TFT_LCD驱动控制电路
TFT-LCD驱动控制电路芯片研究

t ou ola e S ha he qu lt ma s i p o e h gh v t g O t tt a iy ofi ge i m r v d. The s c e s u ng n e i a p e r u c s f le i e rng s m l s a e o ane t t is a e ou .Th t tc p bt i d a hefr tt p — t e s a i owe is p to s a ou W nd t e s tlng tme o r d s i a i n i b t 5m a h e ti i f o p r y c l ola t n . ut ut g a s a e v t ge wihi 0 2 wih t e de i n e r me s t h sg r quie nt .
p b l y i lr e e o g a i t s a g n u h,a d 4 d n m i la o p n ai n o t u u frt n mie t ef e i n ) y a c o d c m e s t u p tb fe o mi i z h e d o
流 片成 功 , 个 芯 片 的静 态 功 耗 约 为 5mw , 出灰 度 电压 的安 定 时 间小 于 3 s芯 片 性 能 指 标 均 达 到设 计 要 求 。 整 输 O , 关 键 词 : 膜 晶 体 管 液 晶 显 示 ; 动 芯 片 ; 序 冲 突 ; 证 模 型 薄 驱 时 验 中 图分 类 号 : P 0 T 33 文献标识码 : A 文 章 编 号 :0 03 1 (0 8 0 —5 -6 1 0—8 9 2 0 ) 22 80
TFT-LCD驱动电路的设计

由于 CRT显示 器和 液晶屏 具有 不 转换芯 片 AD9 8 A和 后端 的数模转换 控制信号 ,给系统 及其模块 发送控制 信 83 同的显示特性 ,两者 的显示信号 参数也 芯 片 ADV7 2 。AD P l6 15 S -2 1 O具 有 超 息 ,以 使 整 个 系统 稳 定 有 序 地 工 作 。例 不同, 因此在计 算机 ( MCU)和液晶 级 哈佛 结构 ,支 持单 指令 多操作 数 如 , S -2 10 灰度 电压 产生 电路 或 AD P l6 为 屏之 间设计 液晶显示 器的驱动 电路是 必 ( I S MD)模式 ,采 用高效 的汇编语 言编 和液 晶屏提 供 必要 的控 制信号 。另外 , 需 的 ,其 主 要 功能 是 通过 调 制 输 出 到 程能 实现 对视频信 号的 实时处理 ,不会 系 统 还 设 置 了一 些 L D灯 , 于 直 观 的 E 用
0 1 2 3 4
示 数据 ( Y校正后 ) 。
3 图像 优 化 为 了提 高 图 像 质 量 ,
Vo l g l e  ̄
闪存 既要存储 D P 序 , S程 又要保 存对应
因此 系统 可以 完 成单 色的 视 频信 号 处 于不 同的伽玛值 的查找表数据 以及部分
硬件电路设计
理 ,也 可以完 成彩 色的视 频信 号处 理 。 预设 的显示数据 , 故选择 S T公司 的容量
AD DR2 —0 O A2
L CD电极上 的电位信号 、 值 、频率等 因为处理数据 时 间长 而 出现 延迟。 峰
参 数来建立 交流驱动 电场 。
指 示系统硬 件及D P S 内部程序 各模块 的
系统 硬 件 原 理 框 图 如 图 1 示 。系 工 作 状 态 。 所
TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。
它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。
TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。
这些像素点由一层薄膜晶体管(TFT)驱动。
薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。
当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。
TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。
驱动电路通常由一个控制器和一组电荷泵组成。
控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。
电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。
控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。
TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。
驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。
驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。
1.扫描电路:负责控制像素点的扫描和刷新。
扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。
2.数据存储器:用于存储显示数据。
数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。
3.灰度调节电路:用于调节像素点的亮度。
通过调节像素点的电流输出,可以实现不同的亮度效果。
4.像素点驱动电路:负责控制像素点的偏振状态。
像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。
5.控制线路:用于传输控制信号。
控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。
TFT-LCD各功能电路原理

TFT-LCD各功能电路原理通过前阶段对PWB的ASIC、DC/DC、GAMMA电路及IC的原理学习后,我对TFT-LCD的电路原理有了一定的了解,现总结归纳如下。
一、输入信号的提供目前CPTW所用到的讯号产生器有两种:PDC(MA4004U)和COMOS。
对于实装和组立点灯都采用PDC,提供Vin、RANO/RAPO、RBNO/RBPO、RCNO/RCPO、RDNO/RDPO、RANE/RAPE、RBNE/RBPE、 RCNE/RCPE、RDNE/RDPE、RCLKN/RCLKP、Vbuff等。
二、PWB产生工作电压和信号的过程PWB由S-PWB和G-PWB组成,分别完成不同的功能,它们的作用有很大差别:S-PWB作用是POWER电压分配VDD/VIN:模组消耗电压;VCOM:液晶偏转基准电压;VDDA:阶调电压,即GAMMA电压,配合Data信号输出S极所需电压; VDDG:G极电压,液晶开启电压;VEEG:G极电压,液晶关闭电压;VDDD:IC工作电压,包括ASIC、S-IC、G-IC;Data信号处理及传输(与GAMMA电压配合,输出S极电压)、Timing Control (控制数据传输的时序,达到稳定显示的作用);G-PWB:只起到线路的连接作用。
现将S-PWB之组成简介如下:1.ASIC该部分借助一集成芯片(IC101)产生时序信号和DATA。
其INPUT为RANO/RAPO、RBNO/RBPO、RCNO/RCPO、RDNO/RDPO、RANE/RAPE、RBNE/RBPE、RCNE/RCPE、RDNE/RDPE、RCLKN/RCLKP以及一些控制信号,这十组DATA借助10个差分电阻(R101~R110)产生如下时序信号和DATA:HMS 、OE、CLKV、STV、POL、LP、STH-F、STH-B、F-D[00:19]、B-D[00:19]。
2.POWER电路该部分主要产生控制液晶偏转所需要之电压:VDDD、VDDA、VDDG、VEEG、VCOM 和VGAM1~10。
tft-lcd的goa电路工作原理

GOA(Gate-On-Array)电路是一种在TFT-LCD(Thin Film Transistor Liquid Crystal Display)面板中广泛应用的电路结构,它对于TFT-LCD的显示效果和功耗有着重要的影响。
本文将深入解析GOA电路的工作原理,以及它在TFT-LCD中的作用和优势。
一、GOA电路的基本结构1.1 GOA电路的概念GOA电路是一种针对TFT-LCD面板的扫描驱动电路,它主要负责控制液晶显示的扫描过程和数据的传输。
在TFT-LCD中,每个像素点都由一个薄膜晶体管(Thin Film Transistor)和一个液晶单元组成,GOA电路通过对每行像素点进行扫描驱动,从而实现图像的显示和更新。
1.2 GOA电路的基本构成GOA电路通常由行驱动器(Gate Driver)、数据传输器(Source Driver)和控制逻辑电路等组成。
其中,行驱动器用于产生扫描信号,控制每行像素点的开关状态;数据传输器则负责将图像数据传输到对应的像素点,实现图像的显示。
控制逻辑电路则起到协调和控制行驱动器和数据传输器之间协作的作用。
二、GOA电路的工作原理2.1 行驱动器的工作原理在TFT-LCD中,液晶单元的开关是通过行扫描的方式来实现的。
行驱动器会产生一系列的脉冲信号,依次作用于每一行像素点对应的薄膜晶体管,从而控制液晶单元的开关状态。
这种行扫描的方式可以有效地减少液晶显示屏的驱动器数量,降低功耗和成本。
2.2 数据传输器的工作原理数据传输器的作用是将图像数据传输到对应的像素点,实现图像的显示。
这种数据传输通常是通过逐行传输的方式进行的,每行数据都会按照一定的顺序被传输到像素点中,从而组成完整的图像。
数据传输器通常会配合行驱动器的扫描信号进行同步操作,确保图像数据的准确传输。
2.3 控制逻辑电路的工作原理控制逻辑电路起到协调和控制行驱动器和数据传输器之间协作的作用。
它会根据系统的指令和信号,对行驱动器和数据传输器进行控制和同步,保证它们能够按照正确的顺序和时序进行工作。
tft lcd 工作原理

tft lcd 工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种常见的显示技术,广泛应用于电子设备中,例如平板电脑、智能手机和电视等。
下面是TFT LCD的工作原理:
1. 液晶层:TFT LCD最关键的部分是液晶层,液晶层由液晶
分子组成,液晶分子可以通过电场的作用改变其在空间中的排列方式。
2. 背光源:TFT LCD需要一个背光源,通常采用LED(Light Emitting Diode)作为背光源。
背光源会在显示器的后面提供
均匀的光源,通过液晶层透过背光源的光来显示图像。
3. 薄膜晶体管阵列:液晶层的每个像素点都包含一个对应的薄膜晶体管。
这些薄膜晶体管阵列是连接在导线网格上的,用于控制液晶层中液晶分子的排列方式。
4. 驱动电路:TFT LCD中的驱动电路负责控制薄膜晶体管阵列,通过在特定像素点上施加电压,改变液晶分子的排列方式。
这样,液晶层就可以根据不同的电压来控制光的透过程度,从而生成不同的颜色和亮度。
5. 控制器:TFT LCD还包含一个控制器,用于接收来自电子
设备的信号,并将其转化为正确的像素点显示在液晶屏上。
控制器通常采用计算机程序或者芯片实现。
总的来说,TFT LCD的工作原理是通过控制驱动电路中的薄
膜晶体管阵列,在液晶层中施加电场,进而控制液晶分子的排列方式,从而控制光的透过程度,最终显示出图像。
TFT_LCD_驱动原理

TFT_LCD_驱动原理TFT(薄膜晶体管)液晶显示屏是一种广泛应用于电子产品中的平面显示技术。
TFT液晶显示屏由液晶单元和薄膜晶体管阵列组成,每个像素都由一个液晶单元和一个薄膜晶体管控制。
TFT液晶显示屏的原理是利用液晶的电光效应来实现图像的显示。
液晶是一种介于固体和液体之间的有机化合物,具有光电效应。
通过在液晶材料中施加电场,可以改变液晶的折射率,从而控制光的透射或反射。
液晶的电光效应使得TFT液晶显示屏可以根据电信号来调节每个像素点的亮度和颜色。
TFT液晶显示屏的驱动原理主要包括以下几个步骤:1.数据传输:首先,需要将图像数据从输入设备(如计算机)传输到液晶显示屏的内部电路。
这通常是通过一种标准的视频接口(如HDMI或VGA)来完成的。
2.数据解码与处理:一旦数据传输到液晶显示屏内部,它会被解码和处理,以提取有关每个像素点的亮度和颜色信息。
这些信息通常以数字方式存储在显示屏的内部存储器中。
3.电压调节:在液晶显示屏中,每个像素是由一个液晶单元和一个薄膜晶体管组成。
薄膜晶体管通过控制液晶单元的电场来调节每个像素的亮度和颜色。
为了控制液晶单元的电场,需要施加不同电压信号到每个像素点上。
这些电压信号由驱动电路产生,并通过薄膜晶体管传递到液晶单元。
4.像素刷新:一旦电压信号被传递到液晶单元,液晶单元将会根据电场的变化来调节光的传输或反射,从而实现每个像素的亮度和颜色调节。
整个屏幕的像素都将按照这种方式进行刷新,以显示出完整的图像。
5.控制信号发生器:控制信号发生器是液晶显示屏的一个重要组成部分,用于生成各种控制信号,如行扫描和场扫描信号,以及重新刷新图像的同步信号。
这些控制信号保证了像素的正确驱动和图像的稳定显示。
总结起来,TFT液晶显示屏的驱动原理涉及数据传输、数据解码与处理、电压调节、像素刷新和控制信号发生器等多个步骤。
通过控制电压信号和液晶单元的电场变化,TFT液晶显示屏能够实现图像的显示,并且具有色彩鲜艳、高对比度和快速响应等优点,因此在各种电子产品中得到广泛应用。
TFT-LCD控制电路IP设计

器 件也 是 在 两 块 玻 璃 之 间 封 入 液 晶 , 且 是 普 通 并 T 型 工作方 式 。但是 玻 璃 基 板则 与普 通 液 晶显 示 N
器 不 一样 , 在下 基板要 光 刻 出行 扫描线 和 列寻址 线 , 构 成 一个矩 阵 , 在其 交 点上制 作 出 TF T有 源器 件 和 像 素 电极 , 图 2所 示 。 同一 行 中与 各 像 素 串联 的 如 场效 应管 ( E 的栅极 是 连在 一 起 的 , 行 电极 x F T) 故
摘 要 : 文 意 在设 计 能 与 广 泛 T T L D显 示器 进 行 无缝 连 接 的 接 口控 制 电 路 I 。论 文 首 先 论 述 了 TF - C 彩 屏 显 示 本 F -C P TL D 驱 动 知 识 和 控 制 原 理 , 着 讨 论 了控 制 电路 和 电 源 电 路 的 设计 思 路 , 后 提 出 了如 何 通 过 F G 进 行 原 型 验 证 和 调 试 。这 块 接 最 PA 控 制 电路 I 植 入 各种 多媒 体 处 理 器 的 S C 中。 P可 O 关键词 :F -C T T L D;I 制 电路 ; 源 电 路 ; P A 验 证 P控 电 FG
e e u g n n e t gm e h s g F GA .Th s n r l ic i I s ee e d d t n i d f sad b g i g a d t si t o u i P n d n i c to r u t P c n b mb d e o ma y k n so l — o c mu t i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 特点:高速、低噪声、低功耗和传输距离较长
Differential Signal = (+ Pair) -
(- Pai-r)
(1.2V)
+
Slide 8
Clock SP R
G
B
TTL Data Mapping
D0 D1 D5 D0 D1 D5 D0 D1 D5
RGB三路基色信号的每一位都使用一条单独的数据线进行传输。如6bit TTL,需要3×6=18 根信号线,R信号6根(R0~R5),G信号6根(G0~C5),B信号6根(B0~B5)
T/7
前 1 个周期
1 个周期
时钟通道
B7
后 1 个周期
特点: – –
–
在一个时钟周期内连续传送7个数据。
如8bit 信号仅需要4pairs=8根信号线,与TTL相比,信号线的引线数变少 ,TCON的尺寸大小就可以变小。
信号的振幅变小,减少EMI.
Slide 10
2.1 TCON & Source IC接口信号
■ Gate Driver IC :栅极驱动IC ( = Y Driver IC =Y COF = Row Driver IC )
■ Source PCB :栅极驱动IC ( = X-PCB = PCBA = TCON board )
Slide 7
2 输入/输出信号
2.1 模块输入信号
TTL( Transistor-to-Transistor Logic) – 信号线上3.3V代表数据“1”, 0V代表数据“ 0” – 信号的每一位都使用一条单独的数据线进行传输 – 特点:工作频率低、电磁干扰大,传输距离短
TFT Off:透光 TFT On:不透光 通过增加电压使液晶分子排列最大程度地接近 垂直于基板,从而实现漏光较小的黑态
Slide 4
1.3 面板驱动电路组成
LVDS连接器
Slide 5
1.4 图像数据信号流程 VGA
DVI 图象数据产生
图象显示
TMDS :最小化传输差分信号 TTL :晶体管-晶体管逻辑电平 LVDS : 低压差分信号
Clock
3.3V 0V
Data
3.3V 0V
‘0’
‘1’
低压差分信号(LVDS, Low Voltage Differential Signaling )
– 噪声以共模的方式在一对差分线上耦合出现,并在接收器中相减从而可 消除噪声
– 利用+Pair和-Pair之间的电压差来表示数据,当电压差为正代表“1”, 相反就是数据“0”。
D5
D6
D7
D0
D1
Slide 12
CLK P/N
SP
D00P/N
D01P/N R
D02P/N
D03P/N
D10P/N G
D13P/N
D20P/N B
D23P/N
RSDS Data Mapping
D0 D1 D0 D1 D2 D3 D2 D3 D4 D5 D4 D5 D6 D7 D6 D7 D0 D1 D0 D1 D6 D7 D6 D7 D0 D1 D0 D1 D6 D7 D6 D7
TTL
TMDS
TTL A/D board
信号格式转换
LVDS Tx LVDS Tx
LVDS
LVDS inT/CON
PCBA
C
S-IC (COF)
O
LXCGAD(1P02a4nxeFl
768)
Gate D-IC
变换成面板显示的控制和数据信号
Slide 6
1.5 常用名称
■ Source Driver IC : 源极驱动IC ( = Data Driver IC = X COF= Column Driver IC )
左输出口 1,2,3…63 9
右输出口 640,641,642..1280
RSDS信号(Reduced Swing Differential Signal ) – 与LVDS(低压差分信号)类似,主要用于TCON和源驱动器之间的接口。
Slide 11
Clock P/N R D0P/N G D1P/N B D2P/N R D3P/N G D4P/N B D5P/N
TTL信号
Mini-LVDS信号 – 和LVDS一样有正、负信号对构成差分对,主要用于TCON和源极驱动器之间的接口。 – 一对信号线连续传输6或8个数据;一个时钟同时传输左、右两个象素的数据
– 与TTL信号相比,T/CON的Pin数显然减少
LVDS
mini-LVDS(1T28/C0xO8N00)mini-LVDS
Slide 9
LVDS Data Mapping
通道 0
R1 R0
G0
R5 R4 R3 R2 R1
R0
G0 R5
通道 1
G2 G1 B1 B0 G5 G4 G3 G2 G1 B1 B0
通道 2
B3 B2 使能 帧同步 行同步 B5 B4 B3 B2 使能 帧同步
通道 3
R7 R6
B7 B6 G7 G6 R7 R6
Mini-LVDS Data Mapping
> 50nS and 3 cycle
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D0
D1
D2
D3
D4
EwE
Execution without Excuse
TFT-LCD 驱动控制电路
目的
•了解TFT-LCD驱动电路相关基础知识,增强对液晶显示原理的理解
主要内容
液晶模组概述 输入/输出信号 驱动电路系统 电源电路 灰阶 极性反转 Vcom调节 Gamma 调试方法
Slide 2
1 液晶模组概述
1.1 TFT-LCD模组结构
TFT-LCD Cell
X-COF & Y-COF PCBA
Module Process
Panel/PCBA Assy.
bonding
Module Process
Assy.
TFT-LCD Module
Backlight unit
Bezel
Shield cover
Slide 3
1.2 TFT-LCD显示实现
上偏TFT
下玻璃基板
下偏振片
Glass
常白模式
透明电极 液晶
背光源
V E
-----
-
透光 (TFT Off)
不透光 (TFT On)
•面板上的象素就像一个“窗户”,可改变施加在 象素上的电压大小来控制“窗户”的开关程度, 从而实现发光的分级灰阶功能 •常白模式: