激光拉曼实验报告

合集下载

激光拉曼光谱实验

激光拉曼光谱实验

激光拉曼光谱实验拉曼散射是印度科学家Raman 在1928年发现的,拉曼光谱因之得名。

光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。

但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。

拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。

因这一重大发现,拉曼于1930年获诺贝尔奖。

激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。

如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。

实验目的:1、掌握拉曼光谱仪的原理和使用方法;2、测四氯化碳的拉曼光谱,计算拉曼频移。

实验重点:拉曼现象的产生原理及拉曼频移的计算实验难点:光路的调节实验原理:[仪器结构及原理]1、仪器的结构LRS-II 激光拉曼/荧光光谱仪的总体结构如图12-4-1所示。

2、单色仪单色仪的光学结构如图12-4-2所示。

S 1为入射狭缝,M 1为准直镜,G 为平面衍射光栅,衍射光束经成像物镜M 2汇聚,经平面镜M 3反射直接照射到出射狭缝S 2上,在S 2外侧有一光电倍增管PMT ,当光谱仪的光栅转动时,光谱信号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。

3、激光器本实验采用50mW 半导体激光器,该激光器输出的激光为偏振光。

其操作步骤参照半导体激光器说明书。

4、外光路系统外光路系统主要由激发光源(半导体激光器)、五维可调样品支架S 、偏振组件P 1和P 2以及聚光透镜C 1和C 2等组成(见图12-4-3)。

激光拉曼光谱的测定详述

激光拉曼光谱的测定详述

实验四 激光拉曼光谱的测定093858 张亚辉一. 实验目的1、了解拉曼光谱的基本原理,掌握显微共焦激光拉曼光谱仪的使用方法。

2、测量一些常规物质和复杂样品的拉曼光谱。

二. 实验原理当用波长比试样粒径小得多的频率为υ的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。

散射光中除了存在入射光频率υ外,还观察到频率为υ±△υ的新成分,这种频率发生改变的现象就被称为拉曼效应。

υ即为瑞利散射,频率υ+△υ称为拉曼散射的斯托克斯线,频率为υ-△υ的称为反斯托克斯线。

△υ通常称为拉曼频移,多用散射光波长的倒数表示,计算公式为11λλν-=∆式中,λ和λ0分别为散射光和入射光的波长。

△υ的单位为cm -1。

由于拉曼谱线的数目、频移、强度直接与分子振动或转动能级有关。

因此,研究拉曼光谱可以提供物质结构的有关信息。

自从激光问世以来,拉曼光谱的研究取得了长足进展,已广泛应用于物理、化学、生物以及生命科学等研究领域。

图1显微共焦激光拉曼光谱仪结构显微镜样品双瑞利滤光片狭缝光栅CCD 检测器激光扩束器三、实验仪器和试剂1. 显微共焦激光拉曼光谱仪 Renishaw inVia (英国雷尼绍公司)Renishaw 显微共焦激光拉曼光谱仪原理:本系所用的是英国雷尼绍显微共聚焦激光拉曼光谱仪(图2),它具有诸多优势如:高稳定性、高重复性高重复光谱,重复性:≦±0.2波数;激光阻挡水平高 (杂散光抑制水平高);高灵敏度 (贯穿于整个仪器设计中):各激发光波长配以各自独立的引入光学元件(反射镜等), 使到达样品的激光功率最大。

透射式光谱仪设计,以避免散焦缺陷。

并对各激发光波段配以相应的透镜, 使每激光谱段分别都达到最佳透过效率,获得最高的通光效率。

2. 粉碎机、载玻片、盖玻片、胶头滴管3. 测试样品常规物质:CCl 4,KNO 3 复杂样品:不同淀粉类作物 自备样品:不同材料的小挂件 四.实验步骤1. 打开主机和计算机电源,同时打开激光器后面的总电源开关,将仪器预热20分钟左右。

拉曼光谱实验报告

拉曼光谱实验报告

拉曼光谱实验报告1.1样品的准备检测拉曼光谱时一般不需要制备样品,特别是带有显微镜的激光拉曼光谱仪。

在检测时,样品是固体,只需要将样品直接放在测样品台上进行测试。

如果是液体样品并且是易挥发的,可先将其倒入一个无色透明的玻璃瓶,盖好瓶盖,然后放在测样品台上进行检测。

如果液体样品是不易挥发的,可将其倒入一个小的培养皿中,再放在测样品台上进行检测。

1.2分子骨架、基团的定性分析技术拉曼光谱研究对称分子的非极性基团或分子骨架振动产生谱带的情况。

主要用来鉴别化学物质的种类、特殊的结构特征或特征基团,它与红外吸收光谱互为补充。

拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。

利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。

对于像S-S、C=C、N=N、C=S、C-C、CºC等这类基团,如果分子中这类基团的环境接近对称,他的振动在红外吸收光谱中极为微弱,但可用拉曼光谱检测。

另外,拉曼光谱是检测环状化合物的有力工具。

利用拉曼光谱的标准谱图或利用拉曼光谱标准谱库的检索功能,对未知物拉曼光谱图进行比对,也是拉曼光谱定性分析的一个重要手段。

1.3表面分子结构分析技术当一些分子被吸附在某些粗糙金属表面时,它们的拉曼光谱强度会增加104~106倍,即表面增强拉曼散射效应(SERS)。

利用此技术,能检测吸附在金属表面的单分子层和亚单分子层的分子,给出表面分子的结构信息。

高灵敏度拉曼光谱检测技术,也可用来研究分子的吸附动力学,利用SERS强度随时间变化的关系,得到吸附速率常数等数据。

当具有共振拉曼效应的分子吸附在粗糙化的金属表面时,其拉曼信号也能被增强到100~1000倍,即表面增强共振拉曼散射(SERRS)。

SERRS常被用于受荧光干扰的化合物的拉曼检测,当该化合物分子吸附到粗糙化的金属表面时,其荧光会被猝灭,很容易得到高质量的SERRS光谱图。

张利宏_激光拉曼光谱实验报告---近代物理实验

张利宏_激光拉曼光谱实验报告---近代物理实验

激光拉曼光谱实验报告摘要:本实验研究了用半导体激光器泵浦的3Nd +:4YVO 晶体并倍频后得到的532nm 激光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,确定了各个峰的退偏度,0.929752、0.629412、0.873846、0.741176、0.884774、0.757774关键词:拉曼散射、分子振动、退偏一、引言1928年,印度物理学家拉曼(C.V.Raman )和克利希南(K.S.Krisman )实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。

几乎与此同时,苏联物理学家兰斯别而格(ndsberg )和曼杰尔斯达姆(L.Mandelstamm )也在晶体石英样品中发现了类似现象。

在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。

这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。

拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。

拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。

因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。

20世纪60年代激光的问世促进了拉曼光谱学的发展。

由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。

而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。

拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。

它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。

激光拉曼光谱实习报告

激光拉曼光谱实习报告

一、实习背景激光拉曼光谱技术是一种基于拉曼散射现象的非破坏性化学分析技术,广泛应用于化学、物理、生物、材料科学等领域。

为了深入了解这一先进的光谱技术,我参加了为期两周的激光拉曼光谱实习。

二、实习目的1. 了解激光拉曼光谱的基本原理和实验操作流程。

2. 掌握激光拉曼光谱仪器的使用方法和维护保养。

3. 通过实际操作,提高对拉曼光谱数据的分析和解读能力。

4. 了解激光拉曼光谱在各个领域的应用。

三、实习内容1. 激光拉曼光谱原理及仪器介绍实习的第一天,我们学习了激光拉曼光谱的基本原理。

拉曼散射是指光在经过物质后发生散射,被散射后的光子与原来的光子的频率差即为拉曼频移。

激光拉曼光谱利用一束单色激光激发样品,通过测量激发光与散射光的频率差异,获得样品的振动光谱信息。

实习期间,我们了解了不同型号的激光拉曼光谱仪,包括操作界面、功能模块、仪器维护等方面的知识。

2. 激光拉曼光谱实验操作在实习的第二周,我们进行了实际操作,学习如何使用激光拉曼光谱仪进行样品分析。

(1)样品制备:根据实验要求,我们制备了不同形态的样品,如固体、液体和气体等。

对于固体样品,我们采用了压片法、切片法等方法进行制备;对于液体样品,我们使用毛细管法;对于气体样品,我们采用气体池法。

(2)样品测量:将制备好的样品放置在样品台上,调整激光功率、光斑大小、测量时间等参数,进行拉曼光谱测量。

(3)数据采集与处理:通过光谱仪软件对采集到的拉曼光谱数据进行处理,包括光谱平滑、背景扣除、峰位校正等。

3. 激光拉曼光谱数据分析在实习的最后阶段,我们学习了如何分析拉曼光谱数据。

通过对已知物质的拉曼光谱特征峰进行比对,我们可以确定样品的化学成分和结构信息。

此外,我们还学习了如何根据拉曼光谱数据计算样品的分子振动频率、力常数等物理参数。

四、实习总结通过两周的激光拉曼光谱实习,我收获颇丰。

以下是我对本次实习的总结:1. 激光拉曼光谱技术具有非破坏性、高灵敏度、高分辨率等优点,在各个领域都有广泛的应用。

激光拉曼实验报告

激光拉曼实验报告

激光拉曼实验报告激光拉曼实验报告引言:激光拉曼光谱是一种非常强大的光谱分析技术,可以提供有关物质的结构、组成和化学环境的详细信息。

本文将介绍我们进行的一项激光拉曼实验,以及实验过程中的观察和结果。

实验目的:本次实验的目的是利用激光拉曼光谱仪对不同样品进行分析,了解其分子结构和化学组成。

我们选择了几种常见的物质作为实验样品,包括水、酒精和苯。

实验装置:我们使用的激光拉曼光谱仪由激光器、样品台、光谱仪和数据处理系统组成。

激光器产生高能量的激光光束,样品台用于放置样品,光谱仪用于收集和分析样品散射的光信号,数据处理系统用于处理和解读光谱数据。

实验步骤:1. 准备样品:我们使用纯净水、纯度99%的酒精和苯作为实验样品。

将样品放置在透明的玻璃盒中,以确保激光光束能够透过样品进行散射。

2. 调整仪器:根据不同样品的特性,调整激光器的功率和波长,以及光谱仪的参数,以获得最佳的信号强度和分辨率。

3. 开始测量:将样品放置在样品台上,打开激光器,使激光光束照射到样品上。

光谱仪会收集样品散射的光信号,并将其转化为光谱图。

4. 数据处理:将光谱图导入数据处理系统,进行峰识别和峰拟合,以确定样品中的分子振动模式和化学键信息。

5. 结果分析:根据光谱图和数据处理结果,分析样品的分子结构和化学组成。

实验观察:在实验过程中,我们观察到了不同样品的光谱图有明显的差异。

水的光谱图显示出了特征性的水分子振动峰,酒精的光谱图显示出了酒精分子的振动模式,而苯的光谱图则显示出了苯分子的芳香振动峰。

结果分析:通过对光谱图和数据处理结果的分析,我们可以确定样品中的分子结构和化学组成。

例如,在水的光谱图中,我们观察到了OH键的振动峰,确认了水分子的存在。

在酒精的光谱图中,我们观察到了C-O键的振动峰,证实了酒精分子的存在。

在苯的光谱图中,我们观察到了芳香环的振动峰,确认了苯分子的存在。

实验总结:激光拉曼实验是一种非常有用的光谱分析技术,可以提供有关物质的结构和组成的详细信息。

激光拉曼

激光拉曼

实验名称: 激光拉曼光谱的测定一. 实验目的1、了解拉曼光谱的基本原理,掌握显微共焦激光拉曼光谱仪的使用方法。

2、测量一些常规物质和复杂样品的拉曼光谱。

二. 实验原理当用波长比试样粒径小得多的频率为υ的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。

散射光中除了存在入射光频率υ外,还观察到频率为υ±△υ的新成分,这种频率发生改变的现象就被称为拉曼效应。

υ即为瑞利散射,频率υ+△υ称为拉曼散射的斯托克斯线,频率为υ-△υ的称为反斯托克斯线。

△υ通常称为拉曼频移,多用散射光波长的倒数表示,计算公式为11λλν-=∆式中,λ和λ0分别为散射光和入射光的波长。

△υ的单位为cm -1。

由于拉曼谱线的数目、频移、强度直接与分子振动或转动能级有关。

因此,研究拉曼光谱可以提供物质结构的有关信息。

自从激光问世以来,拉曼光谱的研究取得了长足进展,已广泛应用于物理、化学、生物以及生命科学等研究领域。

图1显微共焦激光拉曼光谱仪结构三、实验仪器和试剂1. 显微共焦激光拉曼光谱仪 Renishaw inVia (英国雷尼绍公司)显微镜样品狭缝光栅扩束器2. 粉碎机、载玻片、盖玻片、胶头滴管3. 测试样品常规物质:CCl4复杂样品:大米自备样品:不同材料的小挂件四.实验步骤1. 打开主机和计算机电源,同时打开激光器后面的总电源开关,将仪器预热20分钟左右。

2. 自检.静态取谱(Static),中心520 Raman Shift cm-1, Advanced -> Pinhole 设为 in。

使用硅片,用50 倍物镜,1 秒曝光时间,100%激光功率取谱。

使用曲线拟合(Curve fit)命令检查峰位,检验仪器状态。

3.样品拉曼光谱的测定将样品放置在载玻片上,盖上盖玻片,置于显微镜的载物台上,调节显微镜载物台的高度使得显微镜能够清晰地观察到样品表面(上2,下1)。

拉曼光谱实验报告

拉曼光谱实验报告

拉曼光谱实验报告篇一:拉曼光谱实验报告拉曼光谱实验[实验目的]1、了解Raman光谱的原理和特点;2、掌握Raman光谱的定性和定量分析方法;3、了解Raman 光谱的谱带指认。

4、了解显微成像Raman光谱。

[仪器和装置] 1、显微Raman光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USBXX+的拉曼光谱仪,自带785nm激光;2、带二维步进电机平移台一台(有控制器一台);3、PT纳米线样品;4、光谱仪软件SpectraSuite;5、步进电机驱动软件;6、摄像头(已与显微镜集成在一起)。

[实验内容]1、使用显微Raman系统及海洋光谱软件对单根或多根纳米线进行显微Raman光谱测量,对测量的图和标准图进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。

2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的拉曼信号强度三维图,模拟样品表面拉曼表征。

选择多个拉曼波长对样品形状进行观察。

[实验结果及分析]观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于784.54nm,794.94 nm,798.60 nm,802.90 nm,806.84 nm,811.91 nm,817.10 nm,825.29 nm,832.44 nm,879.69nm附近,对应的Raman Shift分别是-7.46 cm-1159.28 cm-1216.94 cm-1284.00 cm-1 344.82 cm-1422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-11371.21 cm-1。

(通过Raman Shift=1/λ入射-1/λ散射计算得到)PT纳米线Raman测量的谱峰指认:分析可知,-7.46 cm-1159.28 cm-1216.94 cm-1284.00cm-1 344.82 cm-1422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E,A1(2TO),E(2LO)+A1(2LO),E(3TO)A1(3TO),A1(3LO)声子模。

激光拉曼光谱实验报告

激光拉曼光谱实验报告

激光拉曼光谱实验报告激光拉曼光谱实验报告引言:激光拉曼光谱是一种非常重要的光谱分析技术,它可以通过激光与样品相互作用而产生的拉曼散射光,来获取样品的结构信息和分子振动信息。

本实验旨在探究激光拉曼光谱的原理与应用,并通过实验验证其在化学分析中的可行性和准确性。

实验原理:激光拉曼光谱是基于拉曼散射效应的,当激光与样品相互作用时,光子与样品中的分子发生相互作用,部分光子的能量被转移给分子,导致分子的振动和转动状态发生变化。

当光子重新散射出来时,其能量与入射光子相比发生了变化,这种能量差就是拉曼散射光的频率差,也称为拉曼位移。

通过测量拉曼散射光的频率差,可以获得样品的结构信息和分子振动信息。

实验步骤:1. 准备样品:选择一种具有明确结构和振动特征的样品,如苯乙烯。

将样品制备成适当浓度的溶液。

2. 调整仪器:打开激光拉曼光谱仪,调整激光器的功率和波长,确保光束的稳定性和一致性。

3. 校准仪器:使用标准样品进行校准,以确保光谱仪的准确性和可靠性。

4. 测量样品:将样品溶液放置在光谱仪的样品室中,调整光谱仪的参数,如激光功率、积分时间等,开始测量样品的拉曼光谱。

5. 数据分析:将测得的拉曼光谱数据进行处理和分析,通过比对标准谱图和已知结构的样品,确定拉曼峰的对应关系和分子结构。

实验结果与讨论:通过实验测量得到的苯乙烯的拉曼光谱如下图所示。

在光谱中可以观察到多个峰,每个峰对应着分子的不同振动模式。

通过与已知标准谱图的对比,可以确定这些峰的对应关系,从而推断出样品中分子的结构和组成。

在苯乙烯的拉曼光谱中,我们可以观察到几个显著的峰,如1450 cm^-1处的峰对应着苯环的C=C键伸缩振动,800 cm^-1处的峰对应着苯环的C-H键伸缩振动。

这些峰的位置和强度可以提供关于分子结构和键的信息,如键长、键强度等。

激光拉曼光谱在化学分析中有着广泛的应用。

通过测量样品的拉曼光谱,可以快速、无损地获取样品的结构信息和化学成分。

拉曼光谱实验报告

拉曼光谱实验报告

拉曼光谱实验报告引言光谱是研究物质结构和性质的重要手段之一,而拉曼光谱则是近年来备受关注的一种非常有用的光谱技术。

拉曼光谱通过测量物质在激发光照射下所散射光的频率差,揭示了物质分子的振动和转动信息。

本实验旨在通过测量不同物质的拉曼光谱,探讨拉曼光谱在化学分析中的应用。

实验方法本实验使用的拉曼光谱仪配备了一台激光器和一个光电倍增管。

首先,将待测样品放置在样品台上,并将激光对准样品表面。

开启光谱仪后,记录激光的波长和功率,并调整样品的位置和角度,以获得清晰的拉曼光谱信号。

实验过程中,要确保样品不受污染和损坏,并且保持仪器的灵敏度和稳定性。

实验结果与讨论1. 水的拉曼光谱我们首先对水这一常见物质进行了实验。

结果显示,水的拉曼光谱包含了丰富的信息,其中包括了水分子的伸缩振动和转动振动等。

根据实验结果,我们能够准确测量水的拉曼频移以及相应的光谱峰位,并据此进一步推测水的分子结构和键长等物理参数。

此外,由于水是一种极具活性的化学物质,我们还可以通过比较不同水样品的拉曼光谱差异,来确定水中的杂质和污染物含量。

2. 有机物的拉曼光谱在本实验中,我们还研究了一些有机物的拉曼光谱,并对比了不同有机物的光谱特征。

结果表明,不同有机物的拉曼光谱存在差异,这可以用于鉴别和定量分析不同的有机化合物。

通过观察拉曼光谱中的峰位、强度和形状等特征,我们能够确定物质的化学组成和结构。

由于有机物在拉曼光谱中具有独特的指纹区域,因此拉曼光谱被广泛应用于药物分析、环境监测和食品安全等领域。

3. 表面增强拉曼光谱除了传统的拉曼光谱,我们还研究了表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy, SERS)。

该技术基于纳米金属表面所产生的增强效应,能够大幅提高样品的拉曼散射信号,从而增强检测灵敏度。

我们在实验中采用了金纳米颗粒作为增强剂,并测量了不同浓度的染料溶液的拉曼光谱。

结果显示,SERS技术不仅可以有效检测低浓度的物质,还能够应用于微量分析和生物传感等领域。

拉曼实验报告

拉曼实验报告

拉曼实验报告一、实验目的了解拉曼测试的原理,掌握一些相关的拉曼信息。

能看懂拉曼的基本信息图,会解一些基本的拉曼图。

二、实验原理当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。

在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。

因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究1、激光拉曼光谱的原理光照射到物质上发生弹性散射和非弹性散射。

弹性散射的散射光是与激发光波长相同的成分。

非弹性散射的散射光有比激发光波长长和短的成分,通称为拉曼效应。

当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向投射,而一小部分则按不同的角度散射开来,产生散射光。

在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一些列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能及有关,因此,与红外吸收光谱类似。

对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。

2、拉曼光谱原理(1)光的散射入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品,一小部分光则改变方向,发生散射。

一部分散射光的波长与入射光波长相同,这种散射称为瑞利散射。

(2)拉曼散射的产生机械力学的解释光由光子组成,这是光的微粒性。

光子与样品分子间的相互作用,可以用光子与样品分子之间的碰撞来解释。

光照射样品时,光子和样品分子之间发生碰撞。

拉曼光谱实验报告

拉曼光谱实验报告

拉曼光谱实验报告一、实验目的:通过拉曼光谱实验,了解拉曼效应的原理和应用,并掌握拉曼光谱的实验方法和数据处理。

二、实验原理:拉曼效应是一种光与物质相互作用的效应,由散射光的频率发生变化而引起。

当光经过样品散射后,部分光子的频率发生改变,发生频移的光子称为拉曼散射光。

拉曼散射光可以分为斯托克斯散射和反斯托克斯散射。

斯托克斯散射是指光子的频率减小,能量减小,反斯托克斯散射则相反。

三、实验仪器和材料:1.激光器2.拉曼光谱仪3.样品四、实验步骤:1.将样品放置在拉曼光谱仪样品台上,并调整相应参数。

2.打开激光器,调节激光器到适当的功率。

3.打开光谱仪,选择所需的波长范围,并确定激发光。

4.开始采集拉曼光谱数据,记录下实验数据。

五、实验结果和分析:通过实验,我们得到了一些拉曼光谱数据。

根据斯托克斯散射和反斯托克斯散射的原理,我们可以观察到散射光的频率发生变化。

根据拉曼光谱的峰位和峰强,可以进一步分析样品的分子结构和成分。

六、实验结论:通过拉曼光谱实验,我们可以观察到样品的拉曼散射光,进而分析样品的分子结构和成分。

拉曼光谱技术在材料科学、化学分析等领域有着广泛的应用。

本次实验使我们对拉曼效应的原理和应用有了更深入的了解,并掌握了拉曼光谱实验的方法和数据处理技巧。

七、实验心得:本次实验中,我们首先了解了拉曼效应的基本原理,并通过实验验证了拉曼效应的存在。

在实验中,激光器的功率调节是一个重要的环节,过高或过低的功率都会对实验结果产生影响。

此外,选择适当的波长范围和光谱仪的参数设置也是非常关键的。

在数据处理过程中,需要对拉曼光谱进行峰位和峰强的分析,以得到更准确的结论。

综上所述,本次拉曼光谱实验使我对拉曼效应有了更深入的认识,同时也掌握了拉曼光谱实验的方法和数据处理技巧。

这对我的科研和实验能力的提升有着积极的意义。

激光拉曼实验报告

激光拉曼实验报告

激光拉曼实验报告引言激光拉曼光谱是一种基于拉曼散射现象的光谱技术,它在材料科学、生物医学、环境监测等领域有着广泛的应用。

本实验旨在通过激光拉曼光谱技术来分析样品的分子结构和化学成分,以及探索拉曼散射的物理原理。

实验步骤1. 实验准备在进行激光拉曼实验前,首先需要准备实验所需的设备和材料。

主要的设备包括激光器、光谱仪、样品支架等。

材料方面可以选择不同类型的样品进行测试,如有机化合物、无机晶体、生物分子等。

2. 调节激光器将激光器调节至适当的功率和波长。

根据实验需要,选择合适的激光波长,一般常用的有532 nm和785 nm。

通过调节激光器的参数,可以获得稳定的激光输出。

3. 收集拉曼光谱将样品放置于样品支架上,并将支架放置在光谱仪中。

在实验过程中,需要注意避免样品受到外界干扰,如光线、温度变化等。

通过激光照射样品,收集样品散射的拉曼光谱。

4. 数据分析将收集到的光谱数据进行分析。

通过观察谱线的位置和强度,可以判断样品的分子结构和化学成分。

对于未知样品,可以与已知的标准光谱进行对比,以确定样品的成分。

结果与讨论本实验选取了几种常见的有机化合物作为样品进行测试。

经过收集和分析光谱数据,观察到了特定的拉曼峰和强度变化。

通过与已知有机化合物的光谱进行对比,成功地确定了样品的成分。

实验结果表明,激光拉曼光谱技术在材料分析中具有很高的应用潜力。

结论本实验通过激光拉曼光谱技术成功地分析了不同样品的分子结构和化学成分。

实验结果表明,激光拉曼光谱技术是一种非常有效的分析工具,可以在材料科学、生物医学等领域中得到广泛应用。

通过进一步的研究和探索,我们可以进一步提高激光拉曼光谱技术的灵敏度和分辨率,以满足更高级别的科学研究需求。

参考文献•Smith, E., & Dent, G. (2005). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.•Matousek, P., & Morris, M. D. (Eds.). (2012). Emerging Raman applications and techniques in biomedical and pharmaceutical fields (Vol. 113).Springer Science & Business Media.。

激光拉曼光谱实验报告

激光拉曼光谱实验报告

拉曼光谱实验报告一、实验原理1、拉曼散射的经典模型对于振幅矢量为0E ,角频率为0ω的入射光,分子受到该入射光电场作用时,将感应产生电偶极矩P ,一级近似下P A E =,。

A 是一个二阶张量(两个箭头表示张量),称为极化率张量,是简正坐标的函数。

对于不同频率的简正坐标,分子的极化率将发生不同的变化,光的拉曼散射就是由于分子的极化率的变化引起的。

根据泰勒定理将A 在平衡位置展开,可得()3600000101cos cos 2N k k k k kA P A E t Q t E q ωωωϕ-=⎛⎫∂ ⎪=+±±⎡⎤⎣⎦ ⎪∂⎝⎭∑ {}20,1......2k l k l k lAQ Q E q q ⎛⎫∂⎪++ ⎪∂∂⎝⎭∑ (2) 由(2)可以发现,000cos A E t ω表明将产生与入射光频率0ω相同的散射光,称之为瑞利散射光。

()0cos k k t ωωϕ±±⎡⎤⎣⎦表明,散射光中还存在频率与入射光不同,大小为0k ωω±的光辐射,即拉曼散射光。

且拉曼散射光一共可以有对称的3N-6种频率,但产生与否取决于极化率张量各分量对简正坐标的偏微商是否全为零。

2、 半经典理论解释拉曼散射频率为0ω的单色光,可以看做是具有能量0ω的光子,而光的散射是由于入射光子和散射物分子发生碰撞后,改变传播方向而形成的。

图2是光散射机制半经典解释的一个形象表述,图中i j E E 表示分子的两个振动能级,虚线表示的不是分子可能的状态,只是用以表示入射光子和散射光子的能量。

碰撞如果是弹性的,如图(2a )则二者不交换能量,光子只改变运动方向而频率和能量都没有改变,这就是瑞利散射。

而发生非弹性碰撞时,如图(2b ),光子和物质分子交换能量,可以看成是入射光子的湮灭和另一个不同能量散射光子的产生,与此同时,分子能量状态发生了跃迁,导致拉曼散射光产生。

当初态能级i E 低于末态能级j E 时产生斯托克斯拉曼散射,出射光子频率为0ij ωω-;而初态能级j E 高于末态能级i E 时产生反斯托克斯拉曼散射,出射光子频率为0ij ωω+。

喇曼散射光谱的实验分析报告

喇曼散射光谱的实验分析报告

喇曼散射光谱的实验分析报告
喇曼散射是光谱学中的一种重要现象,用于研究物质的结构、构型和振动等信息。


实验以激光器作为激发光源,通过测量散射光的强度和频率来分析样品的喇曼散射光谱。

本实验旨在通过喇曼散射光谱的实验分析,研究样品组成、结构和其他特性。

实验装置主要包括一个激光器、一个样品夹、一个光谱仪和一个光电二极管。

首先进
行样品的制备,将待测样品装入样品夹中,并通过调节夹紧力使样品处于均匀分布状态。

然后将样品夹放置在光路上,并调节激光器的功率和聚焦,使获得较好的信号强度。

随后,通过转动样品夹,调整激光器的入射角度,探测出不同角度下的喇曼散射光谱。

在实验过程中,要注意控制激光器的功率,避免样品产生过高的温度。

要保证样品的稳定,避免其在光路中发生偏移或运动,导致实验结果的不准确。

实验数据的分析主要包括测量不同角度下的喇曼散射光谱,计算相应的散射角度、波
数和频率差,并绘制散射峰强度与散射角度的关系曲线。

根据散射峰的位置和强度,可以
初步推测样品的组成和结构特征。

通过分析实验结果,可以得到样品的喇曼散射光谱图谱,进一步分析其组成和结构的
信息。

样品中出现的不同散射峰对应的频率差可以反映样品中的振动模式,进而推测样品
的分子结构。

散射峰的强度还可以反映样品中不同振动模式的相对强度和出现频率等信
息。

激光拉曼实验报告

激光拉曼实验报告

激光拉曼及荧光光谱实验一、实验目的1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理;2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法;3、 研究四氯化碳CCL4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。

二、实验原理2.1 基本原理分子有振动。

原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为A 是振幅,k 是力常数。

按照量子力学,简谐振子的能量是量子化的,t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。

如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量hf t t E E h )('12-=-=ν 波数为CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1:2:3。

当Δt =1时,测得的ν~反映了分子键的强弱。

分子有转动。

双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。

按照经典力学,转动的动能是式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明IP I E 22122==ω222121r r m m m m I μ=+=222212121kA kx mv E =+=2121m m m m m +=hft E )21(+=mk f π21=,3,2,)(1~12ωωωωλν=∆=-'=-==t cft t hc E E上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。

按照量子力学,角动量应等于代入上式得此式可以从量子力学直接推得,J称为转动量子数。

当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 22π的2,4,6,8,···倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光拉曼及荧光光谱实验
一、实验目的
1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理;
2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法;
3、 研究四氯化碳CCL
4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。

二、实验原理
2.1 基本原理
分子有振动。

原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为
A 是振幅,k 是力常数。

按照量子力学,简谐振子的能量是量子化的,
t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。

如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量
hf t t E E h )('12-=-=ν 波数为
CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1:
2:3。

当Δt =1时,测得的ν
~反映了分子键的强弱。

分子有转动。

双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。

按照经典力学,转动的动能是
式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明
I
P I E 2212
2=
=ω2
2
2
121r r m m m m I μ=+=
2222
12121
kA kx mv E =+=
2
12
1m m m m m +=
hf
t E )2
1(+=m
k f π21=
,3,2,)(1
~12ωωωωλ
ν
=∆=-'=-=
=t c
f
t t hc E E
上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。

按照量子力学,角动量应等于
代入上式得
此式可以从量子力学直接推得,J称为转动量子数。

当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 22π的2,4,6,8,···倍。

实验和理论都证明纯转动能级的跃迁只能在邻近能级之间,就是ΔJ=±1。

所得
光谱的波长应该有下式表达的值:
谱线波数(ν
~)的间隔是相等的。

HCL 分子远红外吸收谱中,曾观察到很多条吸收线,这些线的波数间隔应该是2B,实验测得:B=10.34厘米
-1
,所以由此求得
转动惯量I,进而求得HCL 分子中原子之间的核间距这一重要数据。

多原子分子的转动可以近似地看作刚体的转动,这涉及到多个转轴的不同的转动惯量。

其谱线结构较为复杂,只有直线型的分子和对称高的分子转动曾研究出一些结果。

在分析化学领域中提供了一些分析样品的标准特征谱线可供实验参照。

光通过透明的物体时,有一部分被散射。

如果入射光具有线状谱,散射光的光谱中
除有入射光的谱线外,还另有一些较弱的谱线,这些谱线的波数ν
'~等于入射光某一波数0~ν加或减一个数值,即10~~~ννν±='。

新出现谱线的波数与入射光的波数之差发现与光源无关,只决定于散射物。

如果换一个光源,0~ν不同了,但如果散射物不变换,那么0~~νν-'还是等于原来的1~ν,散射光的波数变动反映了散射物的性质。

由于散射光的波数等于入射光的波数与另一数值1
~ν组合的数值,所以这样的散射称作组合散射。

可以在紫外或可见区观测分子的振动和转动能级,通过选择波长在可见光波段的激
,2,1,0,2)
1(=+=J h
J J P π
)
1(82
2+=
J J I
h E πIc
h B J BJ
J J J J Ic h hc E E 2''''2'8,,3,2,12)]1()1([8~1ππνλ=
==+-+=-==
光光源的方法,使拉曼光谱分布在可见光区域,这样便于视觉的观察,较之红外或远红外光谱技术更为方便。

组合散射的方法不论在分子结构的研究上或工业的应用上都很重要。

因为每一种分子都有其特有的分子光谱,所以,通过分子光谱的观察可以辨认化合物,作定性和定量分析,目前,已广泛应用于物理、化学、生物及生命科学等研究领域,尤其是在石油工业上应用特别多。

拉曼谱线的频率虽然随着入射光频率而变换,但拉曼光的频率和瑞利散射光的频率之差却不随入射光频率而变化,而与样品分子的振动转动能级有关。

拉曼谱线的强度与入射光的强度和样品分子的浓度成正比例关系,可以利用喇曼谱线来进行定量分析,在与激光入射方向的垂直方向上,能收集到的喇曼散射的光通量正比于:
ΦL 为入射光照射到样品上的光通量 A 为拉曼散射系数,约等于10
-28
-10
-29
MOL/球面度
N 为单位体积内的分子数 L 为样品的有效体积
K 为考虑到折射率和样品内场效应等因素影响的系数
利用拉曼效应及拉曼散射光与样品分子的上述关系,可对物质分子的结构和浓度进行分析研究,于是建立了拉曼光谱法。

绝大多数拉曼光谱图都是以相对于瑞利谱线的能量位移来表示的,由于斯托克斯峰比较强(原因是正常状态下,处于低能级的分子数比处于高能级的分子数多),故可以比较小的位移为基础来估计Δб(以cm -1
为单位),即Δб=бy -б
三.实验内容
1. 按照连接图连接好电缆,放入待测样品CCL,打开激光器;
2. 按照调节说明,调节外光路,打开仪器的电源,启动应用程序;
3. 通过阈值窗口选择适当的阈值,在参数设置区设置阈值和积分时间及其他参数;
4. 扫描,根据情况调节狭缝至最佳效果,数据处理及存储打印;
5. 关闭应用程序,关闭仪器电源,关闭激光器电源。

四.数据处理
LRS -II/III 型激光拉曼/荧光光谱仪在实验时,是以测量四氯化碳的拉曼光谱为主要内容。

方法是:将分析纯液态四氯化碳倒入液体池内,放入外光路的液体池架上,调整好外光路注意将散射光成像对准单色仪入射狭缝上,并将狭缝开0.1mm 左右,并通过
K
L N A L R ⋅⋅⋅⋅Φ⋅∝Φπ4
计算机选择相应的条件,记录其拉曼光谱曲线图。

在瑞利线右侧长波方向出现五个拉曼峰视为宜,以下内容为参考数据.
λ (nm) 519.3 523 525.9 532 538.2 541.3 545.3 554.5 555.3 б (cm-1) 19256 19121 19015 18797 18579 18473 18338 18035 18007 Δб(cm-1) 459 324 218 0 218 324 459 762 790
图30 LRS-II型不带陷波滤波器ccl4拉曼曲线光谱图
图31 LRS-III型带陷波滤波器拉曼曲线光谱图
λ (nm) 519.3 523.2 525.8 532.0 538.2 541.1 545.3 554.5 555.3 б (cm-1) 19256 19121 19015 18797 18579 18473 18338 18035 18007 Δб(cm-1) 459 316.2 221.6 0 217 316 459 762 790
图31 偏振片+1/4玻片45度不带陷波滤波器ccl4拉曼曲线光谱图
图32 偏振片+1/4玻片90度不带陷波滤波器ccl4拉曼曲线光谱图
λ (nm) 519.2 523.2 525.7 532.0 538.2 540.9 545.3 554.3 555.2 б (cm-1) 19260 19120 19022 18797 18580 18488 18339 18041 18012 Δб(cm-1) 463 316 222 0 217 309 458 756 785
五.注意事项
仪器使用中需要注意以下事项:
1.保证使用环境。

2.光学零件表面有灰尘,不允许接触擦拭,可用吹气球小心吹掉。

3.每次测试结束,首先取出样品,关断电源。

4.激光对人眼有害,请不要直视。

六.思考题
1.怎样解释波长短的伴线比波长长的伴线的强度弱?
答:正常状态下,处于低能级的分子数比处于高能级的分子数多。

2.如何使用功能来定标?
答:在波长修正项中输入一个差值(实际波长与理论波长的差,可正可负),则整个拉曼曲线平移一个差值的距离。

3.域值窗口有什么作用?域值的大小对谱线结果有何影响?
答:在域值窗口设定一甑别电平以屏蔽噪声脉冲产生的光子计数;当将域值设置在噪声刚开始接近零点处,就能去掉大部分噪声脉冲而只有光电子通过,从而提高信噪比。

4.石蜡、红宝石、葡萄酒、血液等物可以做拉曼检测吗?或加处理后可做吗?
答:石蜡、红宝石等固体可做拉曼检测,而葡萄酒、血液等液体要先做处理才可做。

相关文档
最新文档