,这里采用了基本反馈方式。
接 通电源后,220V交流电首先经过桥式整流和C1滤波,得到约+300V的直流高压,再通过高频变压器的初级线圈N1,给WSl57提供所需的工作电压。
从次级线圈N2上输出的脉宽调制功率信号,经VD7、C4、L和C5进行高频整流滤波,获得+12V、0.5A 的稳压输出。
反馈线圈N3上的电压则通过 VD6、R2、C3整流滤波后,将控制电流加至控制端C上。
由VD5、R1,和C2构成的吸收回路,能有效抑制漏极上的反向峰值电压。
该电路的稳压原理分 析如下:当由于某种原因致使Uo↓时,反馈线圈电压及控制端电流也随之降低,而芯片内部产生的误差电压Ur↑时,PWM比较器输出的脉冲占空比D↑,经过 MOSFET和降压式输出电路使得Uo↑,最终能维持输出电压不变。
反之亦然。
为了抑制初、次级之间的共模干扰,在N2、N3的同相端还并联一只1500pF/2kV的高压陶瓷电压C6。
VD5可以选用 UF4005(1A/600V)型超快恢复二极管。
VD6选1N4148型硅高速开关二极管。
VD7须采用3A/40V以上的肖特基二极管,可选B82— 004型(15A/40V)。
C2宜选2200pF/1kV的高压陶瓷电容。
R1为C2的泄放电阻,可防止断电后在C2上积累的电荷形成高压。
为降低空载电压,在输出端并联一只 560Ω的最小负载电阻。
高频变压器可选国产E-20型铁氧体磁心。
其截面积Sj=0.25cm2。
绕制方法应为先绕N1,再绕N2,最后绕N3,并需注意线圈的极性。
各绕组所用漆包线的线径与匝数已标明在图中。
48V电动车充电高清电路图与原理详解(定稿)
48V电动车充电高清电路图与原理详解(定稿)第一篇:48V电动车充电高清电路图与原理详解(定稿)工作原理220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路 IC1 的 7 脚提供启动电压,IC1 的 7 脚得到启动电压后,(7 脚电压高于 14V 时,集成电路开始工作),6 脚输出 PWM 脉冲,驱动电源开关管(场效应管)VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为 IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容 C7 决定 IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。
VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压(约 53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到 IC3 的 2 脚和 5 脚。
正常充电时,R33 上端有 0.18-0.2V 的电压,此电压经 R10 加到 IC3 的 3 脚,从 1 脚输出高电平。
1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。
7款12v充电器电路图!详述其电子电路原理,充放电过程
7款12v充电器电路图!详述其电子电路原理,充放电过程充电过程分析:1.维护充电:当电池电压较低时(可设定,本电路预设在9V以下),充电器工作在小电流维护充电状态下,工作原理为U⑨脚(同相端)电位低于⑧脚(反相端),U输出低电位,T4截止。
U1D11脚电位约0.18V.此时充电电流约250mA(恒流电路由R14,U1D,T1B周边外围电路构成,恒流原理自行分析).2.快速充电:随着维护充电继续,电池电压逐渐升高,当电池电压超过9V时,充电器转入大电流快充模式下,U⑨脚(同相端)电位高于⑧脚(反相端),U输出高电位,T4导通,U1D11脚电位约为0.48V,充电器恒定输出约电流给电池充电。
3.限压浮充:当电池接近充足电时,充电器自动转入限压浮充状态下(限压浮充电压设定为13.8V,如为6V蓄电池,则浮充电压应设定为6.9V),此时的充电电流会由快速充电状态下逐渐下降,至电池完全充足电后,充电电流仅为10~30mA,用以补充电池因自放电而损失的电量。
4.保护及充电指示电路:本电路设有反极性保护电路,由D4,U,U1D,T1及外围元件构成,当电池反接时,充电器限制输出电流不致发生事故。
充电指示由U,D7及外围元件构成,充电时,D7点亮,充电器进入浮充状态后,D7熄灭,表示充电结束。
简易12v充电器电路图(二)对于胶体电介质铅酸蓄电池来说,该电路是一个高性能的充电器。
该充电器能够迅速地为电池充电,且当电池充满时,它可迅速地断开充电。
最开始的充电电流限制在2A。
随着电池电流和电压的增加,当电流增加到150mA时,充电器就会调整至较低的漂浮电压,以防止过度充电。
简易12v充电器电路图(三)如图所示,该电路由7805构成恒流源电路,通过大功率三极管进行扩流。
简易12v充电器电路图(四)不管是一个低电流(50毫安),还是高电流(1安培),该电路都有能力提供。
你可以选择手动充电或者自动模式。
当电流很低的时候,你可以在选择高电流充电之前先用低电流。
3.7v升压12v升压器电路图大全(七款升压器电路工作原理分析)
3.7v升压12v升压器电路图大全(七款升压器电路工作原理分析)3.7v升压12v升压器电路图(一)C1 是正反馈的作用。
当Q2 导通以后,C1 的正反馈作用,让Q2 迅速进入饱和区。
然后C1 放电并反向充电,随着Q1 基极电位的升高,Q2 的基极电流也降低,同时L1 上的电流不断升高,当达到足够大使Q2 退出饱和状态时,Q2 集电极电位的升高,将通过C1 的正反馈给Q1 的基极以提高电位,这样就让Q1,Q2 马上都回到截止区。
Q1 再度导通,得由R1,C1 再度充电,让Q1 的基极电位降下来,是需要比较长的时间的,所以通常做出来的电路L1 的充电时间远大于放电(包括之后等待再充电)时间的。
接上D1 后,输出电压过高,会对C1 的充放电产生影响,导致Q1,Q2 的导通时间更短,而放电后的等待时间更长。
从上面分析可以看出,这个电路的工作频率跟R1,C1 都有关。
也受L1 的一点影响,但影响不大。
这个电路的驱动能力,跟R1,L1 的取值和Q1,Q2 的放大倍数关系比较大。
这个电路起振容易,不起振的条件是:R1 比较小,Q1,Q2 导通后,C1 反向充电完成了,Q1 的电流达到最小值,这时如果Q2 还在饱和区(L1 的内阻限制Q2 的集电极电流进一步升高),这是耗电很大,电路停振。
3.7v升压12v升压器电路图(二)3.7V转12V1.5A,3.7V升压12V1.5A电路图,非同步整流升压典型电路,外置肖特基二极管。
外围简单。
过电流保护(OCP)检测通过LX 与GND 之间MOS 电流,也就是电感峰值电流,触发过电流会将占空比缩小,制电感电流,输出电压也会降低;当占空比50%以上触发OCP,为了让PWM 稳定方波,IC內部做斜率补偿,占空比越大OCP 会降低,透过外部电阻R3 调整OCP,R3 选用参考以下图表,电阻值150kΩ~51kΩ,OCP 2A~10A,OC Pin 不能空接。
12v升压48v电路图大全(五款模拟电路设计原理图详解)
12v升压48v电路图大全(五款模拟电路设计原理图详解)12v升压48v电路图大全(五款模拟电路设计原理图详解)12v升压48v电路图(一)直流-直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。
目前通信设备的直流基础电源电压规定为48V,由于在通信系统中仍存在24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将48V 基础电源通过直流-直流变换器变换到相应电压种类的直流电源,以供实际使用。
DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制(1)Buck电路--降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路--升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
还有Sepic、Zeta电路。
上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。
12v升压48v电路图(二)SX1328是一款宽电压输出,DC-DC 转换器。
输入电压范围是15V至32V,输出电压范围是5V至42V可调,内部MOSFET输出开关电流可高达3A,400KHz开关频率,内置软启动功能、过压保护、短路保护,采用标准的TO263-5无铅封装。
同时,该芯片可用于升降压稳压方案:10V~30V输入、输出稳定在12V,高效率、低成本、性能卓越。
SX1328应用电路非常简单,外围器件极少。
12v升压48v电路图(三)电动车用,48V/12V直流转换器是为了给整车照明及信号供电的装置,其电压输出为满足大灯照明(12V/35W)、转向灯(12V/8W2)和喇叭(12V /36W)分别使用或共同使用而设计,并能对负载过载起保护作用,其工作原理图见图1。
剖析一款48V 转12V直流转换器
剖析一款48V/12V直流转换器
电动车用48V/12V直流转换器是为了给整车照明及信号供电的装置,其电压输出为满足大灯照明(12V/35助、转向灯(12V/8W x2)和喇叭(12V/36哪分别使用或共同使用而设计,并能对负载过载起保护作用,其工作原理图见图1,图2为印板图。
工作原理:48V电压经D1,R2为ICI提供工作电压,ICI⑥脚输出方波脉冲经C2,B1转换为纯交流信号为VTI提供激励信号。
无负载时,电压经R1O、R11进ICI②脚,因电压过高而使IC1⑥脚输出脉宽极窄,输出端电压仍被稳定在12V;当有负载时,负载与R10, R11构成分压电路,进人IC 1②脚的电压随负载的大小变化而变化弓从而使IC 1⑥脚的输出脉宽发生变化,起到稳压的目的。
此外,当输出电流过大超过限定值时B2感生的电压经,D3、R8进人1C1③脚,迫使C1停振,保护VTl不致因过流而损坏。
新疆李栓福。
12v充电电路设计及电路图详解
12v充电电路设计及电路图详解想学好电路设计,需要是恒心和耐心,那么12v充电电路设计是怎么样的呢?下面就由店铺为你带来12v充电电路设计,希望你喜欢。
12v充电电路设计说明12V蓄电池自动充电电路会自动监测蓄电池电压,当蓄电池电压低于11V时,该电路自动对蓄电池充电直到将蓄电池充满(14.4V~14.7V左右)。
同时充满后自动关闭充电电路,直到蓄电池电压再次低于11V时对蓄电池再次充电。
电路原理说明电路见图。
将蓄电池接人电路后,因Ql基极接有电容Cl,并且蓄电池电压达不到14.7V,这时Dl和Ql截止,R3为Q2提供基极电流,Q2饱和导通,继电器Jl吸合,市电经变压器T降压并经全桥整流后对蓄电池充电,当蓄电池电压充满电时,其电压会达到14.7V左右,这时Dl和Ql导通,Q2截止,继电器Jl触点自动断开,充电结束。
充电结束后,蓄电池经负载放电其电压会随着时间的推移逐渐降低,合理选择VR1的阻值,即使当蓄电池电压降低到12V,这时D1截止,但由于R2的存在,Q1继续保持饱和导通状态,直到蓄电池电压继续降低到经R2流向Ql的电流不足以支持Ql导通,Ql会马上截止,这时Q2饱和导通,继电器Jl吸合,市电经变压器T降压并经全桥整流后对蓄电池再次充电。
稳压管Dl选定为13.5V~14V左右,加上Rl两端的电压和01的BE结电压正好14.4V~14.7V左右,作为充电监测的关断电压,如果没有合适的稳压管可以用两只稳压管串联代替。
VR1为充电开启电压调整电位器,通过调整VR1使其充电开启电压为11V附近即可。
元件选择:Ql为C1815,β≥100Q2为s8050,B≥100。
12v充电电路设计图电子电路的设计基本步骤1、明确设计任务要求:充分了解设计任务的具体要求如性能指标、内容及要求,明确设计任务。
2、方案选择:根据掌握的知识和资料,针对设计提出的任务、要求和条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进行分析,做到心中有数。
简易12v感应加热电路图吉宇鹏总结
简易12v感应加热电路图吉宇鹏总结感应加热设备变频电源原理与电路原理图简易12v高频加热电路原理图(一)在此次所共享的感应加热设备开关电源光耦电路方案设计中,人们应用集成icIR2llO用以这种驱动器半桥串联谐振逆变电源的电路原理,给出图图1图示。
从图1中人们能够看见,在该电控系统中,VD是自举二级管,选用修复時间一百多纳秒、耐压试验在500V左右的超快恢复二极管10Ia16。
CH是自举电容器,选用0.1μF的瓷器圆片电容器。
CL是旁路电容,选用1个0.1μF的瓷器圆片电容器和1μF的贴片电解电容串联DD、VCC各自是键入级逻辑性开关电源和中低端輸出级开关电源,他们应用相同+12V开关电源,而VB是高档輸出级开关电源,它与VCC应用相同开关电源并根据自举技术性来造成。
这里因为考虑到来到在输出功率MOSFET漏极造成的浪涌电压会根据漏栅极中间的米勒电容器藕合到栅极上热击穿栅极空气氧化层,因此在T1、T2的栅源之问接好12V稳压极管D1、D2以限定栅源工作电压,为此来维护输出功率M0SFET。
简单12v高频加热电路原理图(二)负偏压与输出功率拓展电源电路在掌握了这类感应加热设备开关电源的半桥串联谐振逆变电源设计图纸以后,接下去人们看来一下下怎样进行负偏压与输出功率拓展电源电路的设计方案工作中。
下面的图中,图2得出了实际的负偏压与输出功率拓展电源电路。
虚线右侧为输出功率拓展电源电路,选用俩对P沟道和N沟道MOSFETQ1、Q3和Q2、Q4,构成推挽式輸出构造。
它是1个高输入阻抗的输出功率缓冲器,能够造成8A谷值輸出电流量,而且静态数据电流量是能够忽视的。
在这里一负偏压与输出功率拓展电路原理的运作全过程中,当键入数据信号为高电平时,Q2的栅极也为高电平,进而Q2通断,这就促使Q3的栅极转为低电平,那样Q3就通断,则輸出也为高电平;当键入数据信号为低电平时,Q1通断,这就促使Q4的栅极转为高电平,那样Q4就通断,则輸出也为低电平。
48V电动车充电高清电路图与原理详解
工作原理220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压, 再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时, 集成电路开始工作),6 脚输出PWM脉冲, 驱动电源开关管( 场效应管) VT1 工作在开关状态, 流通过VT1 的S 极-D 极-R7- 接地端. 此时开关变压器T1 的8-9 绕产生感应电压, 经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431) 为精密基准压源,IC4( 光耦合器4N35) 配合用来稳定充电压, 调整RP1(510 欧半可调电位器) 可以细调充电器的电压,LED1 是电源指示灯. 接通电源后该指示灯就会发出红色的光。
VT1 开始工作后, 变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压( 约53V). 此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用) 给电池充电, 另一路经限流电阻R38, 稳压二极管VZD1,滤波电容C60, 为比较器IC3(LM358) 提供12V 工作电源,VD12 为IC3 提供基准压, 经R25,R26,R27 分压后送到IC3 的2 脚和5 脚。
正常充电时,R33 上端有0.18 -0.2V 的电压,此电压经R10 加到IC3 的3 脚,从1 脚输出高电平。
1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。
当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。
12v脉冲充电器电路图(五款12v脉冲充电器电路设计原理图详解)
12v脉冲充电器电路图(五款12v脉冲充电器电路设计原理图详解)描述12v脉冲充电器电路图(⼀)本⽂所介绍的全⾃动脉冲充电电路图,如下图所⽰。
该电路由NE555构成多谐振荡器,其输出端控制可控硅的通断;IC2为电压⽐较器。
当不接⼊电池时,⽐较器“+”端通过上拉电阻⾼于“-”端电平,因此⽐较器输出⾼电平,发光管不亮。
当接⼊电压不⾜的电池时,⽐较器“+”端电平低于“-”端,输出低电平,晶体管在IC1的3脚为⾼电平时导通,对电池充电。
在IC1的3脚为低电平时截⽌,电池以⼩电流通过集电极放电,发光管也随之周期性发光(因放电电流较⼩,不⾜以使发光管在放电期间发光),当电池充满时,⽐较器“+”端电位⾼于“-”端,输出⾼电平,三极管截⽌,发光管长时间不亮,⽰意充电完成。
12v脉冲充电器电路图(⼆)电路原理:如图为脉冲式快速充电器电路。
本镍镉电池充电器采⽤⼤电流脉冲放电的形式,以达到快速充电的效果并能减少不良的极化作⽤,增加电池使⽤寿命。
脉冲充电器的电路结构由电路滤波、⼀次整流滤波、PWM变换、⼆次整流滤波、脉冲电路、充放电电路和反馈控制。
该电路与普通开关电源电路相⽐,多了脉冲产⽣电路与充放电电路部分。
为了提⾼该电路的变换效率,PWM控制采⽤贵⽣动⼒专⽤研发的集成控制器件;脉冲产⽣电路采⽤了555时基电路与⼗进位计数器/分频电路。
DC/DC变换部分是使⽤贵⽣动⼒专⽤研发的反激式电路。
除了PWM控制本⾝的特性,如⼯作在准谐振模式、空载降频、动态⾃供电、⽆载功耗低等特⾊外,均与常规反激式电路相似。
12v脉冲充电器电路图(三)此设计是⼀种20A最⼤功率点跟踪(MPPT)太阳能充电控制器,专为对应于12V和24V⾯板的太阳能⾯板输⼊⽽设计。
此设计⾯向中⼩型功率太阳能充电器解决⽅案,能够通过12V/24V⾯板和12V/24V电池⼯作,输出电流⾼达20A。
此设计注重扩展性,通过将MOSFET改为100V额定部件可以轻松适应48V系统。
12v开关电源电路设计及电路图分析
12v开关电源电路设计及电路图分析想学好电路设计,就需要了解相关知识,那么12v开关电源的电路设计是怎么样的呢?以下是店铺为你整理推荐12v开关电源电路设计,希望你喜欢。
12v开关电源电路设计描述该开关电源属于小功率开关电源,输入220V交流市电,输出12V 直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。
其电原理图如图1所示。
其控制核心器件为脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。
各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反馈网络,确定误差放大器的增益。
(2)脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。
(3)脚过流检测输入端,当接人的电压高于1V时,禁止驱动脉冲的输出。
(4)脚为RT/RC定时电阻和电容的公共接人端,用于产生锯齿振荡波。
(5)脚为接地端。
(6)脚为脉宽可调脉冲输出端。
(7)脚为工作电压输入端(10V>Vi≤30V)。
(8)脚为内部基准电压(VREF=5v)输出端。
12v开关电源电路设计图12v开关电源电路设计步骤一、输入与整流电路220V交流市电经O.IA保险管Fl及正温度系数热敏电阻PT1进入交流输入电路,交流输入电路由Cl和L构成,为一低通滤波器。
其主要作用是抗干扰、抑制杂波。
它既阻止市电网中高频干扰脉冲进入开关电源电路,叉阻止开关电源产生的高频干扰谐波进入市电网。
经过低通滤波器滤除了高频杂波的220V交流电,由ED1全桥整流。
C2滤波后,在C2两端得到约300V的直流电压。
该电压经开关变压器初级线圈后作为功率开关管Ql的工作电源;经R2到电容C4作为脉宽调制集成电路TL3843P的启动电源。
二、启动与稳压电路经整流滤波的300V电压:一路经开关变压器Tl的1~2绕组加到功率开关管Ql(K3326)的漏极,另一路经启动电阻R2加到U1(TL3843)的(7)脚,作为主控制芯片TL3843P的启动电源。
12伏电瓶充电器电路图讲解
12伏电瓶充电器电路图讲解12伏电瓶充电器电路图讲解LM301A比较R1两端的电压降,由R2具有18 mV的参考。
比较器的输出控制电压调节器,迫使它产生较低的浮动电压,当电池充电电流,通过R1,下降到低于180毫安。
费和浮动电压为150 mV之间的区别是设置到R4 R3的比例。
LED的显示电路的条件。
这12伏铅酸电池充电器电路提供每节电池的2.5 V电压在25 ° C 至快速充电铅酸电池。
充电电流降低为电池充电,而当电流下降到180毫安,充电电路降低输出电压,以每单元2.35 V,留在完全充电状态的电池。
这个较低的电压,有助于防止滥收费用,这会缩短其寿命的电池。
LM301A比较R1两端的电压降,由R2具有18 mV的参考。
比较器的输出控制电压调节器,迫使它产生较低的浮动电压,当电池充电电流,通过R1,下降到低于180毫安。
费和浮动电压为150 mV之间的区别是设置到R4 R3的比例。
LED的显示电路的条件。
温度补偿,有助于防止电池过度充电,尤其是当铅酸电池经历了很宽的温度变化,而被起诉。
LM334温度传感器,关闭或电池需要放在降低4毫伏/ ° C,每节电池的充电电压。
由于电池需要在较低温度下的温度补偿,改变R5至30日为TC -5毫伏/ ° C;每个细胞,如果应用程序将现场温度低于 - 20 ° C.铅酸电池充电器的输入电压应进行过滤,这样做至少有3伏,比所需要的最高输出电压:约2.5 V的每个细胞。
最高的当前需要选择一个调节器:4 A 8 A LM338 LM371,LM350在25 °与无负载,改变R7的一个输出电压,7.05 V,并更改为Vout的奥迪 R8 14.1 V。
12-48vDC-DC变化
48V-12V的DC/DC转换器电路原理来源:网友推荐作者:电子高手字号:[大中小]因本人电动车48V--12V的DC--DC转换器坏了,在网上一直没找到相关资料,特剖析了供同行维修或自制参考,电路图本人检查了若干次,做到万无一失,并另付本人检测场效应管的经验!工作原理:本图是根据实物剖析而来,电源经D2、R1为IC1提供+12V左右的电压,6脚输出脉冲经C4和变压器耦合后驱动Q1振荡,当Q1导通后输出电流通过L经C9滤波后向负载供电,当Q1截止时,变压器式电感B3磁能转变为电能,其极性左负右正,续流二极管D4导通,电流通过二极管继续向负载供电,使负载得到平滑的直流,当输出电压过低或过高时,从电阻R11、R10、R9组成的分压电路中得到取样电压送到IC1 2脚与内部2.5V基准电压比较后控制Q1导通脉宽,从而使输出电压得到稳定。
当负载电流发生短路或超过8A时,IC1 3脚电压的上升会控制脉宽使Q1截止,以确保Q1的安全。
C8和R7构成振荡时间常数,本电路的振荡频率为65KHz,其计算公式为下:3845内部结构及引脚功能①误差放大器输出/补偿②电压反馈输入③电流取样输入④振荡电路时间常数⑤地⑥开关管驱动脉冲输出⑦电源⑧5V基准电压一般与振荡器相接附:数字万用表测场效应管的方法:用二极管档红表笔接栅极G,黑表笔接源极S,数字表显示1,黑表笔接S不动,将红表笔移至漏极D,此时数字表应显示150-300左右的数值,将红表笔接源极S,黑表笔接漏极D,此时应有60-100的数据,然后换过来,即S接黑,D接红,此时数据还是在150-300左右,用手一边接D,一边碰一下栅极G或用镊子短路DS,此时数据会慢慢变为无穷大1,然后交换表笔,即S接红,D接黑,数据将在500左右,此时证明该管是好的!(纯属个人领悟,不足之处还望谅解)TAG标签:48V-12V DC/DC转换。
12v负离子发生器电路图(四款模拟电路设计原理图详解)
12v负离⼦发⽣器电路图(四款模拟电路设计原理图详解)12v负离⼦发⽣器电路图(⼀)负离⼦发⽣器是⼀种⾼电压,使⽤555定时器电路产⽣的⽅波脉冲发⽣器电路。
⽅波脉冲,Q1的晶体管(TI p120)提供⾜够的电流的Q2(2N3055)晶体管将其打开。
每个时间的Q2晶体管导通过⾼压⾃动变压器,T2,电流流过⼀个10千伏的⾼压⼆极管(D1 IMD5210)。
是有失偏颇的D1 IMD5210⼆极管的极性放置C3和C4的负电荷,离开带负电荷的放电点。
燃放点的电压产⽣负⾯费⽤过去是由风扇强制空⽓,必须提供的T1变压器的输出12伏。
要⼩⼼,如果你想构建这个项⽬,可能是危险的。
12v负离⼦发⽣器电路图(四款模拟电路设计原理图详解)12v负离⼦发⽣器电路图(⼆)负离⼦发⽣器是利⽤⾼压电晕增加空⽓中负离⼦成份,从⽽改善空⽓质量,可以促进⾝体健康,被誉为“空⽓维⽣素”。
医学临床实践证明,它对呼吸系统、循环系统以及神经⽅⾯等疾病均有辅助疗效,因⽽在⽣活及医学界得以⼴泛应⽤。
本⽂介绍的是⼀种⾼效开放式负离⼦发⽣器,它采⽤可控硅逆变⾼压,悬浮式放电针,结构简单,效果良好,安全可靠。
市电电压在160-250V均能正常⼯作,且耗电极省,仅1W左右,因此可长期连续⼯作。
⼯作原理12v负离⼦发⽣器电路图(四款模拟电路设计原理图详解)该负离⼦发⽣器电路见图1220V市电经VD1、VD2和R1、R2的整流、限流,单向脉动电流控制VS的通断,产⽣振荡,经变压器T升压后,经VD3整流得到万伏左右的负⾼压,经放电针对空⽓放电,产⽣电离,⽣成负离⼦。
元器件选择与制作T可⽤14吋⿊⽩电视机⾏输出变压器改制,将低压绕组线圈全部拆除,⽤Φ=0.35mm漆包线或丝包线绕28匝为L1,原⾼压包为L2,R3是防触电保护电阻,阻值为2—4MΩ。
三枚放电针可⽤普通镀镍⼤头针,⾼压端引线要⽤⿊⽩⾏输出⾼压线。
该电路只要元件良好,焊接⽆误,勿需调试即可正常⼯作。
在12V的基础上增加48V会带来重大的好处
在12V的基础上增加48V会带来重大的好处
需要哪些必要条件
采用48V的方式不仅仅是需要一个新的电池,除了直径更小的线束和更小的连接器之外,还需要考虑线束弯曲(更细的线束允许更大的弯曲)、考虑线束绝缘以及其他机械结构的变化,提供详细的说明。
这些都是显而易见且容易操作的变化,但是由于12V和48V总线并不是相互隔离的,因此需要新的功能模块来共同管理它们(图4)。
图4:两个电压总线之间的关系很复杂,需要仔细分析它们共存的意义(来源:TI)
其他不太明显的变化也是有的,在12V总线上可能出现的高达30V和
40V电压峰值定制保护电路,此外在48V总线上的组件额定电压也要提高,额定电压较低的组件会发生断路,即使是基本的熔断器(本质上是对电流敏感的器件)也对自身承受的电压有最大的额定值,因此需要在物理和电气方面进行调整从而适应较低的电流(比较容易)和较高的电压(稍微困难)。
同样保护电池反向连接的标准组件也是每个电路模块必不可少的,在主线束意外错误连接时需要合理的处理可能产生的更高的反向电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12v升压48v电路图大全(五款模拟电路设计原理图详解)
12v升压48v电路图(一)直流-直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。
目前通信设备的直流基础电源电压规定为48V,由于在通信系统中仍存在24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将48V基础电源通过直流-直流变换器变换到相应电压种类的直流电源,以供实际使用。
DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制
(1)Buck电路--降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路--升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
还有Sepic、Zeta电路。
上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。
12v升压48v电路图(二)SX1328是一款宽电压输出,DC-DC转换器。
输入电压范围是15V至32V,输出电压范围是5V至42V可调,内部MOSFET输出开关电流可高达3A,400KHz开关频率,内置软启动功能、过压保护、短路保护,采用标准的TO263-5无铅封装。
同时,该芯片可用于升降压稳压方案:10V~30V输入、输出稳定在12V,高效率、低成本、性能卓越。
SX1328应用电路非常简单,外围器件极少。
12v升压48v电路图(三)电动车用,48V/12V直流转换器是为了给整车照明及信号供电的装置,其电压输出为满足大灯照明(12V/35W)、转向灯(12V/8W2)和喇叭(12V /36W)分别使用或共同使用而设计,并能对负载过载起保护作用,其工作原理图见图1。