电子束的偏转和聚焦现象实验报告
电子束的磁偏转及磁聚焦
实验3.6 电子束的磁偏转及磁聚焦【实验目的】1•学习示波管中电子束的磁偏转及磁聚焦原理,观察电子束在磁场中偏转和聚焦现象, 进一步认识电子束在磁场中运动的规律。
2•测定示波管磁偏转系统的灵敏度。
3•利用纵向磁场聚焦测定电子的荷质比(即电子的电荷与其质量的比值)【实验仪器】EB-III型电子束实验仪。
【实验原理】电子从电子枪以速度v z射出(推导见实验"电子束的电偏转和电聚焦”),进入匀强磁场,将受洛仑兹力的作用。
1 .磁偏转加横向磁场(即B丄电子枪的轴线)使电子束发生侧向偏转。
如图3-17所示,设一磁感应强度为B的均匀磁场,方向垂直纸面,由里指向外。
电子以速度V z垂直磁场射入,受洛仑兹力的作用总是在垂直电子运动的方向上,不做功,因而电子的动能不变,在磁场区域作轨道半径为R的匀速圆周运动。
由牛顿第二运动定律,可得:(3-29) 于是,则得:mV.R -eB设偏转角0不很大,近似得:由以上两式,得磁偏转位移为^ebL1B (3-30) (3-31)v-是经过电场加速得到的,因此由eV2认2可得mv zv-是经过电场加速得到的,因此由eV2认2可得2eV 2 .m将式(3-32)代入式(3-31 )中,消去V z ,可得:上式表明,光点的磁偏转位移 反比。
对于有限长螺线管内部磁感应强度B 的大小由下式给出,即B=Kn °l( 3-34)式中,K 是一个与线圈的样式等因素有关的常数, n o 为线圈的单位长度上的线匝数, I为励磁电流。
将式(3-34)代入式(3-33)中,可得:e—b^Kn ) 2mV 2像定义电偏转灵敏度一样,定义线圈内以单位励磁电流时所引起电子束在光屏上的偏位 移量为磁偏转灵敏度,即Sm 叮巳 2:V 2bLlKn02 •磁聚焦及电子荷质比的测定纵向磁场(即 B //电子枪的轴线)对从电子枪射出电子的洛仑兹力为零(因为此时电子 速度为u ,没有垂直B 的速度分量)。
电子束的偏转与聚焦实验报告Word版
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。
3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
3、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电子束的偏转与聚焦实验报告
电子束的偏转与聚焦实验报告实验目的:本实验旨在通过对电子束的偏转与聚焦进行实验,探究电子束在电场和磁场作用下的行为规律,加深对电子束的物理特性的理解。
实验仪器和材料:1. 电子束偏转器。
2. 电子束聚焦器。
3. 电子束发生器。
4. 电子束检测器。
5. 电源。
6. 磁铁。
7. 导线。
8. 示波器。
9. 实验台。
10. 电子束样品。
实验原理:电子束的偏转与聚焦实验是利用电场和磁场对电子束进行控制,从而观察电子束在不同条件下的行为。
电子束在电场中会受到电场力的作用,而在磁场中会受到洛伦兹力的作用。
通过调节电场和磁场的强度和方向,可以实现对电子束的偏转和聚焦。
实验步骤:1. 将电子束发生器连接到电子束偏转器和聚焦器上,并调节电子束的强度和方向。
2. 将磁铁放置在电子束的路径上,调节磁场的强度和方向。
3. 通过示波器观察电子束在不同电场和磁场条件下的运动轨迹。
4. 调节电子束的聚焦器,观察电子束的聚焦效果。
5. 记录实验数据,并进行数据分析和实验结论的总结。
实验结果:经过一系列实验操作和数据记录,我们观察到在不同电场和磁场条件下,电子束的偏转和聚焦情况发生了明显的变化。
当电场和磁场的方向和强度发生变化时,电子束的运动轨迹也相应发生了变化。
在调节电子束聚焦器时,我们发现可以通过调节聚焦器的参数,实现对电子束的聚焦效果的控制,从而获得清晰的电子束图像。
实验结论:通过本实验,我们深入了解了电子束在电场和磁场作用下的行为规律。
电子束在电场和磁场的双重作用下,呈现出复杂的运动轨迹,但通过调节电场和磁场的参数,可以实现对电子束的精确控制。
此外,通过调节电子束聚焦器,也可以实现对电子束的聚焦效果的控制,为电子束成像提供了重要的理论基础和实验依据。
总结:本实验通过对电子束的偏转与聚焦进行实验,探究了电子束在电场和磁场作用下的行为规律,加深了对电子束的物理特性的理解。
通过实验操作和数据分析,我们获得了丰富的实验结果,并得出了一系列结论,为进一步研究和应用电子束技术提供了重要的实验基础。
电子束的偏转与聚焦实验报告
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。
3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
3、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
1311电子束的偏转与聚焦
(5)
电子既在轴线方面作直线运动,又在垂直于轴线的平面内作圆周运动。它的轨道是一条螺旋线,其螺距用 表示,则有:
(6)
从(5)、(6)两式可以看出,电子运动的周期和螺距均与 无关。虽然各个点电子的径向速度不同,但由于轴向速度相同,由一点出发的电子束,经过一个周期以后,它们又会在距离出发点相距一个螺距的地方重新相遇,这就是磁聚焦的基本原理,由(6)式可得
(7)
长直螺线管的磁感应强度 ,可以由下式计算:
(8)
将(8)代入(7),可得电子荷质比为:
(9)
为真空中的磁导率 亨利/米
本仪器的其它参数如下:螺线管内的线圈匝数: 螺线管的长度: 螺线管的直径: 螺距( 偏转板至荧光屏距离)
(2)
2.电子的磁偏转原理:
电子束进入长度为 的区域,有一个垂直于纸面向外的均匀磁场 ,由此引起的磁场力的大小为 ,而且它始终垂直于速度,此外,由于这个力所产生的加速度在每一瞬间都垂直于 ,此力的作用只是改变 的方向而不改变它的大小,即粒子以恒定的速率运动。电子在磁场力的影响下作圆周运动的向心加速为 ,半径 。电子离开磁场区域之后,重新沿一条直线运动,最后,电子束打在荧光屏上某一点,这一点相对于没有偏转的电子束的位置移动了一段距离。
电子束的偏转与聚焦
【实验目的】
1.了解带电粒子在电磁场中的运动规律,电子束的电偏转、磁偏转、磁聚焦的原理;
2.学习测量电子荷质比的一种方法。
【实验仪器】
型电子束实验仪
【实验电子枪里射出来的速度是vz,电子在电子枪里的加速电压是V2(阳极电压) (1)
已知偏转电位差和偏转板的尺寸,设距离为 的两个偏转板之间的电位差 ,偏转板的长度为l,偏转板到荧光屏的距离为L,则电子在荧光屏上偏转的位移D为:
实验三213《电子束的偏转与聚焦》实验报告
D
K0nIlL
e 2mU 2
(8)
当励磁电流 I(即外加磁场 B)确定时,电子束在横向磁场中的偏转量 D 与 加速电压 U2 的平方根成反比。
B 图3
5、磁聚焦和电子荷质比的测量原理 带点粒子的电量与质量的比值叫荷质比,是带电微观粒子的基本参量之一。
测定荷质比的方法很多,本实验采用磁聚焦法。 当示波管放置在一个通电螺旋管内时,沿示波管轴线方将有以均匀分布的磁
电子束的偏转与聚焦
一、 引言
根据电磁学理论,运动的带电粒子在电场、磁场或者电磁场中会受到电场力、 磁场力或电磁场力的作用,使运动轨迹发生改变。许多电子检测仪器都是根据电 子在场中的运动规律设计而成的,例如示波管、电视显像管、摄像管、雷达指示 管、电子显微镜等。尽管它们的外形和功用各不相同,但是都利用了电子束的聚 焦和偏转,因此它们都可以统称为电子束管。电子束的聚焦与偏转可以通过电场 或磁场对电子束的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁 偏转。本实验是通过电子束实验仪来观察电子束的聚焦、电偏转、磁偏转和电子 的荷质比。
电流 I正
700V 1.42
ห้องสมุดไป่ตู้
800V 1.47
I反
1.40
1.52
I 平均
1.41
1.495
e/m/C/kg
1.708 1011
1.737 1011
e/m 平均/C/kg
1.68715 1011
900V
1.66 1.60 1.63 1.644 1011 ε/%
1000V
1.69 1.73 1.71 1.6596 1011 4.075
D lBL e 2mU 2
(6)
实验中的外加横向磁场由一对载流线圈产生,其大小为:
电子束的电偏转和电聚焦实验报告
竭诚为您提供优质文档/双击可除电子束的电偏转和电聚焦实验报告篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验预习报告实验名称:电子束的偏转与聚焦实验目的:研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:A,电子束流的产生与控制通过阴极K发射电子。
控制栅极g是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
b,电偏转原理通过电场对电子的偏转作用,我们可以得到以下公式:De=udl(1/2+L)/(2uzd)其中,De为偏转长度,l为电场长度,d为电场宽度,L 为电容器到荧光屏的距离,uz为加速电压。
c,磁偏转原理通过磁场场对电子的偏转作用,我们可以得到以下公式:Dm=klI(L+l/2)sqrt(e/2uzm)D,点聚焦原理利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
e,磁聚焦原理电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤A,电偏转的观测b,磁偏转的观测c,电聚焦的观测D,磁聚焦的观测篇二:实验14-电子束的偏转与聚焦及电_...实验14电子束偏转、聚焦及电子荷质比的测定带电粒子在电场和磁场作用下的运动是电学组成的基础。
带电粒子通常包括质子、离子、和自由电子等,其中电子具有极大的荷质比和极高的运动速度。
因此,在各种分支学科中得到了极其广泛的应用。
众所周知,快速运动的电子会在阴极射线管的荧光屏上留下运动的痕迹,可以利用观察此光迹的方法来研究电子在电场和磁场中的运动规律。
辅以聚焦、偏转和强度控制等系统,可以使电子束在荧光屏上清晰地成象。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
电子束的偏转与聚焦实验报告
图2物理实验报告一、实验名称:电子束的偏转与聚焦现象班级: 黄昆班13 实验日期:2015年5月12日 姓名: 杨巧林 学 号: 41340072二、实验目的1、研究带电粒子在电场和磁场中偏转和聚焦的规律;2、了解电子束线管的结构和工作原理。
三、实验原理1】电子束的产生和控制如图,电子示波管的结构示意图:2、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能 2m 21v eU =→ 22v U mez =若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图2所示。
若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第二阳极A 2电压)为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量D 由下式给出:dlU U L D d 2)2l (2+= 在单位偏转电压的作用下,电子束在荧光屏上偏离轴向的距离DE/Ud 称为电偏转灵敏度。
图3B3、磁偏转原理电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。
由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以R=mv/eB电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。
在偏转角φ较小的情况下,偏转量:z2)2l (klI mU eL D += 在单位偏转线圈激励电流的作用下,电子束在荧光屏上偏离轴向的距离Dm/I 称为磁偏转灵敏度。
4、电聚焦原理电子聚焦的基本思路在于利用非均匀的电场使电子束加速电场使电子束形成交叉点。
电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
电子束电偏转实验小结电子束的偏转实验报告
电子束电偏转实验小结电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律;2.了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿Z方向作加速运动,则其最后速度VZ可根据功能原理求出来,即euQ?移项后得到vz?212mvz 22euaA.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压Uz不变时,偏转电压随偏转量的增大线性变化。
第4张图可以看出,我测量的第五组数据是有问题的。
所以,我就放弃了第五组数据,作出了图5。
然后我分析b 了一下不同阳极电压下偏转电压随偏转量变化快慢。
显然,斜率即电偏转灵敏度,分别为:0. 105,0. 0915, 0.082, 0. 0753,斜率是随着阳极电压的增大而减小的。
为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转距离De和偏转电压Ud是成线性变化的。
至于De与阳极电压Uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压Ud 为10V 时,Dz 分别为:1.025, 0.912, 0. 785, 0. 744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。
B磁偏转的观测图6,7,8是磁偏转观测部分的图。
这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。
下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。
并且随着阳极电压的增大磁偏灵敏度减小。
阳极电压增大导致电子速度的增大,电子就越不容易被偏转。
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100血\为基点)C电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。
电子束的偏转与聚焦现
南昌大学物理实验报告课程名称:大学物理实验. 实验名称:电子束的偏转与聚焦 .学院:信息工程学院专业班级:____________学生姓名:.____ _____学号:.__ _______实验地点:基础实验大楼座位号:. 实验时间:第七,八周周五下午15::4 .一、实验目的:1、了解示波管的基本结构和工作原理;2、研究带电粒子在电场和磁场中偏转的规律;3、学会规范使用数字万用表;4、通过磁聚焦原理测量电子的荷质比二、实验原理:1、示波管的基本结构阳极电压U2:改变电子束的加速电压的大小。
聚焦电压U1:用以调节聚焦极A1上的电压以调节电极附近区域的电场分布,从而调节电子束的聚焦和散焦。
栅极电压U G(辉度):用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
U dX偏转电压调节:-80V~80V。
调零X:用来调节光点水平距离。
U dY偏转电压调节:-80~80V。
调零Y:用来调节光点上下距离。
2、电偏转电子在均匀电场内以从平行于板的方向进入电场,在电场力的作用下,在方向(垂直方向)产生偏离位移。
电子离开电场后不受电场力作用,将作匀速直线运动,等效直接从A 点(板中点位置)直接射出(如图b 所示),故θtg L l D ⎪⎭⎫ ⎝⎛+='200''22v v Lmd eU L l v v L l xy ⎪⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=20'2mdv eUl L l ⎪⎭⎫ ⎝⎛+=令L L l=+'2有 2mdv eUlL D =如果加速电压为U 2则2212eU mv =故22ULlU d D =示波管的Y 方向电偏转灵敏度:2222dU lL U d U lLU U D S y y ===在X 方向同理得x 22x x D lL S U d U ==3、磁偏转就是磁聚焦。
电子作螺旋运动的螺距:2ZZmvh v TBeπ==5、电子荷质比的测量从前面的讨论可知,电子的轴向速度由加速电压决定(电子离开阴极时的初速度相对来说很小,可以忽略),故有2212Zmv eU=即有22ZeUvm=可见电子在匀强磁场中运动时,具有相同的轴向速度,但由于电子发射方向各异,导致径向速度不同。
电子束的偏转与聚焦实验报告.doc
电子束的偏转与聚焦实验报告.doc
本次实验中,我们采用电子束来实现偏转和聚焦的操作。
主要设备有电子束源、偏转器、探测器、激光系统等。
实验中,先用电子束源制备皮秒的电子束,然后通过圆柱面形状的磁铁使其发生径向偏转,观察偏转后的横截面,最终实现所需要的偏转效果。
接着,我们使用偏转量夹芯式偏转阀在漩管形式的磁场结构中再次偏转电子束,实现电子束的定向,观察电子束的截面情况并记录结果。
最后,我们采用激光系统和探测器对电子束进行了噪声耦合细分,并看到电子束粒子在磁场中运动的痕迹,最终我们实现了对电子束的聚焦操作。
实验结果表明,当加磁场时,电子束能够得到一定程度的偏转,使电子流量可以得到有效的管控。
另外,当改变磁场强度时,也能够改变电子流量,实现聚焦效果。
最终,本次实验成功实现了对电子束的偏转与聚焦操作,验证了加磁场时电子束的偏转模型,以及聚焦时电子束的运动轨迹模型。
电子束的电偏转和电聚焦实验报告
电子束的电偏转和电聚焦实验报告电子束的电偏转和电聚焦实验报告引言:电子束是一种由电子组成的束流,具有很高的能量和速度。
在现代科技中,电子束被广泛应用于电子显微镜、电子加速器等领域。
为了研究电子束的性质和控制电子束的运动,我们进行了电子束的电偏转和电聚焦实验。
本实验旨在通过调节电压和磁场,观察电子束的偏转和聚焦效应。
实验设备:1. 电子枪:产生电子束的装置。
2. 磁感应计:用于测量磁场的强度。
3. 电压源:用于提供电子束所需的电压。
4. 荧光屏:用于观察电子束的偏转和聚焦效果。
实验步骤:1. 将电子枪放置在实验台上,并将磁感应计放置在电子束轨迹的旁边。
2. 打开电压源,调节电压大小,使电子束能够稳定产生。
3. 调节磁感应计的位置和方向,使其能够测量到电子束轨迹上的磁场强度。
4. 通过调节电压源和磁感应计,观察电子束在不同电压和磁场条件下的偏转和聚焦效果。
5. 将荧光屏放置在电子束轨迹的末端,观察电子束在荧光屏上的聚焦效果。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 当电子束通过电磁场时,电子束会受到力的作用而发生偏转。
当电压和磁场的方向相同时,电子束向外偏转;当电压和磁场的方向相反时,电子束向内偏转。
2. 当调节电压的大小时,电子束的偏转角度也会发生变化。
电压越大,电子束的偏转角度越大;电压越小,电子束的偏转角度越小。
3. 通过调节磁场的强度,可以控制电子束的偏转方向和角度。
磁场越强,电子束的偏转角度越大;磁场越弱,电子束的偏转角度越小。
4. 在适当的电压和磁场条件下,电子束能够在荧光屏上形成清晰的聚焦点。
当电子束偏转角度较小且能够聚焦时,聚焦点越明亮、清晰。
讨论:通过本次实验,我们深入了解了电子束的电偏转和电聚焦原理。
电子束的偏转和聚焦效果受到电压和磁场的调节影响。
在实际应用中,我们可以通过改变电压和磁场的大小和方向,来控制电子束的运动轨迹和聚焦效果。
这对于电子显微镜等设备的性能优化和精确控制具有重要意义。
电子束的偏转与聚焦(北京科技大学物理实验报告)
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100mA为基点)
C 电聚焦的观测
由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。由图9可以看出,各个数据之间的相关程度R2=0.9812,相关性较低。但它们仍然是线性相关的。随着阳极电压的增大,聚焦电压随之增大。
然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082, 0.0753, 斜率是随着阳极电压的增大而减小的。为了清晰明了,我把两者的关系用图表示出来
上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转量/cm
0.5
1
1.5
2
2.5
偏转电压/V
6.51
12.61
18.76
24.88
30.87
阳极电压1000V
偏转量/cm
0.5
1
1.5
2
2.5
偏转电压/V
6.74
13.41
20.08
26.66
30.04
B 磁偏转的观测数据
阳极电压800V
偏转量/cm
0.5
1
1.5
2
2.5
磁偏电流I+/mA
17.2
实验的总体构成很简单,我们两个的合作也很顺利。
A 磁偏转的测量数据如下
电子束的偏转实验报告
电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1. 研究带电粒子在电场和磁场中偏转的规律;2. 了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z方向作加速运动,则其最后速度vz可根据功能原理求出来,即eua?移项后得到 vz?212mvz 22eua() me式中ua为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷 m质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为u,则电子在电容器中所受到的偏转力为fy?ee?eu() d??根据牛顿定律 fy?m?y??因此 ?yeudeu() md即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为 t?l() vz当电子飞出电容器后,由于受到的合外力近似为零,于是电子几乎作匀速直线运动,一直打到荧光屏上,如图里的f点.整理以上各式可得到电子偏离z轴的距离n?keu() uall?l?1 2d?2l?式中ke?是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比.2.电子束在磁场中的偏转如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运动,洛伦兹力就是向心力,所以电子旋转的半径r?mvz() eb当电子飞到a点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度b?ki ()式中k是与线圈半径等有关的常量,i为通过线圈的电流值.将()、()式代人()式,再根据图的几何关系加以整理和化简,可得到电于偏离z轴的距离n?kmi() allk?l?e1? ??2?2l?m式中km?也是一个与偏转系统几何尺寸有关的常量.所以磁场偏转的特点是:电子束的偏转距离与加速电压的平方根成反比,与偏转电流成正比.1 2 3 22电子管内部线路图实验内容1、研究和验证示波管中电场偏转的规律。
电子束的电偏转和电聚焦实验报告
电子束的电偏转和电聚焦实验报告实验名称:电子束的电偏转和电聚焦实验目的:通过实验研究电子束的电偏转和电聚焦现象,掌握电子束的基本性质和原理。
实验器材:电子束实验仪、万用表、直流电源、T型管、荧光屏、螺旋线管、磁场探针等。
实验原理:电子束在电场和磁场中的运动可以用洛伦兹公式和牛顿第二定律来描述。
电子在电场中受到电力作用,会发生偏转;电子在磁场中受到洛伦兹力作用,会发生圆周运动。
实验步骤:1、将电子束实验仪接通电源,调整电压和电流使得电子束稳定。
2、安装T型管,接入电源和万用表,调整电压和电流,观察电子束在电场中的偏转情况。
3、安装螺旋线管和磁场探针,调整电流和磁场强度,观察电子束在磁场中的圆周运动情况。
4、将荧光屏放置在电子束路径上,观察电子束聚焦后的情况。
实验结果和分析:1、在电场中,电子束会受到电力作用,产生偏转现象。
当电压越大,电子束偏转角度越大;当电场方向改变时,电子束的方向也会发生改变。
2、在磁场中,电子束会受到洛伦兹力作用,产生圆周运动。
当磁场强度越大,电子束半径越小;当电子束速度越大,圆周运动的半径也越大。
3、通过调节电子束实验仪中的聚焦电场,可以使电子束在荧光屏上清晰地聚焦成一个点,实现电聚焦现象。
实验结论:1、电子束在电场中偏转角度与电场电压大小成正比,与电子束入射角度和电场方向有关。
2、电子束在磁场中运动半径与磁场强度成正比,与电子束速度成反比。
3、电子束聚焦的理论依据是通过调节聚焦电场,使电子束的散焦程度减小,从而将其聚焦成一个点。
参考文献:1、《电子技术基础实验教程》2、《原子物理、分子物理与光学实验讲义》。
电子束的聚焦与偏转实验报告
电子束的聚焦与偏转实验报告一、实验目的1、了解电子束在电场和磁场中的运动规律。
2、掌握电子束聚焦和偏转的原理及方法。
3、学会使用电子束实验仪器,测量相关物理量。
二、实验原理1、电子在电场中的运动当电子在均匀电场中运动时,所受电场力为\(F = eE\)(其中\(e\)为电子电荷量,\(E\)为电场强度)。
电子在电场力的作用下会产生加速度\(a =\frac{F}{m}\)(\(m\)为电子质量),从而改变其运动轨迹。
2、电子在磁场中的运动当电子以速度\(v\)垂直进入均匀磁场\(B\)时,电子受到洛伦兹力\(F = evB\)的作用,其运动轨迹为圆周运动,圆周半径\(r =\frac{mv}{eB}\)。
3、电子束的聚焦通过在电子枪阴极和阳极之间加适当的聚焦电场,可以使电子束会聚成较细的束流,提高电子束的强度和分辨率。
4、电子束的偏转在电子束的运动路径上加上垂直于其运动方向的电场或磁场,可以使电子束发生偏转。
三、实验仪器电子束实验仪、示波管、电源、测量仪器(如电压表、电流表等)四、实验内容及步骤1、观察电子束在不加电场和磁场时的运动轨迹(1)打开实验仪器电源,预热一段时间。
(2)调整仪器,使电子束在荧光屏上显示清晰。
(3)观察电子束在无外加场时的运动轨迹,记录其形状和位置。
2、研究电子束在电场中的偏转(1)在示波管的水平偏转极板上加一定的直流电压,观察电子束在水平方向的偏转情况。
(2)改变电压的大小和极性,记录电子束的偏转量与电压的关系。
(3)在示波管的垂直偏转极板上加直流电压,观察电子束在垂直方向的偏转情况,并记录偏转量与电压的关系。
3、研究电子束在磁场中的偏转(1)将磁场线圈接入电源,产生磁场。
(2)观察电子束在磁场中的偏转情况,改变磁场的强度和方向,记录电子束的偏转量与磁场的关系。
4、研究电子束的聚焦(1)调节聚焦电压,观察电子束的聚焦效果。
(2)找到最佳聚焦电压,使电子束的斑点最小最清晰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.磁偏转 D/mm 20 15 10 5 0 -5 -10 -15 -20 700V I/mA 82.70 62.50 41.60 17.50 0 -18.90 -43.90 -63.60 -84.30 900V I/mA 90.10 67.80 45.30 22.60 0 -22.55 -47.95 -68.80 -89.40 700V时,灵敏度为022mDeSKnlLImU=0.2391mm/mA 900V时,灵敏度为022mDeSKnlLImU=0.2206mm/mA 3、 磁聚焦和电子荷质比的测量 U I I正/A I反/A
Welcome To Download !!! 欢迎您的下载,资料仅供参考!
示波管的Y方向电偏转灵敏度:2222dUlLUdUlLUUDSyy 在X方向同理x22xxDlLSUdU 4、磁偏转 5、加速场对电子所做的功等于电子动能的增量 2212ZeUmv 电子受洛伦兹力为 zFevB 根据洛伦兹力的性质,是一个向心力,则 2zzvevBmR 电子偏转的轨道半径为 zmvReB
700V 1.46 1.45 800V 1.57 1.57 900V 1.65 1.64 1000V 1.75 1.74 六、误差分析 1. 调零后,仪器ห้องสมุดไป่ตู้稳定,示数一直在变。 2. 在做磁聚焦实验时,调节后很难准确判断光点在电流为何值时最小,易产生误差。 3.读数时,由于对光点形成的时间把握不是很准确,导致读数出现了一定的误差值,导致读数偏大,计算值偏小。 4. 地磁场本身的影响。 七、附上原始数据:
一、实验目的: 1、了解示波管的基本结构和工作原理; 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况; 3、学会规范使用数字万用表; 4、学会磁聚焦原理测量电子的荷质比的方法。 二、实验原理: 1、示波管的基本结构 阳极电压U2:改变电子束的加速电压的大小。 聚焦电压U1:用以调节聚焦极A1上的电压以调节电极附近区域的电场分布,从而调节电子束的聚焦和散焦。 栅极电压UG(辉度):用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
磁偏转电流方向,再测 D=-5,-10,-15,-20mm 时的磁偏转电流值。再取 U2=900V,重复前面的测量。 5.电子荷质比的测量 把直流稳压电源的输出端接到励磁电流的接线柱上,电流值调到0,将“电子束—荷质比”开关置于“荷质比”位置,此时荧光屏上出现一条直线,阳极电压调到 700V。此时若线较暗,则可将“辉度”旋钮顺时针增大至刚好能看清竖直亮线为止;在增大“阳极电压”至1000V位置。若能达到1000V位置,则可固定“辉度”旋钮,开始正式测量。 (1)开始测量 e/m,逐渐加大励磁电流使荧光屏上的直线一边旋转一边缩短,直到变成一个小亮点,读取电流值,然后将将电流调回零。再将电流换向开关板到另一方,重新从零开始增加电流使屏上直线反方向旋转缩短,直到再得到一个小亮点,读取电流值。取其平均值,以消除地磁等的影响。 (2)改变阳极电压为 800V,900V,1000V,重复步骤(1) 五、实验数据与处理: 1.电偏转 D/mm 20 15 10 5 0 -5 -10 -15 -20 700V Ud/V -17.79 -13.28 -9.16 -4.74 0 4.06 8.66 13.38 17.79 900V Ud/V -21.90 -16.84 -11.02 -5.16 0 5.64 11.68 17.11 22.25 700V时,灵敏度为v/0.8891mm2222dUlLUdUlLUUDSyy 900V时,灵敏度为v/1.1155mm2222dUlLUdUlLUUDSyy
电子在均匀电场内以从平行于板的方向进入电场,在电场力的作用下,在方向(垂直方向)产生偏离位移。 ——偏转电压(平行板间电位差) ——板间距离 ——板长 电子离开电场后不受电场力作用,将作匀速直线运动,等效直接从A点(板中点位置)直接射出(如图b所示),故tgLlD'200''22vvLmdeULlvvLlxy 20'2mdveUlLl 令LLl'2有 20mdveUlLD 如果加速电压为U2 22012eUmv 22ULlUdD
电子进入匀强磁场后,将会以轴向速度作匀速直线运动。同时以径向速度作匀速圆周运动。其合运动是一个螺旋线运动。 由于匀速圆周运动周期与垂直无关。故只要电子的轴向速度相同,经过整数周期后会聚焦于荧光屏上的一点,这就是磁聚焦。电子作螺旋运动的螺距: 2ZZmvhvTBe 7、电子荷质比的测量 从前面的讨论可知,电子的轴向速度由加速电压决定(电子离开阴极时的初速度相对来说很小,可以忽略),故有 2212ZmveU 22ZeUvm 可见电子在匀强磁场中运动时,具有相同的轴向速度,但由于电子发射方向各异,导致径向速度不同。因此他们在磁场中将作半径不同但螺距相同的螺线运动,经过时间T后,在相同的地方聚焦。 调节磁场B的大小,使螺距正好等于电子束交叉点到荧光屏的距离L0,这时荧光屏上的光斑就汇聚成一个小点。
UdX偏转电压调节:-80V~80V。 调零X:用来调节光点水平距离。 UdY偏转电压调节:-80~80V。 调零Y:用来调节光点上下距离。 2、电聚焦 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极 G 的电压一般要比阴极 K 的电压低 20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为 0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转
南昌大学物理实验报告 课程名称: 大学物理实验(下)_____________ 实验名称: 电子束的偏转和聚焦现象 学院: 信息工程学院 专业班级: 学生姓名: 学号: 实验地点: 基础实验大楼B213 座位号: 实验时间: 第11周星期三下午三点四十五分_______
在偏转角较小时,近似的有 tanlDRL 由此可得偏转量D与外加磁场B、加速电压U2等的关系为 22eDlBLmU 实验中的外加横向磁场由一对载流线圈产生,其大小为 0BKnI 式中为真空中的磁导率,为单位长度线圈的匝数,为线圈中的激励电流,为线圈产生磁场公式的修正系数。由此有 022eDKnIlLmU 当励磁电流I(即外加磁场B)确定时,电子束在横向磁场中的偏转量D与加速电压U2的平方根成反比。 磁偏转灵敏度: 022mDeSKnlLImU 6、磁聚焦 在示波管外套一个同轴的螺线管,当给螺线管通以稳恒直流电时,其内部形成一个轴向磁场。若螺线管足够长,则可认为内部为匀强磁场。
三、实验仪器: DZS-D电子束实验仪、直流稳压电源、数字万能表、导线 四、实验步骤 1、 开启电子束实验仪电源开关 将“电子束—荷质比”选择开关打向“电子束”位置,面板上一切可调旋钮都旋至中部,此时在荧光屏上能看到一亮斑。适当调节辉度,并调节聚焦,使屏上光点聚成一圆点。(主:光点不能太亮,以免烧坏荧光屏) 2、 光点调零 X轴调节 调节“X 轴调节”和“X 轴调零”旋钮,使光点位于 X 轴的中心圆点,且左、右偏转的最大距离都接近于满格。 Y轴调节 用数字万能表电压档接近于“Y 偏电压表”+-两端,缓慢调节 “Y 轴调节”旋钮使数字万能表读数为 0,然后调节“Y 轴调零”旋钮使光点位于Y 轴的中心原点。 3、 测量D随Ud的变化 调节阳极电压旋钮,取定阳极电压 U2=700V,用数字万能表分别测出D=±5, ±10,±15,±20mm 时的 Ud(垂直电压)值列表记录。再取U2=900V,再测D为上述值时的 Ud值记录表中。 4、 测量偏转量D随磁偏转电流I的变化 使亮光点回到 Y 轴的中心原点,取 U2=700V,用数字万用表的 mA 档测量磁偏转电流。列表记录 D=5,10,15,20mm 时的磁偏转电流值,然后改变