递推数列通项公式求法(教案)讲解学习

合集下载

专题由递推关系求数列的通项公式(含答案)

专题由递推关系求数列的通项公式(含答案)

.专题 由递推关系求数列的通项公式一、目标要求通过具体的例题,掌握由递推关系求数列通项的常用方法:二、知识梳理求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。

三、典例精析1、公式法 :利用熟知的公式求通项公式的方法称为公式法。

常用的公式有 a nS 1 S nSn 1等差数列和等比数列的通项公式。

例 1已知数列 { a n } 中 a 1 2 , s nn 2+2 ,求数列 { a n } 的通项公式n 1及n 2评注 在运用 a n s n s n 1 时要注意条件 n 2 ,对 n=1 要验证。

2、累加法: 利用恒等式 a n a 1 a 2 a 1 +......+ a n a n 1 求通项公式的方法叫累加法。

它是求型如an 1a n +f n 的递推数列的方法(其中数列 f n 的前 n 项和可求)。

例2已知数列{ a n } 中 a 1 1 a n +1 ,求数列 { a n } 的通项公式 , a n 12 +3n2 n 2评注 此类问题关键累加可消中间项,而f ( n )可求和则易得 a n 3 、 . 累乘法 :利用恒等式 a n a 1a 2a 3 a n a n 0 求通项公式的方法叫累乘法。

它是求型如a 1 a 2a n1an 1g n a n 的递推数列的方法 数列 g n可求前 n 项积例 3已知数列{a n} 中s n 1 na n,求数列{ a n} 的通项公式评注此类问题关键是化a ng n ,且式子右边累乘时可求积,而左边中间项可消。

a n14、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法称为转化法。

高中数学教案《由递推公式求通项公式

高中数学教案《由递推公式求通项公式

高中数学教案《由递推公式求通项公式》一、教学目标:1. 理解递推公式的概念,掌握递推公式的求解方法。

2. 能够运用递推公式求解简单的数列通项公式。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 递推公式的定义和性质。

2. 递推公式的求解方法。

3. 运用递推公式求解数列通项公式。

三、教学重点与难点:1. 重点:递推公式的求解方法,数列通项公式的求解。

2. 难点:递推公式的灵活运用,解决复杂问题。

四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究递推公式的求解方法。

2. 通过案例分析,让学生掌握递推公式在求解数列通项公式中的应用。

3. 利用数形结合的方法,帮助学生直观地理解递推公式的性质。

五、教学过程:1. 导入:引导学生回顾数列的相关知识,为新课的学习做好铺垫。

2. 递推公式的定义与性质:讲解递推公式的定义,引导学生理解递推公式的性质。

3. 递推公式的求解方法:介绍递推公式的求解方法,引导学生掌握求解技巧。

4. 数列通项公式的求解:讲解如何运用递推公式求解数列通项公式,引导学生独立解决问题。

5. 案例分析:分析典型例题,让学生加深对递推公式的理解和运用。

6. 练习与拓展:布置练习题,巩固所学知识,引导学生运用递推公式解决实际问题。

8. 作业布置:布置适量作业,让学生巩固所学知识。

9. 课后辅导:针对学生在作业中遇到的问题进行辅导,提高学生的解题能力。

10. 教学评价:对学生的学习情况进行评价,为下一步教学提供参考。

六、教学评价:1. 学生能够准确理解递推公式的概念及其在数列中的作用。

2. 学生能够运用不同的方法解决递推公式的问题,并正确求解通项公式。

3. 学生能够分析问题,将实际问题转化为数学问题,并运用递推公式解决。

4. 学生能够通过案例分析,理解递推公式在不同情境下的应用。

5. 学生能够独立完成课后作业,并对遇到的问题进行自主思考和解决。

七、教学拓展:1. 探讨递推公式在其他数学领域的应用,如组合数学、图论等。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

数列的递推公式与通项公式前n项和公式

数列的递推公式与通项公式前n项和公式

二、数列的递推公式与通项公式、前n 项和公式一、知识点回顾:1、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。

2、数列前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧--11s s s n n 12=≥n n 。

在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本讲内容一个重点,要认真掌握之。

注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);若a 1 适合由a n 的表达式,则a n 不必表达成分段形式,可化统一为一个式子。

(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

3、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。

一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。

求数列的通项公式(教师版)

求数列的通项公式(教师版)

求数列的通项公式(教师版)1、数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.2、数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1或a n +1的关系式表示(如a n =2a n -1+1),则这个关系式就称为数列的递推公式.3、由数列的递推公式求数列的通项公式的常见方法(1)待定系数法:①形如a n +1=ka n +b 的数列求通项;②形如a n +1=ka n +r ∙b n 的数列求通项;(2)倒数法:形如a n +1=pa nqa n +r的数列求通项可用倒数法;(3)累加法:形如a n +1-a n =f (n )的数列求通项可用累加法;(4)累乘法:形如a n +1a n=f (n )的数列求通项可用累乘法;(5) “S n ”法:数列的通项a n 与前n 项和S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.;S n 与a n 的混合关系式有两个思路:①消去S n ,转化为a n 的递推关系式,再求a n ;②消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .考向一 待定系数法例1—1 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式。

解:设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t )即a n +1=2a n -t ⇒t =-3.故递推公式为a n +1+3=2(a n+3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列,则b n =4×2n -1=2n +1,所以a n =2n +1-3.例1—2 在数列{a n }中,a 1=-1,a n +1=2a n +4·3n ,数列{a n }的通项公式。

两类典型递推数列通项公式求法初探

两类典型递推数列通项公式求法初探

两类典型递推数列通项公式求法初探在我们学习数学的过程中,递推数列可是个让人又爱又恨的“家伙”。

今天咱们就来聊聊两类典型递推数列通项公式的求法,让咱们一起揭开它们神秘的面纱!我还记得有一次在课堂上,给同学们讲解这部分内容。

当时有个同学,眼睛瞪得大大的,一脸迷茫地看着我,仿佛在说:“老师,这都是啥呀?” 其实呀,很多同学一开始都会被递推数列搞得晕头转向,但只要掌握了方法,就会发现其实也没那么难。

咱们先来说说第一种典型的递推数列——等差数列。

等差数列的定义是:从第二项起,每一项与它的前一项的差等于同一个常数,这个常数叫做等差数列的公差,常用字母 d 表示。

比如数列 2,5,8,11,14……这就是一个公差为 3 的等差数列。

那等差数列的通项公式怎么求呢?假设首项是 a₁,公差是 d,第 n 项就是 aₙ = a₁ + (n - 1)d 。

比如说这个等差数列:3,7,11,15,19……首项 a₁ = 3,公差 d = 4,那么第 5 项 a₅就等于 3 + (5 - 1)×4 = 19 。

咱们再通过一个例子来加深一下理解。

假设一个等差数列的首项是1,公差是 2,那么它的通项公式就是 aₙ = 1 + (n - 1)× 2 = 2n - 1 。

当 n = 10 时,a₁₀ = 2×10 - 1 = 19 。

接下来咱们说说第二种典型的递推数列——等比数列。

等比数列呢,是指从第二项起,每一项与它前一项的比值等于同一个常数,这个常数叫做等比数列的公比,常用字母 q 表示。

比如说数列 2,4,8,16,32……这就是一个公比为 2 的等比数列。

等比数列的通项公式是 aₙ = a₁×q⁽ⁿ⁻¹⁾。

就拿刚才那个等比数列来说,首项 a₁ = 2,公比 q = 2,那么第 5 项 a₅ = 2×2⁽⁵⁻¹⁾ = 32 。

再比如有一个等比数列,首项是 3,公比是 3,那么它的通项公式就是 aₙ = 3×3⁽ⁿ⁻¹⁾ = 3ⁿ 。

递推数列通项公式求法(教案设计)

递推数列通项公式求法(教案设计)

递推数列通项公式的求法彭山一中 郑昌建一、课题:常见递推数列通项公式的求法二、教学目标1、知识与技能:会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。

2、过程与方法:①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。

②对比等差数列的推导总结出累加法的试用题型。

③学生分组讨论完成累乘法及待定系数法的相关题型。

3、情感态度与价值观:①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神;②通过对数列递推公式问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。

三、教学重点:根据数列的递推关系式求通项公式。

四、教学难点:解题过程中方法的正确选择。

五、教学课型,课时:复习课 1课时六、教学手段:多媒体课件,黑板,粉笔七、教学方法: 激励——讨论——发现——归纳——总结八、教学过程(一)复习回顾:1、通项公式的定义及其重要作用2、学过的通项公式的几种求法3、区别递推公式与通项公式,从而引入课题(二)新知探究:问题1:已知数列}{n a ,1a =1,1n a +=n a +2,求n a ?变式: 已知数列}{n a ,1a =1,1n a +=n a +2n ,求n a ?活动:通过分析发现形式类似等差数列,故想到用累加法去求解。

教师引导学生细致讲解整个解题过程。

解:由条件知:n a a n n 21=-+分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)1(2)2(232222-⨯+-⨯+⨯+⨯+=n n所以[]2)1(22)1(1-⨯+-=-n n a a n 由1a =1,12+-=∴n n a n 练习: 已知数列}{n a ,1a =1,n n n a a 211=-+,求n a ? 总结:类型1:)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

高考数学复习第六章数列专题研究1递推数列的通项的求法文市赛课公开课一等奖省优质课获奖课件

高考数学复习第六章数列专题研究1递推数列的通项的求法文市赛课公开课一等奖省优质课获奖课件

所以an= 2( 2-1)n+ 2. 【答案】 an= 2( 2-1)n+ 2
24/40
(2)(2017·武汉市二中月考)已知正项数列{an}中,a1=2,an+1
=2an+3×5n,则数列{an}的通项 an=( )
A.-3×2n-1
B.3×2n-1
C.5n+3×2n-1
D.5n-3×2n-1
【解析】 方法一:在递推公式an+1=2an+3×5n的两边同时 除以5n+1,得5ann++11=25×5ann+35,①
27/40
当 n≥2 时,2ann=2a22+(2a33-2a22)+(2a44-2a33)+…+(2ann-2ann--11)=a42

3 22

32 23



3n-2 2n-1

7 4

34[1-(32)n-2] 1-32

1 4

(
3 2
)n

1


an

2n-2+2×3n-1(n≥2), 4(n=1).
28/40
方法二:依题意,得 Sn+1-Sn=an+1=Sn+3n, 即 Sn+1=2Sn+3n. 由此得 Sn+1-3n+1=2(Sn-3n), ∴数列{Sn-3n}是首项为 S1-31=1,公比为 2 的等比数列. 因此 Sn-3n=2n-1,n∈N*. ∴Sn=3n+2n-1. 因此 an=SS1n-Sn-1=24n(-2n+=21×)3.n-1(n≥2), 【答案】 an=42n-2(+n2=×13)n-1(n≥2),
n-n 1,逐项相乘,得aan1=1n,又 a1=1,故 an=1n.
【答案】

由递推公式求数列的通项(说课稿)

由递推公式求数列的通项(说课稿)

由递推公式求数列的通项(说课稿)一、学情分析和教法设计:1、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也学过了数列通项公式的求法,也接触过了数列的递推关系。

但这部分内容学生容易出差错,所以有必要对此内容进行深入研究,使学生能更好的掌握。

本节课作为一节专题探究课,将会根据递推公式求出数列的项,并能运用累加、累乘、化归等方法求数列的通项公式,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。

2、教法设计:本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。

采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。

先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。

在教学过程中采取如下方法:①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性;②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

④思维导图:利用思维导图,将本节课内容进行梳理,联系之前学习的内容,进行发散思维,加深学生的记忆。

二、教学设计:1、教材的地位与作用:递推公式是认识数列的一种重要形式,是给出数列的基本方式之一。

对数列的递推公式的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;化归思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。

高中数学选择性必修二(人教版)《4.1 数列的概念 第二课时 数列的通项公式与递推公式》课件

高中数学选择性必修二(人教版)《4.1  数列的概念  第二课时  数列的通项公式与递推公式》课件

题型二 由前 n 项和 Sn 求通项公式 an [学透用活]
[典例 2] 设数列{an}的前 n 项和为 Sn.已知 2Sn=3n+3,求{an}的通项 公式.
[解] 因为 2Sn=3n+3,所以 2a1=3+3,故 a1=3. 当 n≥2 时,2Sn-1=3n-1+3, 两式相减得 2an=2Sn-2Sn-1=3n-3n-1=2×3n-1, 即 an=3n-1,所以 an=33n,-1n,=n1≥,2.
题型三 数列中的最大项、最小项 [学透用活]
[典例 3] 已知数列{an}的通项公式为 an=n2-5n+4. (1)数列中有多少项是负数? (2)n 为何值时,an 有最小值?并求出最小值. [解] (1)由 n2-5n+4<0,解得 1<n<4.
∵n∈N *,∴n=2,3.∴数列中有两项是负数.
(二)基本知能小试
1.判断正误
(1)已知数列{an}的前 n 项和 Sn,若 Sn=n2-n,则 an=2n-2. ( ) (2)已知数列{an}的前 n 项和 Sn,若 Sn=3n-2,则 an=2×3n-1.
答案:(1)√ (2)×
()
2.已知数列{an}的前 n 项和 Sn 满足 Sn+Sm=Sn+m,且 a1=1,那么 a10
(2)法一:∵an=n2-5n+4=n-522-94, 可知对称轴方程为 n=52=2.5.
又∵n∈N *,故 n=2 或 3 时,an 有最小值, 且 a2=a3,其最小值为 22-5×2+4=-2.
法二:设第 n 项最小,由aann≤ ≤aann+ -11, , 得nn22--55nn++44≤≤nn-+1122--55nn-+11++44, . 解不等式组,得 2≤n≤3, ∴n=2 或 3 时 an 有最小值且 a2=a3, ∴最小值为 22-5×2+4=-2.

数列通项公式方法求前n项和例题讲解和方法总结

数列通项公式方法求前n项和例题讲解和方法总结

数列通项公式方法求前n项和例题讲解和方法总结数列的通项公式1.通项公式如果数列的第n项与项数n之间的函数关系可以用一个公式来表达,叫做数列的通项公式。

2.数列的递推公式(1)如果已知数列的第一项,且任一项与它的前一项之间的关系可以用一个公式来表示。

(2)递推公式是数列所特有的表示方法,它包含两部分,一是递推关系,二是初始条,二者缺一不可3.数列的前n项和与数列通项公式的关系数列的前n项之和,叫做数列的前n项和,用表示,即与通项的关系是4.求数列通项公式的常用方法有:(前6种常用,特别是2,5,6)1)、公式法,用等差数列或等比数列的定义求通项2)前n项和与的关系法,求解.(注意:求完后一定要考虑合并通项)3)、累(叠)加法:形如∴4).累(叠)乘法:形如∴5).待定系数法:形如a=pa+q(p≠1,pq≠0),(设a+k=p(a+k)构造新的等比数列)6)倒数法:形如(两边取倒,构造新数列,然后用待定系数法或是等差数列)7).对数变换法:形如,(然后用待定系数法或是等差数列)8).除幂构造法:形如(然后用待定系数法或是等差数列)9).归纳—猜想—证明”法直接求解或变形都比较困难时,先求出数列的前面几项,猜测出通项,然后用数学归纳法证明的方法就是“归纳—猜想—证明”法.递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法.通项公式方法及典型例题1.前n项和与的关系法例1、已知下列两数列的前n项和sn的公式,求的通项公式。

(1)(1)Sn=2n2-3n;(2)解:(1)a1=S1=2-3=-1,当n≥2时,an=Sn-Sn-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a1也适合此等式,∴an=4n-5.(1),当时===3经验证也满足上式∴=3(2),当时,由于不适合于此等式。

求数列的通项公式教学设计

求数列的通项公式教学设计
数学
学校年级班级
授课教师
指导教师
课时
2课时(第一课时)
一、教学内容分析(简要说明课题来源、学习内容、这节课的价值以及学习内容的重要性)
数列是高中数学重要内容之一,纵观全国高考,几乎都是一小题,一大题。虽然近几年难度有所下降,但对学生来说还是难。它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。求数列通项公式在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。数列模块,是高考重难点。
总结方法
归纳总结
已知数列{an}的前n项和Sn=3n2-2n+1,则其通项公式为________________
完成左侧题目的解答
自主学习
四、反馈测评
PPT展示以下题目
1.已知a1=2,an+1-an=2n+1(n∈N*),则an=________
2.设数列{an}的前n项和Sn=n2,则a8的值为( )
高三理科普通班,男生26人,女生24人,女生很认真,但太过于定性思维,成绩不太理想!数列通项是高考的重点内容,必须调动学生的积极让他们掌握!作为数列复习中通项公式的第一节课,只要求学生掌握求通项公式的四种基本方法,根据学生实际情况,题型设置简单,重在帮助学生巩固基础知识和归纳方法
四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)
情感态度与价值观:通过对数列通项公式的研究,体会从特殊到一般,又到特殊的认识事物规律,培养学生主动探索,勇于发现的求知精神
三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)

人教版高中数学《数列》全部教案

人教版高中数学《数列》全部教案

人教版高中数学《数列》全部教案人教版高中数学《数列》全部教案一、教学目标1、理解数列的概念,掌握数列的通项公式及其求解方法。

2、掌握等差数列和等比数列的特点及其求解方法。

3、能够根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。

二、教学内容1、数列的概念及通项公式2、等差数列的特点及求解方法3、等比数列的特点及求解方法4、数列在实际问题中的应用三、教学方法1、讲授数列的概念及通项公式,通过例题和练习题加深学生对数列的理解。

2、通过实例和练习题,让学生掌握等差数列和等比数列的特点及求解方法。

3、通过案例分析和实际问题,让学生了解如何根据实际问题中的数据特点,建立相应的数列模型并解决实际问题。

四、教学步骤1、导入新课:通过一些简单的练习题,让学生了解数列的概念及通项公式。

2、讲授新课:(1)数列的概念及通项公式(2)等差数列的特点及求解方法(3)等比数列的特点及求解方法(4)数列在实际问题中的应用3、课堂练习:通过一些例题和练习题,让学生进一步掌握数列的概念及通项公式、等差数列和等比数列的特点及求解方法。

4、课堂小结:对本节课的内容进行总结,强调数列在实际问题中的应用。

5、布置作业:让学生进一步巩固本节课所学内容,提高对数列的理解和应用能力。

五、教学重点难点1、数列的概念及通项公式的理解。

2、等差数列和等比数列的求解方法。

3、如何根据实际问题中的数据特点,建立相应的数列模型。

六、教学评价1、通过课堂练习和作业,检查学生对数列的理解和应用能力。

2、通过实际问题的解决,评价学生对数列的应用能力。

3、通过学生之间的交流和讨论,了解学生对数列的理解情况。

七、教学建议1、加强对数列概念的理解,注重数列的实际应用。

2、练习等差数列和等比数列的求解方法,掌握其特点。

3、注重数列在实际问题中的应用,提高学生的数学应用能力。

4、提倡学生之间的合作学习,通过交流和讨论,加深对数列的理解。

八、教学实例例1:已知某品牌汽车的价格为20万元,每年按发票金额的10%递增,求5年后该汽车的价格。

数列通项公式的完整求法,还有例题详解

数列通项公式的完整求法,还有例题详解

一.观察法之答禄夫天创作例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n的关系。

二、公式法:当已知条件中有a n 和s n 的递推关系时,往往利用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式。

例1: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3=f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例 2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公差位d ,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a , 解得⎩⎨⎧±==243d a ,又{}n a 是递减数列, ∴2-=d,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D)。

高考数学总复习考点知识专题讲解4 数列的递推与通项公式

高考数学总复习考点知识专题讲解4  数列的递推与通项公式

高考数学总复习考点知识专题讲解 专题4 数列的递推与通项公式一、数列的前n 项和S n 与a n 的关系(和式代换)类型1 已知n S 与n 的关系式,记为()n S f n =,它可由和式代换⎩⎨⎧≥-==-2,1,11n S S n Sa n nn 直接求出通项n a ,但要注意验证1n =与2n ≥两种情况能否统一,具体分三步进行: (1)1n =时,由11S a =,求1a 的值;(2)2n ≥时,由1n n n a S S -=-,求得n a 的表达式; (3)检验1a 的值是否满足(2)中n a 的表达式. ①若满足,则合写;②若不满足,则写成分段函数的形式:⎩⎨⎧≥-==-2,1,11n S S n S a n nn .【例1】已知数列{}n a 满足12323(1)(2)n a a a na n n n +++⋯=++,求数列{}n a 的通项公式.已知n S 与n a 的关系式,记为(),0n n f a S =,求它的通项公式n a ,一般有两种思路: (1)消n S :容易直接求n a 的情况,可利用阶差公式:()12n n n S S a n --=≥,消去n S ,转化为等差或等比数列直接求出n a ;(2)消n a :难以直接求n a 的情况,可利用阶差公式:()12n n n a S S n -=-≥,消去n a ,得出n S 与1n S -的递推关系式,先求出n S 后,即可转化为“第1种情形”,从而间接求出n a ,如例3.在求解具体的题目时,应根据条件灵活恰当地选择两种方法,确定变形方向.通常情况下,先求n S 要比直接求n a 麻烦;但也有时先直接求n a 会比先求n S 麻烦得多. 类型2 消n S【例2】设数列{}n a 的前n 项和为n S ,且342n n S a =-.求数列{}n a 的通项公式.【例3】设数列{}n a 的前n 项和为n S ,*226()n n S a n n N =+-∈.求数列{}n a 的通项公式.【例4】已知正整数列}{n a 的前n 项和为n S ,且对任意的自然数满足1n a =+.求}{n a 的通项公式.类型3 消n a【例5】(2022•天津模拟)已知数列}{n a 的前n 项和为n S ,且满足()1+202n n n a S S n -=≥,211=a ,求n a .【例6】在正项数列}{n a 中,n S 是数列}{n a 的前n 项和,且1+2n n na S a =,求n a .【例7】已知数列{}n a 中,13a =,前n 项和1(1)(1)12n n S n a =++-.求数列{}n a 的通项公式.二、数列的前n 项积n T 与a n 的关系已知n T 与n 的关系式,记为()n T f n =,它可由积式代换⎪⎩⎪⎨⎧≥==-2,1,11n T T n T a n n n 直接求出通项n a ,但要注意验证1n =与2n ≥两种情况能否统一,具体分三步进行: (1)1n =时,由11T a =,求1a 的值; (2)2n ≥时,由1-=n nn T T a ,求得n a 的表达式; (3)检验1a 的值是否满足(2)中n a 的表达式. ①若满足,则合写;②若不满足,则写成分段函数的形式:⎪⎩⎪⎨⎧≥==-2,1,11n T T n T a n n n .【例8】已知数列{}n a 满足(1)*2122()n n n a a a n N +=∈.求数列{}n a 的通项公式.三.累加法:适用于邻项差结构11()()n n n n a a f n a a f n ---=⇔=+ 累加法是利用:11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,将问题转化为基本数列求和,从而得到所求数列的通项.以下为三种累加后可裂项相消求和的题型:①若()f n 是关于n 的分式函数,()1111()()f n n n k k n n k==-++;②若()f n 是关于n 的对数函数,()1ln(1)ln(1)ln f n n n n =+=+-;③若()f n是关于n 的无理式函数,()1f n k=.④若()f n 是关于n 的一次函数,()f n kn b =+,累加后可转化为等差数列求和; ⑤若()f n 是关于n 的二次函数,()2f n an bn c =++,累加后可分组求和; ⑥若()f n 是关于n 的指数函数,()n f n p =,累加后可转化为等比数列求和; 【例9】在数列{a n }中,a 1=1,a n +1=a n +1n -1n +1,求a n .【例10】已知数列{a n }满足a 1=1,a n =a n -1+n +1-n (n ≥2),求a n .【例11】已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求n a .四.累乘法:适用于邻项商结构()()11nn n n a f n a a f n a --=⇔=⋅ 累乘法是利用:13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅,将问题转化为基本数列求和,从而得到所求数列的通项.【例12】已知数列{}n a 中,12a =,12n n n a a n++=,求数列{}n a 的通项公式;【例13】设{}n a 是首项为1的正项数列,2211(1)0n n n n n a a a na ++++-=(*∈N n ),求{}n a 的通项公式.五、跳跃等差数列通项公式——形如d a a n n =-+2类型定义:2+n a 与n a 不是数列{}n a 中连续的项,故此我们称满足d a a n n =-+2条件的数列{}n a 为跳跃等差数列.1.分奇偶讨论法:通过对数列下标n 进行换元,分为奇数项与偶数项两种情况分而治之. ①当n 为奇数时,可令12-=k n (k N *∈),反解得21+=n k ,于是d n a d n a d k a a a k n 21)121()1(11112-+=-++=-+==-;②当n 为偶数时,可令k n 2=(k N *∈),反解得2nk =,于是d n a d n a d k a a a k n 22)12()1(2222-+=-+=-+==.综上所述,⎪⎪⎩⎪⎪⎨⎧-+-+=为偶数为奇数n d n a n d n a a n 222121.注意换元后,要将最后的结果还原成关于n 的表达式.2.待定系数法:此类型题由于1a 和2a 作为数列奇数项和偶数项首项,会使得数列一些变形出现一些计算难度,故可以采用待定系数法来求统一的通项公式,考虑首项的因素,需要在原始的待定系数的前面加上()n 1-.具体操作如下:n a 1221,4,23n n a a a a n -===+≥n a【例14】(2014•新课标1卷理)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (1)证明:2n n a a λ+-=;(2)是否存在λ,使得{n a }为等差数列?并说明理由.衍生1 等和数列——形如c a a n n =++1类型1.“等和数列”定义: 在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.2.若c a a n n =++1(c 为常数),则数列}{n a 为“等和数列”,它是一个周期数列,周期为2,其通项分为奇数项和偶数项来讨论.衍生2 类等和数列——形如)(1n f a a n n =++类型处理思路:等和数列、类等和数列可以归结为跳跃等差数列问题,其基本思路是生成、相减;与“差型”的生成、相加(累加法)的思路刚好相呼应.当()b dn n f a a n n +==+++12时,则()b n d a a n n +-=++11,两式相减得:d a a n n =-+2,故{}n a 是公差为d 的跳跃等差数列,通过分奇偶项讨论进而将问题转化为{}12-n a 与{}n a 2是等差数列,然后求通项. 【例15】已知数列{}n a 的首项1a a =,1354n n a a n ++=-,求数列{}n a 的通项公式.六、跳跃等比数列通项公式——形如q a ann =+2类型1.定义:2+n a 与n a 不是数列{}n a 中连续的项,故此我们称满足q a a nn =+2条件的数列{}n a 为跳跃等比数列.2.分奇偶讨论法:通过对数列下标n 进行换元,分为奇数项与偶数项两种情况分而治之. ①当n 为奇数时,可令12-=k n (k N *∈),反解得21+=n k ,于是21112111112--+--⋅=⋅=⋅==n n k k n q a q a qa a a ;②当n 为偶数时,可令k n 2=(k N *∈),反解得2n k =,于是222122122---⋅=⋅=⋅==n n k k n q a q a qa a a .综上所述,⎪⎩⎪⎨⎧⋅⋅=--为偶数为奇数n qa n qa a n n n 222121.注意换元后,要将最后的结果还原成关于n 的表达式.【例16】已知数列{}n a 满足*212(),N ,1,2n n a qa q n a a +=≠∈==1,且233445,,a a a a a a +++成等差数列.求数列{}n a 的通项公式.衍生1 等积数列——形如p a a n n =⋅+1类型1.“等积数列”定义: 在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.2.若p a a n n =⋅+1(p 为常数),则数列}{n a 为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.衍生2 类等积数列——形如)(12n f a a n n =⋅++类型处理思路:等积数列、类等积数列可以归结为跳跃等比数列问题,其基本思路是生成、相除;与“商型”的生成、相乘(累乘法)的思路刚好相呼应.若()n f 为n 的函数时,可通过逐商法得)1(1-=⋅+n f a a n n ,两式相除后,通过分奇偶项讨论将问题转化为{}12-n a 与{}n a 2是等比数列,然后再求通项.1.分奇偶讨论法:()B An n n q n f a a +++==12,则B n A n n q a a +-+=)1(1,两式相除得:A nn q a a =+2,故 {}n a 是公比为A q 的跳跃等比数列,⎪⎩⎪⎨⎧⋅=⋅⋅=⋅=∴----为偶数为奇数n q a q a n q a q a a A n n A n n A An 222221211211)()(.}{n a n n a a a 2,111=⋅=+七.斐波那契数列定义:一个数列,前两项都为1,从第三项起,每一项都是前两项之和,那么这个数列称为斐波那契数列,又称黄金分割数列;表达式2110,1,1--+===n n n F F F F F ()n N +∈通项公式:n nn F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦(又叫“比内公式”,是用无理数表示有理数的一个范例)证明:线性递推数列的特征方程为:21x x =+,解得:1x =,2x 则1122n n n F c x c x =+∵121F F ==∴112222112211c x c x c x c x =+⎧⎨=+⎩解得:1c =;2c =∴n nn F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦斐波那契数列的一些性质:求和问题:①12-=+n n a S ;②n n a a a a a 212531=+++- ;③1122642-=++++n n a a a a a . 证明:①()()()1111112112122+=++++=+-++-+-=-=-++++++n n n n n n n n n n S a a a a a a a a a a a S S a ,故12-=+n n a S ,此证明方法也是错位相减的一种特例.②()()()n n n n n a S a a a a a a a a a a a 22212232432111231=+=+++++++=+++---- ,此证明过程也需要利用①的结论.③()()()11212122254321242-==+++++++=++++---n n n n n a S a a a a a a a a a a .这三个式子用数学归纳法证明也非常简单,无需强化记忆,每次列出前几项比划一下,考试中如果出现需要这些结论的,拿出前几项及时推导即可.平方和问题:122221+=+++n n n a a a a a (根据面积公式推导,如下图)构造正方形来设计面积,()()433221321232221a a a a a a S S S a a a =++=++=++,以此类推,也可以用数学归纳法证明,知道一个大致的方向即可. 裂项问题:⎪⎪⎭⎫⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=++++------123222423312222123242311111111111111n n n n n n n a a a a a a a a a a a a a a a a a n n n n n a a a a a a a 212212221211111----=⎪⎪⎭⎫ ⎝⎛-+. 注意:如果是斐波那契数列的部分项求和也可以,比如⎪⎪⎭⎫⎝⎛-=++++++-++++n m m m n m n m m m m m a a a p a a p a a p a a p 1112312 ,前提就是必须隔项,否则无法裂项相消.【例17】已知数列{}n a 满足:113a =,213a =,*11(,2)n n n a a a n N n +-=+∈…,则132435202120231111a a a a a a a a +++⋯+的整数部分为() A .6B .7C .8D .9【例18】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n --=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅B .12321n n a a a a a +++++=-C .1352121n n a a a a a -++++=-D .()121)4(3n n n n c c a n a π--+-≥=⋅【例19】斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列{}n a 满足10a =,21a =,()*21n n n a a a n ++=+∈N ,若记1352019a a a a M ++++=,2462020a a a a N ++++=,则2022a =________.(用M ,N 表示)【例20】(2022•天河区期末)意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,…….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列a n 说法正确的是( ) A .a 12=144B .a 2022是偶数C .a 2022=a 1+a 2+a 3…a 2022D .a 2022+a 2024=3a 2022【例22】(2023•荆州期末)2022年11月23日是斐波那契纪念日,其提出过著名的“斐波那契”数列,其著名的爬楼梯问题和斐波那契数列相似,若小明爬楼梯时一次上1或2个台阶,若爬上第n 个台阶的方法数为b n ,则( ) A .b 7=21B .b 1+b 2+b 3+b 5+b 7=51C .b 12+b 22+…+b n 2=b n •b n +1﹣1D .b n ﹣2+b n +2=3b n八.不动点与蛛网图(无需通项的无敌技能) 知识点一函数迭代和数列的关系已知函数)(x f y =满足+1=()n n a f a ,则一定有+1211=()()()n n n n a f a f a f a -==,故函数)(x f y =通过反复迭代产生的一系列数构成了数列{}n a 或者记为{}{}n n b x 、,而数列的每一项与函数迭代的关系可以如下表所示: 下面以函数21y x =+和数列121n n a a +=+①数列的递推式和函数的迭代式是有着相同的法则的,故数列的任何一项()+1,n n a a 都在函数)(x f y =上.②数列的通项公式是函数对1a 迭代1-n 次的结果,即11()n n a f a -=,每一次由于迭代产生出的因变量成为下一次迭代的自变量.③数列的首项1a 对整个数列有很大的影响,当迭代不断重复出现同一结果时,我们将其称为不动点.知识点二函数的迭代图像——蛛网图函数的迭代图像,简称蛛网图或者折线图,函数)(x f y =和直线y x =共同决定. 其步骤如下:1.在同一坐标系中作出)(x f y =和y x =的图像(草图),并确定不动点.(如图1所示)图1 图22.在找出不动点之后,确定范围,将不动点之间的图像放大,并找出起始点1a (如图2所示)3.由1a 向)(x f y =作垂直于x 轴的直线与)(x f y =相交,并确定交点()12,a a . 4.由()12,a a 向y x =作平行于x 轴的直线与y x =相交,并确定交点()22,a a . 5.由()22,a a 向)(x f y =作垂直于x 轴的直线与)(x f y =相交,并确定交点()23,a a . 重复4,5,直至找到点()1,n n a a +的最终去向.【例23】设数列{}n a 满足11(0),n a a a a +=>=证明:存在常数M ,使得对于任意的*n N ∈,都有n a M ≤.【例24】首项为正数的数列{a n }满足2*11(3),,4n na a n N +=+∈若对*n N ∈,一切都有1n n a a +>,求a 1的取值范围.知识点三蛛网图与数列的单调性定理1:)(x f y =的单调增区间存在两个不动点x 1,x 2(x 1<x 2),且在两个不动点之间形成一上凸的图形时,(如图9)则数列)(1n n a f a =+在两个不动点之间的区间是递增的,即1n n a a +>,在两不动点以外的区间则是递减的,即1n n a a +<.定理2:)(x f y =的单调增区间存在两个不动点x 1,x 2(x 1<x 2),且在两个不动点之间形成一下凹的图形时,(如图10)则数列)(1n n a f a =+在两个不动点之间的区间是递减的,即1n n a a +<,在两不动点以外的区间则是递增的,即1n n a a +>.图9 图10综上可得,当)(x f y =的单调增区间位于上凸内或者下凹外时,即当迭代起点1a 位于此区域时,一定有1n n a a +>同理,当迭代起点1a 位于单调增区间的上凸外或者下凹内时,一定有1n n a a +<.知识点四摆动数列以及由求导构造函数单调性来解决数列问题由反比例(递减函数)函数迭代构成的摆动数列,如图11所示,当)(x f 在区间为减函数时,和直线x y =相交于不动点,那么由此函数迭代构成的数列为摆动数列,即奇数项和偶数项构成相反的单调性,但都螺旋靠近不动点,极限也是不动点。

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法 讲义 (解析版)

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法  讲义 (解析版)

数列求解通项的方法总结方法一、公式法当已知数列的类型(如已知数列为等差或等比数列)时,可以设出首项和公差(公比),列式计算。

1、等差数列通项公式: dn a a n )1(1-+=2、等比数列通项公式:例1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式 (2)当d >1时,记c n =,求数列{c n }的前n 项和T n .变式1、已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5﹣3b 2=7.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.11-=n n q a a方法二、利用前n 项和与通项的关系已知数列{ a n }前n 项和S n ,求通项公式,利用 a n ={)1()2(11=≥--n S n S S n n 特别地,当n=1的值与S 1的值相同时,合并为一个通项公式,否则写成分段的形式。

例2、(1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.求{a n }的通项公式;(2)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式.(Ⅱ)设b n =,求数列{b n }的前n 项和.变式2、(2015·四川)数列{a n }(n=1,2,3…)的前n 项和S n ,满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列的前n 项和为T n ,求T n .方法三、利用递推关系式与通项的关系类型1、累加法 形如)(1n f a a n n +=+例3、(2014·全国卷)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.变式3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

递推数列通项公式求
法(教案)
由递推数列求通项公式
马鞍中学 --- 李群花
一、课题:由递推数列求通项公式
二、教学目标
1、知识与技能:
会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。

2、过程与方法:
①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。

②对比等差数列的推导总结出叠加法的试用题型。

③学生分组讨论完成叠乘法及待定系数法的相关题型。

3、情感态度与价值观:
①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神;
②通过对数列递推公式问题的分析和探究,使学生养成细心观察、
认真分析、善于总结的良好思维习惯;
③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。

三、教学重点:根据数列的递推关系式求通项公式。

四、教学难点:解题过程中方法的正确选择。

五、教学课型,课时:复习课 1课时
六、教学手段:多媒体课件,黑板,粉笔
七、教学方法:激励——讨论——发现——归纳——总结
八、教学过程
(一)复习回顾:
1、通项公式的定义及其重要作用
2、学过的通项公式的几种求法
3、区别递推公式与通项公式,从而引入课题
(二)新知探究:
问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。

活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。

教师引导学生细致讲解整个解题过程。

总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。

问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。

方法归纳:利用叠乘法求数列通项
活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。

练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0,
n
n n a a 21
=-
(n=1,2,3…),求它的通项公式a n 。

总结:类型2型如 用叠乘法求解
例3、数列{a n }中,a 1 = 1, a n+1 = 2a n + 1,
(1)求证;数列{a n +1} 为等比数列 (2)求数列{a n } 的通项公式
练习3:a 1=3 , a n+1=3a n +6,求通项a n
总结:类型3型如a 1+n =p a n +q (p ≠1,pq ≠0)递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=1-p q ,从而得等比数列{a n +k }。

,求数列{a n }的通项公式
总结:类型4 型如
),,(1均不为零r q p r qa pa a n
n n +=+.
3,,,:求通项则化为类型若则化为等差数列求通项若倒数法求法r p r p ≠=)(1n f a a n n ⋅=+求数列的通项公式数列例
)2(,2
2,2.4111≥+==--n a a a a n n n 114:2,4n n n a a a a +==+变式()求数列的通项公式数列)2(,4
2,2.2111≥+==--n a a a a n n n
九、课堂小结:
(1)叠加法
(2)叠乘法:
(3)构造法:
(4)取倒法
十、作业布置:试卷
十一、板书设计:
问题1 问题3 小结问题2 问题4 作业。

相关文档
最新文档