高中数学知识点总结全
高中数学知识点全总结(7篇)
高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。
高中数学知识点全总结简洁版
高中数学知识点全总结简洁版一、集合与函数概念1. 集合:包括集合的基本概念、表示方法、基本关系和运算。
2. 函数:函数的定义、性质、运算、反函数、复合函数和基本初等函数(幂函数、指数函数、对数函数、三角函数)。
二、数列与数学归纳法1. 数列:等差数列、等比数列的通项公式和前n项和公式。
2. 数学归纳法:证明方法,包括P(k)成立,假设P(k)成立,证明P(k+1)也成立。
三、排列组合与概率1. 排列组合:排列、组合的基本概念和计算公式。
2. 概率:古典概型、条件概率、独立事件的概率公式。
四、三角函数与三角恒等变换1. 三角函数:正弦、余弦、正切函数的性质和图像。
2. 三角恒等变换:同角三角函数的基本关系、和差化积、积化和差、倍角公式、半角公式。
五、平面向量与解析几何1. 平面向量:向量的加法、数乘、数量积、向量垂直与平行的判定。
2. 解析几何:直线和圆的方程,圆锥曲线(椭圆、双曲线、抛物线)的标准方程。
六、立体几何1. 空间几何体:多面体、旋转体的结构特征和表面积、体积公式。
2. 空间向量:空间向量的基本运算和用空间向量解决立体几何问题。
七、导数与微分1. 导数:导数的定义、几何意义、常见函数的导数。
2. 微分:微分的概念、微分的运算法则。
八、积分1. 不定积分:基本积分表、换元积分法、分部积分法。
2. 定积分:定积分的概念、性质、计算公式。
九、数列的极限与函数极限1. 极限:数列极限的定义、性质、极限的四则运算。
2. 函数极限:函数极限的定义、性质、极限存在的条件。
十、连续与间断1. 连续:连续函数的定义、性质、闭区间上连续函数的性质。
2. 间断:间断点的分类、间断点的性质。
十一、不等式与不等式组1. 不等式:一元一次不等式、一元二次不等式的解法。
2. 不等式组:不等式组的解集、线性规划。
十二、复数1. 复数的概念:复数的定义、代数形式和几何意义。
2. 复数的运算:复数的加法、减法、乘法、除法。
高中数学知识点总结(最全版)
高中数学知识点总结(最全版)第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象表示两个变量之间的对应关系、(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作、②给定一个集合到集合的映射,且、如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象、(6)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数、③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减、yxo(7)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数、(8)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最大值,记作、②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最小值,记作、(9)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数为奇函数,且在处有定义,则、③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反、④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数、第二章基本初等函数(Ⅰ)〖2、1〗指数函数【2、1、1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根、当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根、②式子叫做根式,这里叫做根指数,叫做被开方数、当为奇数时,为任意实数;当为偶数时,、③根式的性质:;当为奇数时,;当为偶数时,、(2)分数指数幂的概念①正数的正分数指数幂的意义是:且、0的正分数指数幂等于0、②正数的负分数指数幂的意义是:且、0的负分数指数幂没有意义、注意口诀:底数取倒数,指数取相反数、(3)分数指数幂的运算性质① ②③【2、1、2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低、〖2、2〗对数函数【2、2、1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数、②负数和零没有对数、③对数式与指数式的互化:、(2)几个重要的对数恒等式,,、(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…)、(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤ ⑥换底公式:【2、2、2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高、(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子、如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成、(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域、(8)反函数的性质①原函数与反函数的图象关于直线对称、②函数的定义域、值域分别是其反函数的值域、定义域、③若在原函数的图象上,则在反函数的图象上、④一般地,函数要有反函数则它必须为单调函数、〖2、3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数、(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象、幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限、②过定点:所有的幂函数在都有定义,并且图象都通过点、③单调性:如果,则幂函数的图象过原点,并且在上为增函数、如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴、④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数、当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数、⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方、〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式、②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式、③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便、(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是、②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,、③二次函数当时,图象与轴有两个交点、(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布、设一元二次方程的两实根为,且、令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号、①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出、(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令、(Ⅰ)当时(开口向上)①若,则②若,则③若,则xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)①若,则②,则xy0>aOabx2-=pqf(p)f(q)(Ⅱ)当时(开口向下)①若,则②若,则③若,则xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)①若,则②,则、xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
最全高中数学知识点总结归纳
最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高中数学知识点总结完整版
高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学知识点完全总结(打印版)
高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。
【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。
【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。
【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
高中数学知识点大全(完整版)
高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。
高中数学知识点总结(新高考地区)精选全文完整版
一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。
高中数学知识点全总结(精选10篇)
高中数学知识点全总结高中数学知识点全总结一、总结的释义1、总地归结。
2、对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性的结论。
3、指概括出来的结论。
二、高中数学知识点全总结(精选10篇)在学习中,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
掌握知识点有助于大家更好的学习。
下面是小编帮大家整理的高中数学知识点总结(精选10篇),仅供参考,希望能够帮助到大家。
高中数学知识点总结1一、自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1、y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1、作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3、k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
高中数学知识点总结21、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
高中数学知识点总结全【推荐】
高中数学知识点总结全【推荐】一、函数与导数1. 函数概念(1)函数的定义及表示方法(2)函数的分类:常函数、一次函数、二次函数、分段函数、复合函数等(3)函数的性质:单调性、奇偶性、周期性、对称性等2. 函数图像(1)基本初等函数图像:正比例函数、反比例函数、一次函数、二次函数、指数函数、对数函数等(2)图像的平移、伸缩、翻转等变换3. 导数与微分(1)导数的定义及几何意义(2)导数的计算法则:四则运算、复合函数、隐函数、参数方程等(3)高阶导数(4)微分概念及运算法则4. 导数的应用(1)函数的单调性、极值、最值(2)函数的凹凸性、拐点(3)函数图像的近似计算二、三角函数与解三角形1. 三角函数概念(1)锐角三角函数的定义及关系(2)任意角的三角函数定义及图像(3)三角函数的周期性、奇偶性、单调性等性质2. 三角恒等变换(1)和差公式(2)倍角公式(3)半角公式(4)积化和差、和差化积(5)正弦定理、余弦定理3. 解三角形(1)正弦定理、余弦定理的应用(2)三角形面积公式(3)三角形形状的判断三、数列1. 数列概念(1)数列的定义及表示方法(2)数列的分类:等差数列、等比数列、斐波那契数列等2. 等差数列与等比数列(1)通项公式(2)求和公式(3)性质及判定3. 数列的极限(1)数列极限的定义(2)数列极限的性质及运算法则(3)无穷等比数列的极限4. 数列的收敛性(1)收敛数列的定义及性质(2)收敛数列的判定方法四、平面向量与复数1. 平面向量(1)向量的定义及表示方法(2)向量的线性运算:加法、减法、数乘(3)向量的坐标表示(4)向量共线、垂直的判定(5)向量的模、夹角、投影(6)向量的平移2. 平面向量的应用(1)平面几何问题的向量解法(2)物理中的向量问题3. 复数(1)复数的定义及表示方法(2)复数的运算:加法、减法、乘法、除法(3)复数的几何意义(4)共轭复数、复数的模、复数的平方(5)复数与实数、向量的关系五、立体几何1. 空间几何体(1)多面体的定义及性质(2)旋转体的定义及性质(3)空间几何体的表面积、体积2. 平面与空间直线、曲线(1)平面的定义及性质(2)空间直线的定义及性质(3)空间曲线的定义及性质(4)空间几何体的截线3. 空间向量(1)空间向量的定义及线性运算(2)空间向量的坐标表示(3)空间向量的数量积、向量积(4)空间向量的应用:平面几何、立体几何问题六、解析几何1. 坐标系与方程(1)直角坐标系(2)点、直线、圆的方程(3)参数方程、极坐标方程2. 直线与圆(1)直线的斜率、截距、距离公式(2)直线与直线的位置关系(3)直线与圆的位置关系(4)圆的弦长、切线、相交弦等问题3. 椭圆、双曲线、抛物线(1)椭圆的定义、方程、性质(2)双曲线的定义、方程、性质(3)抛物线的定义、方程、性质(4)圆锥曲线的应用七、概率与统计1. 概率(1)随机事件、概率的定义(2)等可能事件的概率计算(3)条件概率、独立事件(4)随机变量的定义及分布2. 统计(1)数据的收集、整理、描述(2)平均数、中位数、众数、方差等统计量(3)概率分布:二项分布、正态分布等(4)抽样调查、估计与假设检验。
高中数学知识点总结归纳(完整版)
高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是学生们必修的一门主科,涵盖了许多重要的数学知识点。
下面是对高中数学知识点的全面总结和归纳。
一、数与代数1. 数的性质与运算- 自然数、整数、有理数、实数、复数的概念和性质- 加法、减法、乘法、除法的运算规则- 指数与根的运算- 绝对值与不等式的性质2. 代数式与方程- 代数式的定义与展开公式- 一次方程、二次方程的概念和解法- 不等式的解法二、函数与图像1. 函数的概念与性质- 定义域、值域、单调性、奇偶性、周期性等性质- 线性函数、二次函数、指数函数、对数函数、三角函数的图像和性质2. 函数的运算和复合- 函数的加减、乘除、复合运算- 复合函数的定义和性质三、几何与空间1. 平面几何- 点、线、面的概念和性质- 图形的相似与全等- 三角形、四边形、圆的性质和计算方法2. 空间几何- 线段、射线、角的概念与性质- 球体、棱柱、棱锥、圆柱、圆锥的性质和计算方法- 三棱锥、四棱锥、四面体、五、六、八面体的性质和计算方法四、概率与统计1. 概率- 随机事件与概率的概念- 基本事件、对立事件、互斥事件的概念和计算方法- 随机事件的依赖关系和计算方法2. 统计- 数据的收集、整理与展示方法- 均值、中位数、众数的概念和计算方法- 方差与标准差的概念和计算方法以上是高中数学的主要知识点总结归纳,通过学习这些知识点,学生们能够系统地掌握高中数学的基础知识并且能够应用于实际问题的解决中。
掌握好这些知识点不仅能在高中阶段取得好成绩,还能为将来的学习和职业发展打下坚实的数学基础。
希望学生们能够认真学习并善于运用这些数学知识,不断提高自己的数学素养。
高中数学知识点总结最全版
高中数学必修1知识点第一章函数概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (6)函数的单调性①定义及判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.<x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(7)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(8)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. yxo(9)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 第二章基本初等函数(Ⅰ) 〖2.1〗指数函数(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)rsr sa a aa r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(4)指数函数〖2.2〗对数函数 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN=⑤log log (0,)b na a nM M b n R b=≠∈⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y fx -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数. 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象 (3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x=下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆④端点函数值符号. ①k <x 1≤x 2⇔ ②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合 ⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p =②若2b p q a ≤-≤,则()2b m f a=-③若2b q a ->,则()m f q =()q,则)p b )2b a ③若2q a ->,则()M f q = )q 一、方程的根与函数的零点 0=成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学知识点总结[超全]
高中数学知识点总结[超全]一、函数1.函数的定义:函数是一种特殊的关系,将每一个自变量对应一个唯一的因变量。
2.函数的表示法:①显式表示法:y=f(x)②隐式表示法:F(x,y)=0③参数方程:x=f(t) , y=g(t)④极坐标表示法:ρ=f(θ)3.初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。
4.函数的分类:①奇偶性:奇函数与偶函数②单调性:单调递增与单调递减③周期性:周期函数5.函数的运算:四则运算、函数复合运算、反函数运算。
6.函数的图象:用图象把握函数的基本性质,已知函数的图象可以得到函数的解析式。
7.复合函数求导:链式法则二、极限1.极限的概念:当自变量无限接近于某个数时,函数值的变化趋近于某个确定的值。
2.极限的性质:①唯一性②局部有界性③保号性④夹逼原理⑤极限的四则运算法则⑥函数单调有限原则⑦洛必达法则3.连续性:函数在某一点上连续的充分必要条件是,该点的左右极限相等且与函数值相等。
4.间断点:可去间断点、跳跃间断点和无限间断点。
5.无穷小:当自变量趋近于某个数时,函数值无限接近于零的量。
6.无穷大:当自变量趋近于某个数时,函数值无限趋近于无穷大的量。
三、导数1.导数的概念:斜率的极限值,反映函数在某点的变化快慢。
2.导数的性质:①可导与连续的关系②导数的基本运算法则③导数的四则运算法则④反函数的导数⑤参数方程的导数⑥高阶导数3.导数应用:①切线和法线②几何意义③最值及其判定④函数单调性⑤函数凹凸性四、微分1.微分的概念:标量,表达函数的增量。
2.微分的运算法则:线性法则、乘积法则、商法则、复合函数的微分法。
3.微分与导数的关系:微分等于导数乘以自变量增量的值。
4.泰勒公式:将函数用局部线性近似来描述,是微积分的重要工具。
五、积分1.不定积分:求原函数的过程。
2.积分的性质:①线性性质②区间可加性质③积分中值定理3.定积分:反映曲边梯形面积的大小。
4.定积分基本定理:导数与积分是互逆运算。
高中数学知识点总结大全(非常全面)
高中数学知识点总结大全(非常
全面)
高中数学知识点总结1
一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式,当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
高中数学知识点总结2
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求解动点轨迹方程的常用方法:求解轨迹方程的方法有很多,如直译法、定义法、相关点法、参数法、求交法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
高三数学知识点全总结大全
高三数学知识点全总结大全一. 函数与方程1.一次函数1.1 定义与性质1.2 求解一次方程2. 二次函数2.1 定义与性质2.2 求解二次方程3. 指数函数与对数函数3.1 指数函数的定义与性质3.2 对数函数的定义与性质4. 复合函数与反函数4.1 复合函数的概念4.2 反函数的概念与性质5. 三角函数5.1 正弦函数、余弦函数、正切函数的定义与性质5.2 三角恒等式的运用6. 方程与不等式6.1 一元二次方程与不等式6.2 绝对值方程与不等式7. 线性规划与整式卷积7.1 线性规划的概念与解法7.2 整式卷积的概念与运算二. 三角学1. 三角函数与三角恒等式1.1 三角函数的图像与性质1.2 三角恒等式的证明与运用2. 三角函数的应用2.1 三角函数在几何中的应用2.2 三角函数在物理中的应用3. 平面直角坐标系3.1 平面直角坐标系的引入与性质3.2 向量的概念与运算4. 复数与平面向量4.1 复数的定义与运算4.2 平面向量的定义与运算5. 解析几何5.1 点、直线、圆的方程5.2 曲线的方程与性质三. 空间解析几何1. 空间直角坐标系1.1 空间直角坐标系的引入与性质1.2 距离与中点公式的运用2. 空间中的直线2.1 直线的方程与性质2.2 直线与平面的位置关系3. 空间中的平面3.1 平面的方程与性质3.2 平面与平面的位置关系4. 空间中的曲线与曲面4.1 曲线的方程与性质4.2 曲面的方程与性质5. 空间中的向量5.1 向量的概念与运算5.2 平面与向量的关系四. 数列与数学归纳法1. 数列的概念与性质1.1 通项与递推式1.2 数列的极限与收敛性2. 数学归纳法2.1 数学归纳法的基本思想 2.2 数学归纳法的应用五. 概率与统计1. 事件与概率1.1 事件的定义与性质1.2 概率的定义与运算2. 排列与组合2.1 排列的定义与性质2.2 组合的定义与性质3. 随机变量与概率分布3.1 随机变量与概率分布的概念3.2 常见离散与连续概率分布的特点与应用4. 统计与抽样4.1 统计的概念与性质4.2 抽样技术与统计推断以上就是高三数学知识点的全面总结大全。
高中数学知识点总结[超全]
高中数学知识点总结[超全]一、初步基础1.集合:包含一定元素的整体2.映射:关联每一个元素到另一个集合元素的一种方式3.函数:一种映射,在不同区间之间限制,且每个元素至多有一个相应元素4.数与运算:加、减、乘、除5.方程、不等式:含有未知量的等式或不等式二、函数与方程1.函数的性质:单调性、奇偶性、周期性、多项式函数、根、零点等2.图像的分析:左、右极限、有孤立点或无穷点等3.解方程和不等式:根、解集、区间、正负等4.函数的运算:四则运算、复合函数、反函数等三、平面与立体几何1.点、线、面、体等基本概念2.图形的面积、周长、体积、等价性等3.相似与全等:图形的比例、相似判定、全等条件等4.三角函数:sin、cos、tan、cot的定义、性质和计算四、导数和微积分1.导数的定义和求法:函数的斜率和变化率2.导数的运算:四则运算、复合函数、反函数等3.微分和微分的应用:近似计算、切线与法线、曲率等4.不定积分和定积分:基本公式、换元积分法等五、数列和数学归纳法1.数列的性质:公差、通项公式、极限等2.数列的运算:求和、部分和、等比等3.数学归纳法的原理和应用六、概率统计1.概率基本概念:事件、样本空间、概率等2.概率的计算:古典概型、加法定理、乘法定理等3.离散与连续型随机变量的概率密度函数、分布函数和期望4.假设检验和区间估计:假设检验的基本原理、一致最有力检验、区间估计等七、解析几何1.空间中的基本概念和坐标系2.点、线、面、平面等的距离计算3.向量与其运算:加、减、数量积、向量积等4.直线和平面的方程:点法式、一般式、截距式等以上就是高中数学中的基本知识点,各知识点都有相应的计算方法和题型,需要学生多做练习。
高中数学知识点总结(重点)超详细
高中数学知识点总结(重点)超详细一、函数1.函数的概念和性质* 函数的定义:函数就是一种对应关系,它把一个自变量的集合映射到一个因变量的集合。
* 定义域、值域和函数值:函数的定义域是自变量可能取值的集合,值域是函数值可能取值的集合,函数值就是对应于自变量的因变量的值。
* 单调性:单调递增或递减;严格单调递增或递减。
* 奇偶性:函数关于y轴对称为偶函数,关于原点对称为奇函数。
* 周期性:有最小正周期T,则有f(x+T)=f(x)。
2.初等函数* 常数函数、线性函数、二次函数、幂函数、指数函数、对数函数和三角函数等。
* 互为反函数:两个函数互为反函数,当且仅当它们的复合是恒等函数,即 f(g(x))=x,g(f(x))=x 时。
3.函数的图像* 导数:函数在一点处的导数定义为函数在该点处的变化率,几何意义为函数图像在该处的切线斜率。
* 函数的单调区间:导数恒正则单调递增,导数恒负则单调递减,导数为0则可能有极值。
* 函数的极值与最值:极值包括极大值和极小值,最值包括最大值和最小值,求解时需要用导数或者区间端点代入函数取值比较大小。
二、三角函数1.基本概念公式* 弧度制和角度制:弧度制是通过单位圆上弧长所确定的角度计量单位,角度制是最常用的角度计量单位。
* 弧度制与角度制的互换:180°对应π弧度。
* 三角函数的概念:正弦函数、余弦函数、正切函数、余切函数。
* 三角函数的基本关系式:$\sin ^{2}x+\cos^{2}x=1$,$\tanx=\frac{\sin x}{\cos x}$* 三角函数的周期性:正弦函数和余弦函数的最小正周期为$2\pi$,正切函数和余切函数的最小正周期为$\pi$。
2.三角函数的图像和性质* 三角函数的图像:正弦函数和余弦函数的图像都是以x轴为轴的周期函数,正切函数和余切函数的图像分别有一个渐近线和一个极值点。
* 同角三角函数的基本关系式:$\cos (\frac{\pi}{2} -x)=\sin x$,$\tan x=\frac{\sin x}{\cos x}$* 三角函数的单调性:正弦函数和余弦函数在一个周期内分别单调递增和递减,正切函数和余切函数在每一个周期内单调变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点总结全
一、算数与代数
1、实数:实数是一类数字,包括自然数,零,有理数和无理数。
2、有理数:有理数是由一个事物的特征的数量或比重的数字表明的数。
它可以分为
整数,分数和真分数,它们之间可以互相转换。
3、函数:函数是一种数学模型,表示自变量对应的函数值的变化。
它有一元函数,
二元函数,三元函数,多项式函数,分母函数,对数函数,指数函数,曲线等。
4、数列:数列是由同一规律(等差或者等比)所确定的一组有限的数值序列,如等
差数列、等比数列。
5、不等关系:不等关系是一种算法,通过解法,可以推测不同数量之间的关系,如
等号,低于号,高于号,小于号,大于号等。
二、三角学
1、三角函数:三角函数是用来描述角的数学函数,它们是正弦函数,余弦函数,正
切函数,双曲正弦函数,双曲余弦函数和双曲正切函数。
2、三角形:三角形是角的构造物,它三条边的边长是不同的。
它有直角三角形,等
腰三角形,等边三角形,梯形,扇形,平行四边形等。
3、直角三角形的解法:直角三角形的解法主要有三个,分别是勾股定理,余弦定理
和正弦定理,它们可以用来计算三条边以及角的关系。
4、三角函数的应用:三角函数可以用来解决一些日常的数学问题,如求海拔,求行
驶路程,求物体的高度,求面积等。
三、立体几何
1、几何体:几何体是一种形状特殊的物体,它有长度,宽度,高度,表面积,体积,重心等。
常见的几何体有长方体,正方体,圆柱体,圆锥体,棱柱等。
2、椭圆:椭圆是一种形状特殊的圆形,它的两个主要轴的长度不等,其表面积,内
接圆,外接矩形,直线元,离心率,椭圆方程等都有特定的概念。
3、三维平面:三维平面是一种形状特殊的空间轮廓,它有两个特定的面,即X-Y平
面和Y-Z平面,它们可以用来描述物体在三维空间中的运动情况。
4、立体坐标系:立体坐标系是一种坐标系,它由三个轴组成:X轴,Y轴,Z轴,这
三个轴所形成的坐标系称为立体坐标系,它可以用来定位平面和立体物体的位置。
5、正反射:正反射是指光线照射在几何体的表面以后,沿着一条曲线运行的一种现象,它的特点是照射点和反射点相同。