碳纳米管和石墨烯简介

合集下载

碳纳米管和石墨烯简介

碳纳米管和石墨烯简介

碳纳米管的应用
纳米金属催化剂 载体,利用碳纳米管的 高比表面及良好的吸 氢能力,成功制备了 负载 Pt纳米粒子的高 效加 氢催化剂。
碳纳米管的应用
无碳纳米管(左)和有碳纳米管(右) 情况下的大肠杆菌对比照片 一项最新研究表明,单壁碳纳米管能够严重破坏大 肠杆菌等细菌的细胞壁,从而将其杀灭。将有助于解 决细菌抗药性这一日益突现的问题。
石墨烯的应用
超级电容器:
超级电容器是一个高效储存和传递 能量的体系,它具有功率密度大,容量 大,使用寿命长,经济环保等优点,被 广泛应用于各种电源供应场所。石墨烯 拥有高的比表面积和高的电导率,不像 多孑L碳材料电极要依赖孔的分布,这使 它成为最有潜力的电极材料。以石墨烯 为电极材料制备的超级电容器功率密度 为10kW/kg,能量密度为28.5Wh /kg,最大比电容为205F/g,而且 经过1200次循环充放电测试后还保留 90%的比电容,拥有较长的循环寿命。 石墨烯在超级电容器方面的潜在应用受 到更多的研究者关注。
A brief introduction of
应化0902
张一恒
碳纳米管
碳纳米管是在1991年1月由日本筑波NEC实验室 的物理学家饭岛澄男使用高分辨率分析电镜从电弧法生产 的碳纤维中发现的。它是一种管状的碳分子,管上每个碳 原子采取SP2杂化,相互之间以碳-碳σ键结合起来,形成 由六边形组成的蜂窝状结构作为碳纳米管的骨架。每个碳 原子上未参与杂化的一对p电子相互之间形成跨越整个碳 纳米管的共轭π电子云。按照管子的层数不同,分为单壁 碳纳米管和多壁碳纳米管。管子的半径方向非常细,只有 纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽, 碳纳米管的名称也因此而来。而在轴向则可长达数十到数 百微米。 碳纳米管不总是笔直的,局部可能出现凹凸的现 象,这是由于在六边形结构中混杂了五边形和七边形。出 现五边形的地方,由于张力的关系导致碳纳米管向外凸出。 如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管 的封口。出现七边形的地方碳纳米管则向内凹进。

导电最好的材料

导电最好的材料

导电最好的材料在现代科技领域,导电材料是一种非常重要的材料,它们可以在电子、通讯、能源等领域发挥重要作用。

导电材料是一种能够传导电流的材料,它们可以通过导电性能来实现电子设备的正常工作。

在众多导电材料中,有一些材料具有更好的导电性能,本文将介绍一些导电最好的材料。

首先,碳纳米管是一种导电性能非常优秀的材料。

碳纳米管具有优异的导电性能和机械性能,其导电性能远远超过铜和铝等传统金属材料。

碳纳米管具有很高的载流子迁移率和热导率,可以在微电子器件中发挥重要作用。

由于碳纳米管的独特结构和优异性能,它被认为是一种非常理想的导电材料。

其次,石墨烯也是一种导电性能非常出色的材料。

石墨烯是一种由碳原子构成的二维晶格结构,具有非常优异的导电性能和热导率。

石墨烯具有高达200,000S/cm的电导率,是铜的数倍,而且还具有非常好的柔韧性和透明性。

由于石墨烯的独特性能,它被广泛应用于柔性电子、光电子等领域。

除了碳基材料外,金属材料中的银也是一种导电性能非常优秀的材料。

银具有很高的电导率和热导率,是一种非常理想的导电材料。

在电子器件中,银材料可以作为导线、电极等部件,发挥重要作用。

由于银的优异导电性能,它被广泛应用于电子、通讯等领域。

此外,导电聚合物也是一种导电性能较好的材料。

导电聚合物是一种将导电性能与聚合物材料相结合的材料,它具有较好的导电性能和机械性能。

导电聚合物可以通过掺杂导电填料或者控制分子结构来实现导电性能,可以在柔性电子、光电子等领域发挥重要作用。

综上所述,碳纳米管、石墨烯、银和导电聚合物都是导电性能非常优秀的材料。

它们在电子、通讯、能源等领域发挥着重要作用,是现代科技领域不可或缺的材料。

随着科技的不断进步,相信会有更多导电性能优秀的材料出现,为人类社会的发展带来更多的惊喜和便利。

石墨烯简介

石墨烯简介

石墨烯1 石墨烯的概述石墨烯(Graphene,GE)是世界上最薄,最坚硬的纳米材料,也是其他石墨材料的基本单元,以碳六元环为基本结构组成周期蜂窝状的二维点阵结构,若翘曲便可成为零维的富勒烯,若将石墨烯卷成一维结构便成为碳纳米管(Carbon nano-tube,CB),若是多层堆积便成为了三维的石墨(Graphite)。

石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料。

平面六边形点阵结构是石墨烯最理想的结构,可以认为是单层石墨分子被从三维石墨结构中剥离出来形成的二维分子结构,所有碳原子均为sp2杂化,并且每个碳原子上均多出一个p轨道上的电子形成大π键,这个π电子可以自由移动,因此石墨烯具有良好的导电性。

因此二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本单元。

由于特殊的结构石墨稀因此拥有了很多的优异的性能,首先在电学方面,由于大π键的存在,石墨稀具有优异的导电性能,如超高的载流子迁移率,室温量子霍尔效应,弹道输运等等;而在光学方面,石墨烯具有超高的透光率,其透光率能达到97.7%的惊人数据。

力学性能方面,石墨稀是已知的具有最高强度和硬度的晶体结构,热学方面,石墨烯具有优异的导热性能,其导热是铜的很多倍。

由于这些优异的性能使得石墨稀不但成为科学界一颗明星,而且使得其拥有了极其广阔的应用前景。

石墨烯为六角型呈蜂巢晶格的平面薄膜,是由一种碳原子以sp2杂化轨道组成的,我们可以将它看成是其他石墨类材料组成的基本单元,所以石墨烯片在适当的条件下可以进行包裹和卷曲,分别可以形成零维和一维结构,层层堆叠起可以形成的是三维的石墨,零维和一维分别形成球状的富勒烯、管状的碳纳米管(见图1.1);它们和仅为单一碳原子厚度的二维碳材料作为为重要成员组成了碳纳米材料家族,它们之间通过包裹、卷曲和堆积相互进行转化。

2004年,K.S.Novoselov 等以天然鳞片石墨为原料,制得二维六角形平面原子石墨烯的方法为机械力剥离法。

碳纳米管简介

碳纳米管简介
?除做结构复合材料的增强剂外纳米碳管还可做为功能增强剂填充到聚合物中提高其导电性散热能力等4电磁干扰屏蔽材料及隐形材料碳纳米管是一种有前途的理想微波吸收剂可用于隐形材料电磁屏蔽材料或暗室吸波材料
碳纳米管简介
1.碳纳米管的发现 碳纳米管是在1991年1月由日本筑波 NEC实验室的物理学家饭岛澄男使用 高分辨率分析电镜从电弧法生产的碳 纤维中发现的。
2) 锂离子电池 碳纳米管的层间距为0.34nm,略大于石墨的 层间距0.335nm,这有利于Li+的嵌入与迁出,它 特殊的圆筒状构型不仅可使Li+从外壁和内壁两 方面嵌入,又可防止因溶剂化Li+嵌入引起的石 墨层剥离而造成负极材料的损坏。碳纳米管掺 杂石墨时可提高石墨负极的导电性,消除极化。 在锂离子电池中加入碳纳米管,也可有 效提高电池的储氢能力,从而大大提高锂离子电 池的性能。
3) 碳纳米管复合材料
基于纳米碳管的优良力学性能可将其作 为结构复合材料的增强剂。研究表明, 环氧树脂和纳米碳管之间可形成数百 MPa的界面强度。 除做结构复合材料的增强剂外,纳米碳 管还可做为功能增强剂填充到聚合物中, 提高其导电性、散热能力等
4) 电磁干扰屏蔽材料及隐形材料
碳纳米管是一种有前途的理想微波吸收剂,可用于隐形 材料、电磁屏蔽材料或暗室吸波材料。 碳纳米管对红外和电磁波有隐身作用的主要原因有两点: 一方面由于纳米微粒尺寸远小于红外及雷达波波长,因 此纳米微粒材料对这种波的透过率比常规材料要强得多, 这就大大减少波的反射率,使得红外探测器和雷达接收到 的反射信号变得很微弱,从而达到隐身的作用; 另一方面,纳米微粒材料的比表面积比常规粗粉大3~4 个数量级,对红外光和电磁波的吸收率也比常规材料大得 多,这就使得红外探测器及雷达得到的反射信号强度大大 降低,因此很难发现被探测目标,起到了隐身作用。由于发 射到该材料表面的电磁波被吸收,不产生反射,因此而达到 隐形效果。

纳米金刚石、碳纳米管、石墨烯性能的第一原理研究

纳米金刚石、碳纳米管、石墨烯性能的第一原理研究

纳米金刚石、碳纳米管、石墨烯性能的第一原理研究纳米金刚石、碳纳米管、石墨烯是当今材料科学领域备受关注的研究热点。

这些材料具有独特的结构和特性,广泛应用于电子器件、能源储存、催化剂等领域。

本文将以第一原理计算的方法探究纳米金刚石、碳纳米管和石墨烯的特殊性能。

首先,我们来介绍纳米金刚石。

纳米金刚石是由碳原子通过化学气相沉积等方法制备而成的一种材料。

它具有极高的硬度和优异的导热性能。

通过第一原理计算,我们可以得到纳米金刚石的电子结构和声子谱。

研究发现,纳米金刚石比传统金刚石更加稳定,表面能也更低,这使得它在催化剂和传感器等领域有着广阔的应用前景。

接下来,我们转向碳纳米管。

碳纳米管是由石墨烯卷曲而成的一维结构材料。

它具有良好的导电性、导热性和力学性能。

在第一原理计算中,我们可以研究碳纳米管的带隙和能带结构,揭示其导电性质的来源。

碳纳米管的直径和卷曲方式对其电子结构和机械性质有着重要影响。

研究发现,碳纳米管可以用作场效应晶体管、纳米电子器件和传感器等多种应用。

最后,我们来讨论石墨烯。

石墨烯是由单层碳原子构成的二维晶体材料。

它具有出色的电子传导性、光学透明性和强度。

通过第一原理计算,我们可以研究石墨烯的结构、能带和振动谱。

研究发现,石墨烯具有线性色散关系的能带结构,这赋予了它独特的电子输运性质。

石墨烯可以用于柔性电子器件、储能器件和光电器件等多个领域。

纳米金刚石、碳纳米管和石墨烯的研究不仅局限于理论计算,也需要与实验相结合。

实验可以验证理论预测的性质,并探索这些材料的合成和应用。

此外,通过材料设计和工程的手段,还可以调控和优化纳米金刚石、碳纳米管和石墨烯的特性,进一步提高其性能和应用潜力。

总结来说,纳米金刚石、碳纳米管和石墨烯具有独特的结构和特性,通过第一原理计算可以深入研究它们的性质。

这些材料在电子器件、能源储存和催化剂等领域有着广泛的应用潜力。

随着材料科学的不断进步,相信纳米金刚石、碳纳米管和石墨烯的研究将会取得更多重要的突破和应用综上所述,纳米金刚石、碳纳米管和石墨烯是具有独特结构和特性的新兴材料。

石墨烯与碳纳米管:一样的前生,不一样的今世

石墨烯与碳纳米管:一样的前生,不一样的今世

石墨烯与碳纳米管:一样的前生,不一样的今世精选|关键词:石墨烯, 碳纳米管2010年10月4日,诺贝尔物理学奖揭晓,获奖者是英国曼彻斯特大学物理和天文学院的Andre Geim和Konstantin Novoselov,获奖理由为“二维空间材料石墨烯(graphene)方面的开创性实验”。

从2004年石墨烯被成功剥离[1]至2010年斩获诺贝尔奖,是什么魔力让这一看似“普通”的碳材料在短短的6年时间内缔造了一个传奇神话?而回眸看其同族兄弟碳纳米管,自1991年被发现至今近20年,历经风雨,几经沉浮,不过是“为他人做嫁衣裳”。

石墨烯即为“单层石墨片”,是构成石墨的基本结构单元;而碳纳米管是由石墨烯卷曲而成的圆筒结构(图1)。

作为一维(1D)和二维(2D)纳米材料的代表者,二者在结构和性能上具有互补性。

从结构上来看,碳纳米管是碳的一维晶体结构;而石墨烯仅由单碳原子层构成,是真正意义上的二维晶体结构。

从性能上来看,石墨烯具有可与碳纳米管相媲美或更优异的特性,例如高电导率和热导率、高载流子迁移率、自由的电子移动空间、高强度和刚度等。

网上大多溢美之词:“Pencil + sticky tape = desktop supercollider + post-silicon processors”,“Material of the Future”,“A thoroughbred that has to be tamed”,“Electron superhighway”,...。

目前,关于碳纳米管的研究,无论在制备技术、性能表征及应用探索等方面都已经达到了一定的深度和广度。

组成及结构上的紧密联系,使二者在研究方法上具有许多相通之处。

事实上,很多针对石墨烯的研究最开始都是受到碳纳米管相关研究的启发而开展起来的。

图1 石墨烯与碳纳米管石墨烯的发展历程与碳纳米管极为类似。

在碳纳米管被发现之前,碳的晶体结构为代表[2])。

碳纳米材料简介

碳纳米材料简介

神奇的碳材料、摘要:碳元素作为地球上丰富的元素之一,其性质多样,应用广泛。

对碳材料的研究有着深远的意义与价值。

近年来,碳材料的研究相当活跃,出现了多种多样的新型碳材料。

其中包括石墨烯、富勒烯等,这些新型的碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。

关键词:石墨烯、富勒烯、碳纳米管、应用石墨烯【1】在2004年,英国的两位科学家安德烈·杰姆和克斯特亚·诺沃塞洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。

他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。

不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。

而后制得是摩西的方法多种多样。

石墨烯是一种二维晶体,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。

这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。

人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。

当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨石墨烯特性(1)比钻石还要坚硬科学家发现了一些只有100分之一头发丝宽度的石墨烯薄片后,他们就开始使用原子尺寸的金属和钻石探针对它们进行穿刺,从而测试它们的强度。

让科学家震惊的是,石墨烯比钻石还强硬,它的强度比世界上最好的钢铁还高100倍石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。

其完美的晶格结构,常被误认为很僵硬,但事实并非如此。

石墨烯各个碳原子间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形。

这样,碳原子就不需要重新排列来适应外力,这也就保证了石墨烯结构的稳定,使得石墨烯比金刚石还坚硬,同时可以像拉橡胶一样进行拉伸。

石墨烯性能简介

石墨烯性能简介

第一章石墨烯性能及相关概念1 石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。

石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。

但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。

单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。

完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。

石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa)。

此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。

石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。

石墨烯结构图2 石墨烯结构石墨烯指仅有一个原子尺度厚单层石墨层片,由sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。

石墨烯中碳-碳键长约为0.142nm。

每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。

垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。

石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。

形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。

在单层石墨烯中,每个碳原子通过sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。

单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。

石墨烯的结构非常稳定,碳原子之间连接及其柔韧。

受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。

石墨烯简介

石墨烯简介

石墨烯发现与研究

严格意义上石墨烯的发现归功于 Geim 团队,在 2004 年采用 胶带粘揭的方法(sotch taping),制备得到了完美的石墨 烯;外延生长法、化学气相沉积、氧化还原法等; 根据严格意义的二维晶体理论,热力学上严格和独立的二维 原子晶体是不稳定的,但是准二维原子晶体材料却可以稳定 存在; Geim 等获得的石墨烯就是准二维原子晶体材料,具有褶皱 或附在其他基底上


图 1 化学气相沉积生长石墨烯的基元步骤. (1) 碳源在催化剂表面的吸附; (2) 碳源脱附回到气相; (3) 碳源的脱氢分解; (4)碳原子在表面的迁移; (5) 碳原子在表面(优先在台阶等缺陷位处)直接成核并生长石墨烯; (6) 碳原子在高温下溶入金属体相;(7) 碳原子在金属体相内的扩散; (8) 降温过程中碳原子从体相析出, 并在表面成核生长石墨烯
石墨烯简介
一、碳纳米材料

碳元素在元素周期表中排第六位 在地壳中的含量只有0.027% 碳的同素异形体
(1)金刚石(最硬物)
(2)石墨(最软物) (3)碳纳米管(良导体) (4)足球烯 (5)石墨烯 玻璃态碳、无定形碳、活性炭等
碳的同素异形体间的关系:
石墨烯的定义

1997年,IUPAC将石墨烯定义为:

有机合成法 电化学法 模板法
应用

石墨烯手机


自清洁玻璃
集成电路

石墨烯电荷传输性质

具有很高的电荷迁移率(载流子几乎可以以光速移动);

电阻率为 10-6欧姆 厘米,目前已知物质中室温电阻率最 低的材料;

石墨烯的光学性质

具有令人惊奇的光学性质,单层石墨烯对可见光约有 3.2%的吸收(电子能带结构); 石墨烯的不透明度为2.3%; 零带隙结构使石墨烯对光很容易饱和,具有较低的饱和 通量;(光学领域、激光开关)

碳纳米管一维狄拉克材料-概述说明以及解释

碳纳米管一维狄拉克材料-概述说明以及解释

碳纳米管一维狄拉克材料-概述说明以及解释1.引言1.1 概述概述碳纳米管(Carbon Nanotubes,简称CNTs)是一种具有特殊结构和优异性能的纳米材料,被广泛认为是材料科学领域的研究热点之一。

碳纳米管由碳原子以一定的方式排列而成,形成了空心的管状结构。

其独特的一维结构使其具有许多特殊的物理性质和潜在的应用价值。

在过去几十年中,碳纳米管引起了广泛的关注和研究。

由于其高强度、高导电性和高导热性等优异性能,碳纳米管在材料科学、纳米科技、电子学等领域具有广泛的应用前景。

同时,碳纳米管还具有独特的光学性质和化学反应活性,使其在光电子学和催化剂等领域显示出巨大的潜力。

本文将重点介绍碳纳米管作为一维狄拉克材料的相关内容。

所谓狄拉克材料指的是具有狄拉克费米子(Dirac Fermions)特性的材料。

狄拉克费米子是一种具有质量零点能态的粒子,其行为类似于相对论中的狄拉克粒子。

碳纳米管的特殊结构和电子结构使其具备了类似狄拉克费米子的行为,因此被认为是一维狄拉克材料的代表。

文章的内容将包括碳纳米管的基本概念、制备方法和物理性质等方面。

同时,还将探讨碳纳米管作为一维狄拉克材料的意义,以及在科学研究和应用领域的前景。

此外,本文还将涉及碳纳米管研究所面临的挑战以及未来的发展方向。

通过对碳纳米管一维狄拉克材料的深入研究,我们可以更好地理解其独特的电子行为和物理性质,并且为其在纳米电子学、能源存储、生物传感等领域的应用提供基础。

同时,对于研究者而言,也能够促进对一维狄拉克材料的认识和理解,为材料科学的发展做出贡献。

尽管碳纳米管研究面临一些挑战和困难,但相信在不久的将来,通过持续的努力和研究,碳纳米管作为一维狄拉克材料的应用前景将会得到进一步的拓展和发展。

1.2 文章结构文章结构部分的内容:本文按照以下结构进行撰写和组织。

第一部分为引言,旨在介绍碳纳米管一维狄拉克材料的研究背景、意义和目的。

引言分为三个小节,分别是概述、文章结构和目的。

碳纳米管和石墨烯简介

碳纳米管和石墨烯简介

柔性传感器
石墨烯的高灵敏度和柔韧性可用 于制造柔性传感器,可应用于医
疗、环境监测等领域。
传感器领域
气体传感器
石墨烯对气体分子的高灵敏度可用于制造高灵敏度的气体传感器 ,可应用于环境监测、工业过程控制等领域。
生物传感器
石墨烯的生物相容性和高导电性可用于制造生物传感器,可应用于 医疗诊断、生物分子检测等领域。
碳纳米管可作为药物载体,实现药物 的定向输送和缓释。
05 石墨烯应用前景
柔性电子器件领域
柔性显示屏
石墨烯的高导电性和柔韧性使其 成为制造柔性显示屏的理想材料 ,可应用于手机、可穿戴设备等

柔性电池
石墨烯的高导电性和大面积制备 能力使其成为制造柔性电池的关 键材料,可应用于可穿戴设备、
电动汽车等领域。
制备方法
机械剥离法
化学气相沉积法(CVD)
氧化还原法
液相剥离法
利用胶带反复剥离石墨片层, 得到单层或多层石墨烯。此方 法简单易行,但产量低且尺寸 难以控制。
在高温下,利用含碳气体在金 属基底上催化裂解生成石墨烯 。此方法可制备大面积、高质 量的石墨烯,但需要高温高压 条件,成本较高。
通过化学方法将石墨氧化成氧 化石墨,再经过还原处理得到 石墨烯。此方法产量较高,但 所得石墨烯缺陷较多,性能较 差。
激光烧蚀法
使用高能激光脉冲照射石 墨靶材,使石墨蒸发并在 惰性气体中冷凝形成碳纳 米管。
02 石墨烯概述
定义与结构
石墨烯定义
石墨烯是一种由单层碳原子以sp2杂化方式形成的二维材料,具有蜂窝状晶格 结构。
原子结构
石墨烯中的每个碳原子都与周围三个碳原子通过σ键相连,形成稳定的六边形网 格。剩余的π电子在垂直于平面的方向上形成离域大π键,赋予石墨烯良好的导 电性。

石墨烯和碳纳米管

石墨烯和碳纳米管

石墨烯和碳纳米管石墨烯和碳纳米管是来源于天然碳元素的新型纳米材料,由于它们的超强物理和化学性能,可以广泛应用于电力、电子、轻质量传感等领域。

石墨烯和碳纳米管作为新兴的纳米材料,具有独特的结构及性能,可以在不同条件下耐受较高温度。

石墨烯是由单层碳原子构成的大尺寸二维原子薄膜,其形状类似于一块平板,厚度只有一个原子层,可堆砌而成多层原子薄膜,也可以在表面制备出不同结构的石墨烯结构。

石墨烯具有多种独特的物理和化学的电子性质,其几何结构可以控制其高导电性、耐腐蚀性和低摩擦系数等性能,并可以增强少量功能单位的运转速度,有助于增加电子设备的精度和可靠性。

碳纳米管是石墨烯的一个特殊形式,具有更小、更简洁的理化特性。

碳纳米管是一种卷曲的极细碳管,具有极高的电导率、抗热震性和抗拉强度,孔径尺寸可以达到一个原子直径,运动特性类似于纳米材料,其电子特性也有所不同,可以形成更高效、低热量、高容量和速度等新型半导体材料,这些材料可用于光电子学、纳米电子学领域和其他高性能电子产品的制造中,当然也可以用于改善现有的半导体技术来提高功耗及节约能源。

石墨烯和碳纳米管广泛应用于能源、光电子学、纳米电子学和其他电子领域,可以作为新能源材料、气体动力系统、减噪装置和太阳能收集系统等使用。

它们还可以作为电子器件,用于改进信号过滤器的性能,取代密度小的传感器,以及用来检测和识别信号等。

此外,由于石墨烯和碳纳米管拥有超高的热稳定性、抗潮性、自由降解性等特点,因此也可以用作工业材料,如电极材料、过滤器材料等,可以有效改善工业产品的质量和可靠性。

综上所述,石墨烯和碳纳米管被越来越多地应用到现代科学技术和工业生产中,其出色的物理特性和精密的结构特性给我们带来了极大的收益,可以提升电子设备的可靠性,减少系统功耗,从而促进绿色节能,带动社会发展。

石墨烯简单介绍

石墨烯简单介绍

,是室温
构造与性能
热学性能
① 单层石墨烯旳
,
比碳纳米管旳而传
导率3000-3500Wm·k还要高,相比之下,工业界中被广泛使用旳散
热 材料金属铜旳热传导率只有400Wm·k
② 伴随石墨烯层数旳增长,其热传导率逐渐下降;当石墨烯从2层增 至4层时,其热导率从2800Wmk降低至1300Wmk;当层数到达5-8 层,减小到石墨旳热导率
2004英国曼彻斯特大学Andre Geim和他旳徒弟 Konstantin Novoselov在试验室用一种非常简朴旳措 施得到越来越薄旳石墨薄片。他们从石墨中剥离 出石墨片,然后将薄片旳两面粘在一种特殊旳胶 带上,撕开胶带,就能把石墨片一分为二。不断 地这么操作,于是薄片越来越薄,最终,他们得 到了仅由一层碳原子构成旳薄片,这就是石墨烯 。所以两人共同取得2023年诺贝尔物理学奖。
石墨烯应用
替代硅生产超级计算机
石墨烯是目前已知
旳材料。石墨烯旳
这种特征尤其适合于高频电路。高频电路是当代电子工业旳领头羊,
某些电子设备,例如手机,因为工程师们正在设法将越来越多旳信息
填充在信号中,它们被要求使用越来越高旳频率,然而手机旳工作频
率越高,热量也越高,于是,高频旳提升便受到很大旳限制。因为石 墨烯旳出现,高频提升旳发展前景似乎变得无限广阔了。 这使它在
研究人员发觉,在石墨烯样品微粒开始碎裂前,它们每100纳米距 离上可承受旳最大压力居然到达了大约2.9微牛。据科学家们测算,这 一成果相当于要施加55牛顿旳压力才干使1微米长旳石墨烯断裂。假如 物理学家们能制取出厚度相当于一般食品塑料包装袋旳(厚度约100纳
米)石墨烯,那么需要施加差不多两万牛旳压力才干将其扯断。换句 话说,假如用石墨烯制成包装袋,那么它将能承受大约两吨重旳物品。

碳纳米管介绍

碳纳米管介绍
化学气相沉积法又名催化裂解法, 其原理是通过烃类(如甲烷、乙烯、丙烯和苯等) 或含碳氧化物(如CO) 在催化剂的催化下裂解为碳原子,碳原子在催化剂作用下,附着在催化剂微粒表面上形成碳纳米管。
此法特点:操作简单, 工艺参数更易控制,生长温度相对较低,成本低,产量大,可规模化生产。但由于其制备的碳纳米管含有许多杂质,且碳纳米管缠绕成微米级大团,需要进一步纯化和分散处理。
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能,由于是一维材料,其在径向上的导热性能优越,我们甚至可以在复合材料中掺杂微量的碳纳米管 ,使得复合材料的热导率得到很大的改善。
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无无定形碳出现。这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。
3.化学气相沉积法(CVD)
碳纳米管对红外和电磁波有隐身作用:一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,大大减少波的反射率;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,也使得红外探测器及雷达得到的反射信号强度大大降低,起到了隐身作用。可用于隐形材料、电磁屏蔽材料或暗室吸波材料。
在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成碳纳米管。

石墨烯对比碳纳米管材料

石墨烯对比碳纳米管材料

石墨烯对比碳纳米管材料2005年,国际半导体技术线路图(ITRS)委员会首次明确指出在2020年前后硅基CMOS技术将达到其性能极限。

后摩尔时代的集成电路技术的研究变得日趋急迫,很多人认为微电子工业在走到7纳米技术节点之后可能不得不面临放弃继续使用硅材料作为晶体管导电沟道。

在为数不多的可能替代材料中,碳基纳米材料被公认为最有可能替代硅材料。

2008年ITRS新兴研究材料和新兴研究器件工作组在考察了所有可能的硅基CMOS替代技术之后,明确向半导体行业推荐重点研究碳基电子学,作为未来5~10年显现商业价值的下一代电子技术。

美国国家科学基金委员会(NSF)十余年来除了在美国国家纳米技术计划中继续对碳纳米材料和相关器件给予重点支持外,在2008年还专门启动了“超过摩尔定律的科学与工程项目”,其中碳基电子学研究被列为重中之重。

其后美国不断加大对碳基电子学研究的投入,美国国家纳米计划从2010年开始将“2020年后的纳米电子学”设置为3个重中之重的成名计划(signatureinitiatives)之一。

除美国外,欧盟和其他各国政府也高度重视碳纳米材料和相关电子学的研究和开发应用,布局和继续抢占信息技术核心领域的制高点。

碳纳米管材料中,最有可能替代硅的有两个,碳纳米管和石墨烯。

在石墨烯获得诺贝尔奖之前,碳纳米管一直被认为是最有可能代替硅的半导体材料,而如今,由于石墨烯在全球范围内的狂热,似乎有代替碳纳米管之势,那么,石墨烯和碳纳米管,究竟谁能堪当大任呢?碳纳米管集成电路的研发优势与发展现状1991年,日本NEC公司的饭岛澄男在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由碳分子组成的管状同轴纳米管,也就是现在被称作的碳纳米管CNT,又名巴基管。

碳管材料具有极为优秀的电学特性。

室温下碳管的n型和p型载流子(电子和空穴)迁移率对称,均可以达到10000cm2/(V?s)以上,远超传统半导体材料。

碳纳米材料简介

碳纳米材料简介

碳纳米材料简介碳元素碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。

尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。

碳元素是元素周期表中ⅣA族中最轻的元素。

它存在三种同位素:12C、13C、14C。

碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。

如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。

碳纳米材料富勒烯富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。

1985年,Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子――C60。

这一发现使得他们赢得了1996年的诺贝尔化学奖。

C60由60个原子组成,包含20个六元环和12个五元环。

这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。

从那以后,不同分子质量和尺寸的富勒烯纷纷被制备出来。

C60的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,对纳米材料科学和技术的发展起到了极大的推动作用。

由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1)表1-1 C60的一些基本物理和化学性质形态密度电阻率相变温溶解化学特性范德毒性度性华直径可溶具有芳香黑色800℃ 于常性、多烯特 33固体 1.65g/cm 4.5*10升华见有性及优良的1.1nm 无毒Ω2cm 机溶电化学特性剂碳纳米管碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。

纳米材料论文—石墨烯

纳米材料论文—石墨烯

纳米科技前沿Page1of 18题目:纳米材料——石墨烯摘要随着纳米材料的快速发展,纳米材料有着众多优秀的理化性质,同时,还包括在应用领域优秀的应用性能,本文从纳米材料的基本性质出发,叙述纳米材料的特有性质,继而本文叙述了对于标志这纳米材料发展的有着重要意义的三种材料——富勒烯,碳纳米管,石墨烯。

而本文的核心是关于目前最具前景的纳米材料——石墨烯。

石墨烯是一种碳纳米二维材料,原子以sp2杂化轨道方式构成,平面像六角的蜂巢结构,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快,而全材料仅一个碳原子厚度,是全世界已知材料最薄的材料。

本文从石墨烯的发展历史出发,叙述石墨烯的优异理化性质,最后叙述石墨烯的不同制备方法以及该方法的优劣之处。

关键词:石墨烯理化性质制备方法AbstractWith the rapid development of nanomaterials, nanomaterials have many excellent physical and chemical properties, as well as excellent application properties in the field of application. Starting from the basic properties of nanomaterials, this paper describes the unique properties of nanomaterials, and then describes three kinds of materials which are of great significance to mark the development of nanomaterials: fullerenes, carbon nanotubes, carbon nanotubes, Graphene. The core of this paper is about the most promising nano material graphene.Graphene is a kind of carbon nano two-dimensional material. The atoms are composed of SP2 hybrid orbitals. The plane is like a hexagonal honeycomb structure. The material is very firm and hard. At room temperature, the speed of electron transfer is faster than that of known conductors. The whole material is only one carbon atom thick, which is the thinnest known material in the world. Starting from the development history of graphene, this paper describes the excellent physical and chemical properties of graphene, and finally describes the different preparation methods of graphene and the advantages and disadvantages of this method.Key words: physical and chemical properties of graphene, preparation methods.目录1纳米材料概述 (4)1.1纳米材料 (4)1.2纳米材料的基本特性 (4)1.2.1 表面效应 (4)1.2.2 小尺寸效应 (4)1.2.3 磁学性质 (6)1.2.4 量子尺寸效应 (6)1.2.5 宏观量子隧道效应 (6)1.2.6 纳米材料奇特的物理性能 (7)1.3纳米材料的发展 (7)1.3.1 富勒烯 (7)1.3.2 碳纳米管 (9)1.3.3 石墨烯 (10)2石墨烯 (13)2.1石墨烯概述 (13)2.2石墨烯的性质 (13)2.2.1 结构性质 (13)2.2.2 电子性质 (14)2.2.3 其他性值 (16)2.3石墨烯的制备 (16)2.3.1 机械剥离法 (17)2.3.2 碳化硅表面外延生长法 (17)2.3.3 化学气相沉积法 (18)2.3.4 氧化石墨还原法 (18)3参考论文............................................................................................ 错误!未定义书签。

石墨烯性能简介

石墨烯性能简介

第一章石墨烯性能及相关概念1石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。

石墨烯狭义上指单层石墨,厚度为0.335nm,仅有排列而成的蜂窝状晶体结构。

石墨烯中碳-碳键长约为0.142nm。

每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。

垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。

石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。

形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。

在单层石墨烯中,每个碳原子通过sp2杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。

单层石墨烯厚度仅0.35nm,约为头发丝直径的二十万分之一。

100倍,在室温下可以达到15000cm2/(V·s)。

电阻率比铝、铜和银低很多,只有10~6Ω·cm左右。

二是具有超强的导热性。

石墨烯的导热性能优于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m?K。

三是具有超强的力学性,石墨烯的硬度超过金刚石,断裂强度达到钢铁的100倍。

四是具有超强的透光性。

石墨烯的吸光率非常小,透光率高达97.7%。

五是具有超强的比表面积。

石墨烯的比表面积每克比普通活性炭高出1130m2,达到2630m2/g。

3.1石墨烯的光学性能石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,具有优异的光学性能。

理论和实验结果表明,单层石墨石饱和。

这一非线性光学行为成为饱和吸收。

在近红外光谱区,在强光辐照下,由于其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收。

利用这一性质,石墨烯可用于超快速光子学,如光纤激光器等。

3.2石墨烯的电学性能石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成π键,π电子可以自由移动,赋予石墨烯优异的导电性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺点:
其制得的CNTs抗拉强度不如上两种 方法好;存在催化剂失活的现象。
碳纳米管的性能
优异的力学性能:
•碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的长径比一般在1000:1以上,是 理想的高强度纤维材料。美国宾州州立大学的研究人员称,碳纳米管的强度比同体积钢的强度高100倍,重量 却只有后者的1/6到1/7。碳纳米管因而被称“超级纤维”。碳纳米管置于1000Pa的水压下,碳纳米管被压扁, 撤去压力后,碳纳米管像弹簧一样立即恢复了形状,表现出良好的韧性。
碳纳米管不总是笔直的,局部可能出现凹凸的现 象,这是由于在六边形结构中混杂了五边形和七边形。出 现五边形的地方,由于张力的关系导致碳纳米管向外凸出。 如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管 的封口。出现七边形的地方碳纳米管则向内凹进。
碳纳米管的制备
电弧法
该方法是在真空反应室中充满 一定压力的惰性气体,采用面积较大 的石墨棒作电极,面积较小的石墨棒 作阳极。在电弧放电过程中,两石墨 电极间总保持一定的间隙。阳极石墨 棒不断被消耗,阴极上沉积有碳纳米 管、富勒烯、石墨颗粒、无定形碳和 其他形式的炭颗粒。
温度不易控制导致碳纳米管缺 缺点: 陷多;副产物多不易后期的分离提纯。 单壁碳纳米管的纯度较低、易
粘结。
有机气体催化裂解
催化裂解法是目前应用最广、最 易实现大规模生产的一种制备方法。 在此法中化学气相沉积法应用最广。 一般采用铁、钴、镍及合金做催化剂, 粘土、硅酸盐、氧化铝做载体,低碳 烃如乙炔、甲烷、丙烯等做碳源、氮 气、氢气、氨气等做稀释气在高温的 气流炉中进行,有时候还采用等离子 加强或微波辅助的方法来保持碳原子 的均匀分布。
任何极端温度下都不会损坏的特殊的“钢筋铁骨橡胶”
碳纳米管的应用
这种材料可以像橡胶一样拉伸 延展,最大可以延展至原始尺寸的 1.7倍,而不会影响任何的性能。 这款材料的奥秘在于其中整合了新 型的碳纳米管聚合物。这种材料还 可以被应用于机器人领域,用来制 造电子皮肤,从而使机器人获得更 为敏感的触觉。
碳纳米管研究面临的问题和前景
目前,各国在实验上对碳纳米管的研究方兴未艾,并都取得了一定的成就 ,美国发明了纳米秤,日本制成了铂填充的碳纳米管,德国制备出直径为lnm的 碳纳米管。我国个别研究成果虽然走在了世界最前沿,如合成出世界最长的碳纳 米管、高质量碳纳米管储氢的研究等。
Hale Waihona Puke 碳纳米管的应用注射碳纳米管可杀灭癌细胞
美国科学家找到一种破坏癌细胞的新方法, 即先向癌细胞注射碳纳米管,然后用无线电波 进行摧毁。研究人员向兔子的肝脏肿瘤细胞注 射碳纳米管,用无线电波对碳进行加热,结果 成功地杀灭了癌细胞,而对附近的健康细胞只 造成了很少量的伤害。这一研究尚处在初步阶 段,还需要3-4年的时间才能进行临床试验。而 他们的目的是创造出能够检出癌细胞的纳米颗 粒,能够选择性地渗透进癌细胞中,而不需要 人工将它们注射进去。
碳纳米管的应用
碳纳米管的应用
这种新型碳纳米管“橡胶”其 实是一种名为粘弹性物质传统材料, 它的外表看起来很像泡沫耳塞,又 像普通的橡皮擦。这种材料无论被 怎样扭曲、拉伸,弯曲,甚至被穿 透,到最后都会恢复到原始状态。 它能抗低温,例如木星最大卫星 “泰坦”上的低温;耐高温,例如 在宇宙中近距离接近太阳时的高温, 如果将它作为宇宙飞船的制作材料, 那么人类的宇宙飞船将会“所向披 靡”。
良好的热学性能:
•一维管具有非常大的长径比,因而大量热是沿着长度方向传递的,通过合适的取向,这种管子可以合成高各向 异性材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管 ,该复合材料的热导率 将会可能得到很大的改善 。
优良的储氢性能:
碳纳米管的中空结构, 以及较石墨(0.335nm)略大的层间距(O.343nm),是具有更加优良的储氢性能, 也成为科学家关注的焦点。清华大学吴德海教授所领导的碳纳米材料研究小组,近日发现将碳纳米管制成电 极,进行恒流充放电电化学实验,结果表明, 混铜粉定向多壁碳纳米管电极的储氢量是石墨电极的10倍, 是非 定向多壁碳纳米管电极的13倍, 比电容量高1625 mAh/g, 单位体积储氢密度为39.8kg/m3,具有优异的电化学储 氢性能。
奇异的导电性能:
•碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。理 论预测其导电性能取决于其管径和管壁的螺旋角。日本在全球首次成功开发了将有机分子插入碳纳米管内部, 从而控制其导电性。通过改变插入碳纳米管内部的有机分子的种类和数量,可以高精度的控制纳米管上的电流 和导电率 ,这种电气性质的改变将会对未来微电子技术带来巨大影响。
碳纳米管的应用
纳米金属催化剂 载体,利用碳纳米管的 高比表面及良好的吸 氢能力,成功制备了 负载 Pt纳米粒子的高 效加 氢催化剂。
碳纳米管的应用
无碳纳米管(左)和有碳纳米管(右) 情况下的大肠杆菌对比照片 一项最新研究表明,单壁碳纳米管能够严重破坏大 肠杆菌等细菌的细胞壁,从而将其杀灭。将有助于解 决细菌抗药性这一日益突现的问题。
缺点:
激光蒸发
这种方法是制备单壁纳米碳管 的一种有效方法。用高能CO2激光 或Nd/YAG激光蒸发掺有Fe、Co、 Ni或其他合金的碳靶制备单壁纳米碳 管。管径可以由激光脉冲来控制。研 究发现,激光脉冲间隔时间越短,得 到的单壁碳纳米产量越高,而且单壁 碳纳米管的结构并不受激光脉冲间隔 时间的影响。而且用这种CO2激光 蒸发法,在室温下就可以得到单壁碳 纳米管。
A brief introduction of
应化0902
张一恒
碳纳米管
碳纳米管是在1991年1月由日本筑波NEC实验室 的物理学家饭岛澄男使用高分辨率分析电镜从电弧法生产 的碳纤维中发现的。它是一种管状的碳分子,管上每个碳 原子采取SP2杂化,相互之间以碳-碳σ键结合起来,形成 由六边形组成的蜂窝状结构作为碳纳米管的骨架。每个碳 原子上未参与杂化的一对p电子相互之间形成跨越整个碳 纳米管的共轭π电子云。按照管子的层数不同,分为单壁 碳纳米管和多壁碳纳米管。管子的半径方向非常细,只有 纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽, 碳纳米管的名称也因此而来。而在轴向则可长达数十到数 百微米。
相关文档
最新文档