2019年辽宁省丹东市中考数学试卷

合集下载

丹东市2019年中考数学试题含答案(word版)

丹东市2019年中考数学试题含答案(word版)

2019年丹东市初中毕业生毕业升学考试数 学 试 卷考试时间:120分钟 试卷满分:150分第一部分 客观题(请用2B 铅笔将正确答案涂在答题卡对应的位置上)一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分) 1.2019的相反数是A. 2014-B. 2014C.D. 2.如图,由4个相同的小立方块组成一个立体图形,它的主视图是A.B.C.D.3.为迎接“2019丹东港鸭绿江国际马拉松赛”,丹东新区今年投入约4000万元用于绿化美化.4000万用科学记数法表示为A. 4×106B. 4×107C. 4×108D. 0.4×1074.下列事件中,必然事件是 A. 抛掷一枚硬币,正面朝上 B. 打开电视,正在播放广告C. 体育课上,小刚跑完1000米所用时间为1分钟D. 袋中只有4个球,且都是红球,任意摸出一球是红球 5.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直 平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为 A. 70°B. 80°C. 40°D. 30°6.下列计算正确的是 A. 331-=- B.743x x x =⋅ C. 532=⋅ D. ()3532q p q p -=-7.如图,反比例函数和一次函数 的图象交于 A 、B 两点. A 、B 两点的横坐标分别为2,-3.通过观察图象,若,则x 的取值范围是 A. 20<<x B. 03<<-x 或 2>x C. 20<<x 或 3-<x D. 03<<-x8.如图,在△ABC 中,CA=CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在 弧EF 上,则图中阴影部分的面积为第2题图2014120141-xky 11=21y y >b x k y +=22第8题图BACD E FBA第5题图E CD x-3yO AB 第7题图2A.212+π B. 41-π C. 214+π D. 214-π第二部分 主观题(请用0.5mm 黑色签字笔将答案写在答题卡对应的位置上)二、填空题(每小题3分,共24分)9.如图,直线a ∥b ,将三角尺的直角顶点放在直线b 上, ∠1=35°,则∠2= .10.一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是 .11.若式子 有意义,则实数x 的取值范围是 .12.分解因式:22344xy y x x +-= .13.不等式组 的解集为 .14.小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x 元,每个圆规y 元.请列出满足题意的方程组 .15.如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动 (到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s , 经过t 秒△DEF 为等边三角形,则t 的值为 . 16.如图,在平面直角坐标系中,A 、B 两点分别在x 轴和y 轴上, OA=1,OB =3,连接AB ,过AB 中点C 1分别作x 轴和y 轴的 垂线,垂足分别是点A 1、B 1,连接A 1B 1,再过A 1B 1中点C 2作x 轴和y 轴的垂线,照此规律依次作下去,则点C n 的坐标为 .三、解答题(每小题8分,共16分) 17.计算:()231260tan 330-+-︒+-π.18.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为 A (1,-4) ,B (3,-3) ,C (1,-1).(每个小方格都是边 长为一个单位长度的正方形)(1)将△ABC 沿y 轴方向向上平移5个单位,画出平移xyxOABC第18题图第9题图1 2 ab第16题图A 2 A 1 A O xB B 1B 2C 1 C 2 y xx-2⎩⎨⎧<->+.423,532x x C BA DE F第15题图后得到的△A 1B 1C 1;(2)将△ABC 绕点O 顺时针旋转90°,画出旋转后得 到的△A 2B 2C 2,并直接写出点A 旋转到点A 2所经 过的路径长.四、(每小题10分,共20分)19.某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A :踢毽子;B :篮球;C :跳绳;D :乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生? (2)请将两个..统计图补充完整. (3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?20.某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?五、(每小题10分,共20分)21.甲、乙两人用如图所示的两个分格均匀的转盘A 、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果. (2)求甲、乙两人获胜的概率.A B12 34 57 6第21题图第19题图B C D A B C D 80 60 40 20 0803050人数(单位:人)项目A 40%25% 20%22.如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O与AC 边交于点D ,过点D 的直线交BC 边于点E , ∠BDE =∠A .(1)判断直线DE 与⊙O 的位置关系,并说明理由.(2)若⊙O 的半径R =5,tan A = ,求线段CD 的长.六、(每小题10分,共20分)23.禁渔期间,我渔政船在A 处发现正北方向B 处有一艘 可疑船只,测得A 、B 两处距离为99海里,可疑船只 正沿南偏东53°方向航行.我渔政船迅速沿北偏东27° 方向前去拦截,2小时后刚好在C 处将可疑船只拦截. 求该可疑船只航行的速度. (参考数据:sin 27°≈209,cos 27°≈109,tan 27°≈21,sin 53°≈54,cos 53°≈53,tan 53°≈34)24.在2019年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≥60)元,销售量为y 套.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是 ] 七、(本题12分)25.在四边形ABCD 中,对角线AC 、BD 相交于点O ,将△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,旋转角为θ(0°<θ<90°),连接AC 1、BD 1,AC 1与BD 1交于点P . (1)如图1,若四边形ABCD 是正方形.43第22题图EABCDO53°北A第23题图B C27° )44,2(2ab ac a b --①求证:△AOC 1≌△BOD 1.②请直接写出AC 1 与BD 1的位置关系.(2)如图2,若四边形ABCD 是菱形,AC =5,BD =7,设AC 1=k BD 1.判断AC 1与BD 1的位置关系,说明理由,并求出k 的值.(3)如图3,若四边形ABCD 是平行四边形,AC =5,BD =10,连接DD 1,设AC 1=kBD 1.请直接写出k 的值和 的值.八、(本题14分)26.如图1,抛物线y=ax 2+bx -1经过A (-1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E . (1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为 时,求证:△O BD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE =2PE 时,求△POD 的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.2121)(kDD ACPA B C DD 1 O C 1 C DAB D 1PC 1O 图1 图2 图3 第25题图 CDAB D 1PC 1 O32x PABCO PxyxyAB CO D E图1 图2 备用图yA B CO DE第26题图2014年丹东市初中毕业生毕业升学考试数学试卷参考答案及评分标准(若有其它正确方法,请参照此标准赋分)一、选择题:(每小题3分,共24分)二、填空题(每小题3分,共24分)9. 55°10. 3 11. x ≤2且x ≠0 12. x(x-2y)2 13. 1<x<2 14. ⎩⎨⎧=+=+35451923y x y x 15.34 16. ⎪⎪⎭⎫ ⎝⎛n n 23,21 三、解答题(每小题8分,共16分) 17.解:()231260tan 33-0-+-︒+π3232331-+-+=………………………………………………4分3=…………………………………………………………………………8分18. 解:(1)如图,△A 1B 1C 1即为所求. …………………………3分(2)如图,△A 2B 2C 2即为所求. …………………………6分点A 旋转到点A 2所经过的路径长为:217π………………8分四、(每小题10分,共20分)19.解:(1)80÷40%=200(人) ∴本次共调查200名学生. ………3分 (2)补全如图(每处2分). …………………7分 (3)1200×15%=180(人) ∴该学校喜欢乒乓球体育项目的学生约有180人. ……………………10分20.解:该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装,根据题意,得…………………………1分105.130003000=-xx ………………………………………5分 解这个方程得x=100…………………………………………………………………8分 经检验,x=100是所列方程的根. …………………………………9分 答:该服装厂原计划每天加工100件服装. ……………………10分五、(每小题10分,共20分) 21.解:(1)所有可能出现的结果如图:方法一:列表法 方法二:树状图法题号 1 2 3 4 5 6 7 8 答案ACBDDBCD4 (3,4) 124 (2,4) 85 (2,5) 106 (2,6) 127 (2,7) 144 (1,4) 45 (1,5) 56 (1,6) 67 (1,7) 712开始C 2B 2A 2C 1B 1A 1CBA O y x4025%DC20%15%B 40%A 人数(单位:人)项目D C B A 50308080604020…………………………………………………4分(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同, 其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18. …………………………………………6分∴ 甲、乙 两人获胜的概率分别为: 31124)(==甲获胜P ,32128)(==乙获胜P ……10分22. (1)解:直线DE 与⊙O 相切. ……………………………………………………1分理由如下:连接OD . ∵OA=OD ∴∠ODA=∠A 又∵∠BDE=∠A∴∠ODA=∠BDE ∵AB 是⊙O 直径∴∠ADB=90°………………………………………………………3分即∠ODA+∠ODB=90° ∴∠BDE+∠ODB=90° ∴∠ODE=90° ∴OD⊥DE∴DE 与⊙O 相切. ………………………………………………………5分 (2)∵R=5∴AB =10在Rt△ABC中∵tanA=AB BC =43∴BC= AB ·tanA=10×43=215…………………………6分 ∴AC=225215102222=⎪⎭⎫ ⎝⎛+=+BC AB …………………………7分 ∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD ∽△ACB …………………………8分 ∴CACB CBCD =∴…………………………………10分45671(1,4) 4(1,5) 5(1,6) 6(1,7) 72(2,4) 8(2,5) 10(2,6) 12(2,7) 143(3,4) 12(3,5) 15(3,6) 18(3,7) 21A BE C DBA O 29225)215(22===CA CB CDA BC53°北27°D(其它解法参考此标准赋分)六、(每小题10分,共20分)23.解:如图,根据题意可得,在△ABC 中,AB=99海里,∠ABC=53°,∠BAC=27°,过点C 作CD ⊥AB ,垂足为点D. ……………………………1分设BD=x 海里,则AD=(99-x )海里,在Rt △BCD 中, BDCD=︒53tan , 则CD=x ·tan53°≈x 34海里. ………………………………3分在Rt △ACD 中,,则∴ x 34=)99(21x -………………………………………………5分解得,x=27,即BD=27. ……………………………………7分 在Rt △BCD 中,BCBD =︒53cos ,则BC= 4545÷2=22.5(海里/时) ………………………………………9分∴该可疑船只的航行速度为22.5海里/时. ………………………10分(其它解法参考此标准赋分) 24.解:(1)20560240⨯--=x y∴y=-4x+480 …………………………2分(2)根据题意可得,x (- 4x+480)=14000…………………………………4分 解得,x 1=70,x 2=50(不合题意舍去)∴当销售价为70元时,月销售额为14000元. ………………………6分 (3)设一个月内获得的利润为w元,根据题意,得 w=(x-40)(-4x+480)……………………………………………………8分=-4x 2+640x-19200 =-4(x-80)2+6400当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.………………………………………10分七、(本题12分)25.解:(1)①证明:∵四边形ABCD 是正方形∴AC=BD,OC =OA=21AC,OD=OB=21BD ∴OC=OA=OD=OB ,∵△C 1OD 1由△COD 绕点O 旋转得到=≈︒532753cos BD ADCD=︒27tan )99(2127tan x AD CD -≈︒⋅=PABCDD 1OC 1∴O C 1= OC ,O D 1=OD ,∠CO C 1=∠DO D 1 ∴O C 1= O D 1 ∠AO C 1=∠BO D 1∴△A O C 1≌△BOD 1………………………………3分 ②AC 1⊥BD 1………………………………………4分 (2)AC 1⊥BD 1…………………………………………5分理由如下:∵四边形ABCD 是菱形∴OC =OA=21AC,OD=OB=21BD,AC ⊥BD ∵△C 1OD 1由△COD 绕点O 旋转得到∴O C 1= OC ,O D 1=OD ,∠CO C 1=∠DO D 1 ∴O C 1=OA ,O D 1=OB ,∠AO C 1=∠BO D 1∴OB OD OA OC 11=∴OBOA OD OC =11 ∴△A O C 1∽△BOD 1………………………………7分∴∠O AC 1= ∠OB D 1又∵∠AOB=90°∴∠O AB+∠ABP+∠OB D 1=90° ∴∠O AB+∠ABP+∠O AC 1=90° ∴∠APB=90° AC 1⊥BD 1∵△A O C 1∽△BOD 1∴75212111====BD AC BD ACOB OA BD AC ∴75=k ……………………………………… 9分(其它方法按此标准赋分)(3)21=k …………………………………………… 10分25)(2121=+kDD AC …………………………………12分八、(本题14分)图1图2 第26题图xAB CP yO D ExPO y AB C DE26. 解:(1)抛物线表达式:1212121--=x x y …………………………2分直线BC 的表达式:1212-=x y …………………………3分(2)如图1,当点P 的横坐标为32 时,把x=32代入1212-=x y ,得32132212-=-⨯=y …………4分∴DE=32又∵OE=32,∴DE =OE∵∠OED =90° ∴∠EOD=45°又∵OA=OC=1,∠AOC =90° ∴∠O AC=45° ∴∠O AC=∠EOD又∵∠OBD=∠ABC△OBD ∽△ABC ……………………………………6分(3)设点P 的坐标为P (x ,121212--x x )∴OE=x ,P E=121212--x x =121212++-x x又∵OE=2PE∴)12121(22++-=x x x解得21=x 22-=x (不合题意舍去)…………………8分∴P、D两点坐标分别为⎪⎪⎭⎫ ⎝⎛-22,2P , ⎪⎪⎭⎫ ⎝⎛-222,2D …………9分 ∴PD=12)22(222-=--- OE=2∴()2222122121-=⋅-⋅=⋅⋅=∆OE PD S POD ……………………10分 (4)(),1,11-P ,2527,542⎪⎭⎫ ⎝⎛-P ,553,5523⎪⎪⎭⎫ ⎝⎛--P .553,5524⎪⎪⎭⎫ ⎝⎛+--P ……………14分O数学试卷。

2019年初中毕业升学考试(辽宁丹东卷)数学【含答案及解析】

2019年初中毕业升学考试(辽宁丹东卷)数学【含答案及解析】

2019年初中毕业升学考试(辽宁丹东卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -2015的绝对值是().A.-2015 B.2015 C. D.-2. 据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万,用科学计数法将27.8万表示为().A.2.78×106 B.27.8×106C.2.78×105 D.27.8×1053. 如图,是某几何体的俯视图,该几何体可能是().A.圆柱 B.圆锥 C.球 D.正方体4. 如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是().A.5.2 B.4.6 C.4 D.3.65. 过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.6. 一次函数(为常数)与反比例函数的图象交于A、B两点,当A、B两点关于原点对称时的值是().A.0 B.-3 C.3 D.4二、填空题7. 如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.8. 分解因式:.9. 若,且a、b是两个连续的整数,则.10. 不等式组的解集为.11. 在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.12. 如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三角形,点A1、A2、A3…An+1在x轴的正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点Bn的坐标为.三、解答题13. 先化简,再求值:,其中,3.14. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.15. 某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.16. 从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?17. 一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.18. 如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA CD,求阴影部分的面积;(2)求证:DE DM.19. 23.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.20. 某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:21. x30323436y40363228td22. 在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD m·BP时,请直接写出PE与PF的数量关系.23. 如图,已知二次函数的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

2019年辽宁省丹东市中考数学试卷含答案解析(word版)

2019年辽宁省丹东市中考数学试卷含答案解析(word版)

2019年辽宁省丹东市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.2019年1月19日,国家统计局公布了2019年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A.6.76×106B.6.76×105C.67.6×105D.0.676×1063.如图所示几何体的左视图为()A.B.C.D.4.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,75.下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6C.(a3)2=a6D.(﹣2a2)3=8a66.二元一次方程组的解为()A.B.C.D.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.148.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题(每小题3分,共24分)9.分解因式:xy2﹣x=.10.不等式组的解集为.11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是.12.反比例函数y=的图象经过点(2,3),则k=.13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为.14.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.16.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为.三、解答题(每小题8分,共16分)17.计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.五、(每小题10分,共20分)21.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?七、(本题12分)25.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.八、(本题14分)26.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.2019年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣3的倒数是()A.3B.C.﹣D.﹣3【考点】倒数.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.2019年1月19日,国家统计局公布了2019年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A.6.76×106B.6.76×105C.67.6×105D.0.676×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676000用科学记数法表示为6.76×105.故选B.3.如图所示几何体的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A.4.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,7【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7.故选D.5.下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6C.(a3)2=a6D.(﹣2a2)3=8a6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a8÷a4=a4,故A错误;B、a2•a3=a5,故B错误;C、(a3)2=a6,故C正确;D、(﹣2a2)3=﹣8a6,故D错误.故选:C.6.二元一次方程组的解为()A.B.C.D.【考点】二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.8.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.二、填空题(每小题3分,共24分)9.分解因式:xy2﹣x=x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).10.不等式组的解集为2<x<6.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是\frac{2}{5}.【考点】概率公式.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵一个袋中装有两个红球、三个白球,∴球的总数=2+3=5,∴从中任意摸出一个球,摸到红球的概率=.故答案为:.12.反比例函数y=的图象经过点(2,3),则k=7.【考点】反比例函数图象上点的坐标特征.【分析】根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为60(1+x)2=100.【考点】由实际问题抽象出一元二次方程.【分析】设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.14.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是﹣\frac{122}{11}.【考点】规律型:数字的变化类.【分析】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6\sqrt{2}.【考点】相似三角形的判定与性质;正方形的性质.【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【解答】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.16.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为(3,4)或(\frac{96}{25},\frac{72}{25})或(﹣\frac{21}{25},\frac{28}{25}).【考点】全等三角形的判定;坐标与图形性质.【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB 全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,).故答案为:(3,4)或(,)或(﹣,).三、解答题(每小题8分,共16分)17.计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、乘法,然后从左向右依次计算,求出算式4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0的值是多少即可.【解答】解:4sin60°+|3﹣|﹣()﹣1+(π﹣2019)0=4×+2﹣3﹣2+1=2+2﹣4=4﹣418.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【考点】游戏公平性;列表法与树状图法.【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.五、(每小题10分,共20分)21.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?【考点】分式方程的应用.【分析】设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.【解答】解:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得﹣=15,解这个方程,得x=6,经检验,x=6是所列方程的根,∴2x=2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【考点】解直角三角形的应用-仰角俯角问题.【分析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC﹣BD 可得关于AB 的方程,解方程可得.【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【考点】二次函数的应用.【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.七、(本题12分)25.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.【考点】相似形综合题.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.八、(本题14分)26.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM 或CN的长,利用面积公式进行计算.【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得解得:,∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S﹣S△BPD,四边形HAPD6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2),N(2,0),由勾股定理得:MC==,∴S△CMN=××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM==,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN==,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.2019年7月13日。

辽宁省丹东市2019年中考数学试卷及答案(word版含解析)

辽宁省丹东市2019年中考数学试卷及答案(word版含解析)

2019年辽宁省丹东市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)2.(3分)(2019•丹东)如图,由4个相同的小立方块组成一个立体图形,它的主视图是()B3.(3分)(2019•丹东)为迎接“2019丹东港鸭绿江国际马拉松赛”,丹东新区今年投入约5.(3分)(2019•丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB 于点D,交AC于点E,连接BE,则∠CBE的度数为()C=•=≠•=≠7.(3分)(2019•丹东)如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2,则x的取值范围是()8.(3分)(2019•丹东)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()BAB=1DM=.=.﹣.二、填空题(每小题3分,共24分)9.(3分)(2019•丹东)如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2=55°.10.(3分)(2019•丹东)一组数据2,3,x,5,7的平均数是4,则这组数据的众数是3.11.(3分)(2019•丹东)若式子有意义,则实数x的取值范围是x≤2且x≠0.12.(3分)(2019•丹东)分解因式:x3﹣4x2y+4xy2=x(x﹣2y)2.13.(3分)(2019•丹东)不等式组的解集是1<x<2.,14.(3分)(2019•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组.由题意得,故答案为:15.(3分)(2019•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.解答:t=故答案为:.16.(3分)(2019•丹东)如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.OA=,OB=,的坐标为(,==的坐标为(,=的坐标为故答案为:三、解答题(每小题8分,共16分)17.(8分)(2019•丹东)计算:.﹣+2=318.(8分)(2019•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.OA==所经过的路径长为:四、(每小题10分,共20分)19.(10分)(2019•丹东)某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?20.(10分)(2019•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?五、(每小题10分,共20分)21.(10分)(2019•丹东)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.=,=.22.(10分)(2019•丹东)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O的半径R=5,tanA=,求线段CD的长.tanA=×=,六、(每小题10分,共20分)23.(10分)(2019•丹东)如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.(参考数据:sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈),再根据x=(,°≈x°≈x==BC=24.(10分)(2019•丹东)在2019年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].)七、(本题12分)25.(12分)(2019•丹东)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.OC=OA=AC OD=OB=,==,k===,所以k=;根据OC=OA=BD,===;==,;八、(本题14分)26.(14分)(2019•丹东)如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x 轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.点的横坐标代入直线,求得则m+1=m时,则m∴抛物线表达式:.的表达式:.时,把,得,)PE==,(不合题意舍去)两点坐标分别为PD=,,m﹣m m+1m mm,时,则m=,,。

2019年辽宁省丹东市中考数学试卷(解析版)

2019年辽宁省丹东市中考数学试卷(解析版)

2019年辽宁省丹东市中考数学试卷一、选择题(每小题3分,共24分)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×107 3.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.4.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C .以点E 为圆心、DM 的长为半径的弧D .以点E 为圆心、OD 的长为半径的弧6.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( ) A .11B .12C .13D .147.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x +k =0的两个实数根,则k 的值是( ) A .8B .9C .8或9D .128.如图,二次函数y =ax 2+bx +c (a ≠0)的图象过点(﹣2,0),对称轴为直线x =1.有以下结论: ①abc >0; ②8a +c >0;③若A (x 1,m ),B (x 2,m )是抛物线上的两点,当x =x 1+x 2时,y =c ;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM ⊥PN ,则a 的取值范围为a ≥1;⑤若方程a (x +2)(4﹣x )=﹣2的两根为x 1,x 2,且x 1<x 2,则﹣2≤x 1<x 2<4. 其中结论正确的有( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分) 9.因式分解:2x 3﹣8x 2+8x = .10.在函数y =中,自变量x 的取值范围是 .11.有5张无差别的卡片,上面分别标有﹣1,0,,,π,从中随机抽取1张,则抽出的数是无理数的概率是.12.关于x的不等式组的解集是2<x<4,则a的值为.13.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.14.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=.15.(3分)如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.16.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三、解答题17.(8分)先化简,再求代数式的值:,其中x=3cos60°.18.(8分)在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.(3)接写出在上述旋转过程中,点A所经过的路径长.四、解答题19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).五、解答题21.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.六、解答题23.(10分)如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14°,向前行走25m到达B 处,在地面测得路灯MN的顶端仰角为24.3°,已知点A,B,Q,N在同一条直线上,请(结果精确到0.1m.参考数据:sin14°≈0.24,你利用所学知识帮助小明求出路灯的高度.cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)24.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题25.(12分)已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF 为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF.②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.八、解答题26.(14分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.参考答案一、选择题1.解:2019的相反数是﹣2019,故选:A.2.解:数据274.8万用科学记数法表示为274.8×104=2.748×106.故选:C.3.解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D.4.解:∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.5.解:由作图可知作图步骤为:①以点O为圆心,任意长为半径画弧DM,分别交OA,OB于M,D.②以点C为圆心,以OM为半径画弧EN,交OA于E.③以点E为圆心,以DM为半径画弧FG,交弧EN于N.④过点N作射线CP.根据同位角相等两直线平行,可得CP∥OB.故选:C.6.解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4.所以这5个数据分别是x,y,2,4,4,且x<y<4,当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,所以这组数据可能的最大的和是0+1+2+4+4=11.故选:A.7.解:当等腰三角形的底边为2时,此时关于x的一元二次方程x2﹣6x+k=0的有两个相等实数根,∴△=36﹣4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,当等腰三角形的腰长为2时,此时x=2是方程x2﹣6x+k=0的其中一根,∴4﹣12+k=0,∴k=8,此时另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选:B.8.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x 轴下方的抛物线上存在点P ,使得PM ⊥PN ,即≤﹣3,∵8a +c =0, ∴c =﹣8a , ∵b =﹣2a ,∴,解得:a,故④错误;⑤易知抛物线与x 轴的另外一个交点坐标为(4,0), ∴y =ax 2+bx +c =a (x +2)(x ﹣4) 若方程a (x +2)(4﹣x )=﹣2,即方程a (x +2)(x ﹣4)=2的两根为x 1,x 2, 则x 1、x 2为抛物线与直线y =2的两个交点的横坐标, ∵x 1<x 2,∴x 1<﹣2<4<x 2,故⑤错误; 故选:A . 二、填空题9.解:原式=2x (x 2﹣4x +4) =2x (x ﹣2)2. 故答案为:2x (x ﹣2)2.10.解:根据二次根式的性质,被开方数大于等于0可知:1﹣2x ≥0,即x ≤时,二次根式有意义.又因为0做除数无意义, 所以x ≠0.因此x 的取值范围为x ≤且x ≠0. 故答案为:x ≤且x ≠0.11.解:在﹣1,0,,,π中,无理数有,π,共2个,则抽出的数是无理数的概率是.故答案为:.12.解:解不等式2x﹣4>0,得:x>2,解不等式a﹣x>﹣1,得:x<a+1,∵不等式组的解集为2<x<4,∴a+1=4,即a=3,故答案为:3.13.解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DA B=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为:3.14.解:连接OC,∵点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,∴S=×6=3,△OAB∵BC:CA=1:2,∴S=3×=1,△OBC∵双曲线y=(x>0)经过点C,∴S=|k|=1,△OBC∴|k|=2,∵双曲线y=(x>0)在第一象限,∴k=2,故答案为2.15.解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P (,),设直线AP 的解析式为:y =mx +n ,∴,解得:,∴直线AP 的解析式为y =﹣2x +8, 故答案为:y =﹣2x +8.16.解:过A 1作A 1C ⊥x 轴于C , ∵四边形OAA 1B 是菱形,∴OA =AA 1=1,∠A 1AC =∠AOB =60°,∴A 1C =,AC =,∴OC =OA +AC =,在Rt △OA 1C 中,OA 1==,∵∠OA 2C =∠B 1A 2O =30°,∠A 3A 2O =120°, ∴∠A 3A 2B 1=90°, ∴∠A 2B 1A 3=60°,∴B 1A 3=2,A 2A 3=3,∴OA 3=OB 1+B 1A 3=3=()3∴菱形OA 2A 3B 2的边长=3=()2,设B 1A 3的中点为O 1,连接O 1A 2,O 1B 2,于是求得,O 1A 2=O 1B 2=O 1B 1==()1,∴过点B 1,B 2,A 2的圆的圆心坐标为O 1(0,2),∵菱形OA 3A 4B 3的边长为3=()3,∴OA 4=9=()4,设B 2A 4的中点为O 2, 连接O 2A 3,O 2B 3,同理可得,O 2A 3=O 2B 3=O 2B 2=3=()2,∴过点B 2,B 3,A 3的圆的圆心坐标为O 2(﹣3,3),…以此类推,菱形菱形OA 2019A 2020B 2019的边长为()2019,OA 2020=()2020,设B 2018A 2020的中点为O 2018,连接O 2018A 2019,O 2018B 2019,求得,O 2018A 2019=O 2018B 2019=O 2018B 2018=()2018,∴点O 2018是过点B 2018,B 2019,A 2019的圆的圆心, ∵2018÷12=168…2, ∴点O 2018在射线OB 2上,则点O 2018的坐标为(﹣()2018,()2019),即过点B 2018,B 2019,A 2019的圆的圆心坐标为(﹣()2018,()2019),故答案为:(﹣()2018,()2019).三、解答题17.解:原式=﹣•=﹣=,当x =3cos60°=3×=时,原式==.18.解:(1)如图,A点坐标为(﹣2,3);(2)如图,△A′B′C′为所作;(2)如图,OA==,所以点A所经过的路径长==π.△A2B2C2为所作;点A2的坐标为(﹣1,﹣1).四、解答题19.解:(1)本次抽样调查学生的人数为:8÷20%=40,故答案为:40;(2)A所占的百分比为:×100%=5%,D所占的百分比为:×100%=50%,C所占的百分比为:1﹣5%﹣20%﹣50%=25%,获得三等奖的人数为:40×25%=10,补全的统计图如右图所示,扇形统计图中A所对应扇形圆心角的度数是360°×5%=18°;(3)840×25%=210(人),答:获得三等奖的有210人.20.解:(1)列表如下:由表可知,共有12种等可能结果,其中指针所在区域的数字之积为奇数的有4种结果,所以甲获胜概率为=;(2)∵指针所在区域的数字之积为偶数的概率为=,∴这个游戏规则对甲、乙双方不公平,将转盘A上的数字2改为1,则游戏公平.五、解答题21.解:(1)设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得+2.5=+,解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m.22.解:(1)证明:①如图1,连接OE,∵⊙O与BC相切于点E,∴∠OEB=90°,∵∠ACB=90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,∵,∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O 的半径为r , ∵OB =OD +BD , ∴6+r =2r , ∴r =6,∴AG =OA =6,AB =2r +BD =18,∴AC =AB =9,∴CG =AC ﹣AG =3, 由(1)知,∠EOB =60°, ∵OG =OE ,∴△OGE 是等边三角形, ∴GE =OE =6,根据勾股定理得,CE ===3,∴S 阴影=S 梯形GCEO ﹣S 扇形OGE =(6+3)×﹣=.六、解答题23.解:设PQ =MN =xm ,在Rt △APQ 中,tan A =,则AQ =≈=4x ,在Rt △MBN 中,tan ∠MBN =,则BN=≈=x,∵AQ+QN=AB+BN,∴4x+10=25+x,解得,x≈8.4,答:路灯的高度约为8.4m.24.解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200 (30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.七、解答题25.(1)证明:①如图1中,∵△EFC与△AFC都是等腰直角三角形,∴FA=FC,FE=FG,∠AFC=∠EFG=90°,∴∠AFE=∠CFG,∴△AFE≌△CFG(SAS).②∵△AFE≌△CFG,∴AE=CG,∠AEF=∠CGF,∵△AEB是等腰直角三角形,∴AE=BE,∠BEA=90°,∴CG=BE,∵△EFG是等腰直角三角形,∴∠FEG=∠FGE=45°,∴∠AEF+∠BEG=45°,∵∠CGE+∠CGF=45°,∴∠BEG=∠CGE,∴BE∥CG,∴四边形BECG是平行四边形.(2)解:如图2中,延长ED到G,使得DG=ED,连接CG,FG.∵点D是BC的中点,∴BD=CD,∵∠EDB=∠GDC,∴EB=GC,∠EBD=∠GCD,在Rt△AEB与Rt△AFC中,∵∠EAB=∠FAC=30°,∴=,=,∴=,∵∠EBD=∠2+60°,∴∠DCG=∠2+60°,∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3=360°﹣120°﹣(∠2+∠3)=360°﹣120°﹣(180°﹣∠1)=60°+∠1,∵∠EAF=30°+∠1+30°=60°+∠1,∴∠GCF=∠EAF,∴△CGF∽△AEF,∴==,∠CFG=∠AFE,∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,∴tan∠DEF==,∴∠DEF=30°,∴FG=EG,∵ED=EG,∴ED=FG,∴=.(3)如图3中,延长ED到G,使得DG=ED,连接CG,FG.作EH⊥AB于H,连接FD.∵BD=DC,∠BDE=∠CDG,DE=DG,∴△CDG≌△BDE(SAS),∴CG=BE=AE,∠DCG=∠DBE=α+∠ABC,∵∠GCF=360°﹣∠DCG﹣∠ACB﹣∠ACF=360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF,∴△EAF≌△GCF(SAS),∴EF=GF,∠AFE=∠CFG,∴∠AFC=∠EFC,∴∠DEF=∠CAF=90°﹣α,∵∠AEH=90°﹣α,∴∠AEH=∠DEF,∵AE=m,AH=AB=n,∴EH===,∵DE=DG,EF=GF,∴DF⊥EG,cos∠DEF=cos∠AEH===.八、解答题26.解:(1)直线y=﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣x2+bx+2,将点C坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2…①;(2)抛物线的对称轴为:x=,点N的横坐标为: +=5,故点N的坐标为(5,3);(3)∵tan∠ACO==tan∠FAC=,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=,即点R的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AR的表达式为:y=﹣x+2…②,联立①②并解得:x=,故点F(,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tanα==,则sinα=,cosα=;①当0≤t≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT====t,DS=,S=S=DT×DS=t2;△DST②当<t≤时(右侧图),同理可得:S=S=×DG×(GS′+DT′)=3+(+﹣)=t﹣;梯形DGS′T′综上,S=.。

2019年辽宁省丹东市中考数学试题及参考答案(word解析版)

2019年辽宁省丹东市中考数学试题及参考答案(word解析版)

2019年辽宁省丹东市中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×1073.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.4.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧6.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11 B.12 C.13 D.147.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.128.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共8小题,每小题3分,共24分)9.因式分解:2x3﹣8x2+8x=.10.在函数y=中,自变量x的取值范围是.11.有5张无差别的卡片,上面分别标有﹣1,0,,,π,从中随机抽取1张,则抽出的数是无理数的概率是.12.关于x的不等式组的解集是2<x<4,则a的值为.13.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.14.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=.15.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.16.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB =60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)先化简,再求代数式的值:,其中x=3cos60°.18.(8分)在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.(3)接写出在上述旋转过程中,点A所经过的路径长.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)21.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)23.(10分)如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14°,向前行走25m到达B处,在地面测得路灯MN的顶端仰角为24.3°,已知点A,B,Q,N在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m.参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)24.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤)25.(12分)已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF.②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.八、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤)26.(14分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得答案【解题过程】解:2019的相反数是﹣2019,故选:A.【总结归纳】主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:数据274.8万用科学记数法表示为274.8×104=2.748×106.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图形是俯视图,可得答案.【解题过程】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:。

2019年丹东中考数学试题

2019年丹东中考数学试题

2019年辽宁省丹东市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2019的相反数是( ) A .2019-B .2019C .12019-D .120192.(3分)十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A .22.74810⨯B .4274.810⨯C .62.74810⨯D .70.274810⨯3.(3分)如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A .B .C .D .4.(3分)下面计算正确的是( ) A .321a a -=B .224246a a a +=C .325()x x =D .826x x x ÷=5.(3分)如图,点C 在AOB ∠的边OA 上,用尺规作出了//CP OB ,作图痕迹中,FG 是( )A .以点C 为圆心、OD 的长为半径的弧B .以点C 为圆心、DM 的长为半径的弧 C .以点E 为圆心、DM 的长为半径的弧D .以点E 为圆心、OD 的长为半径的弧6.(3分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( )A .11B .12C .13D .147.(3分)等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程260x x k -+=的两个实数根,则k 的值是( ) A .8B .9C .8或9D .128.(3分)如图,二次函数2(0)y ax bx c a =++≠的图象过点(2,0)-,对称轴为直线1x =.有以下结论: ①0abc >; ②80a c +>;③若1(A x ,)m ,2(B x ,)m 是抛物线上的两点,当12x x x =+时,y c =;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM PN ⊥,则a 的取值范围为1a ;⑤若方程(2)(4)2a x x +-=-的两根为1x ,2x ,且12x x <,则1224x x -<<. 其中结论正确的有( )A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)因式分解:32288x x x -+= .10.(3分)在函数y =中,自变量x 的取值范围是 .11.(3分)有5张无差别的卡片,上面分别标有1-,0,13,π,从中随机抽取1张,则抽出的数是无理数的概率是 .12.(3分)关于x 的不等式组2401x a x ->⎧⎨->-⎩的解集是24x <<,则a 的值为 .13.(3分)如图,在ABC ∆中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若1DE =,则BC 的长是 .14.(3分)如图,点A 在双曲线6(0)y x x =>上,过点A 作AB x ⊥轴于点B ,点C 在线段AB 上且:1:2BC CA =,双曲线(0)ky x x=>经过点C ,则k = .15.(3分)如图,在平面直角坐标系中,点A ,C 分别在x 轴、y 轴上,四边形ABCO 是边长为4的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP ,AP ,当点P 满足DP AP +的值最小时,直线AP 的解析式为 .16.(3分)如图,在平面直角坐标系中,1OA =,以OA 为一边,在第一象限作菱形1OAA B ,并使60AOB ∠=︒,再以对角线1OA 为一边,在如图所示的一侧作相同形状的菱形121OA A B ,再依次作菱形232OA A B ,343OA A B ,⋯⋯,则过点2018B ,2019B ,2019A 的圆的圆心坐标为 .三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(8分)先化简,再求代数式的值:2222421121x x x x x x x ---÷+--+,其中3cos60x =︒.18.(8分)在下面的网格中,每个小正方形的边长均为1,ABC∆的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(3,0)--.-,(1,1)(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将ABC''.∆绕着坐标原点顺时针旋转90︒,画出旋转后的△A B C'(3)接写出在上述旋转过程中,点A所经过的路径长.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)21.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)如图,在Rt ABCACB∠=︒,点D在AB上,以AD为直径的⨀O与边BC相切∆中,90̂=EĜ,连接GO并延长交⨀O于点F,连接BF.于点E,与边AC相交于点G,且AG(1)求证:①AO AG=.②BF是⨀O的切线.(2)若6BD=,求图形中阴影部分的面积.六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 23.(10分)如图,在某街道路边有相距10m 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A 处测得路灯PQ 的顶端仰角为14︒,向前行走25m 到达B 处,在地面测得路灯MN 的顶端仰角为24.3︒,已知点A ,B ,Q ,N 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m .参考数据:sin140.24︒≈,cos140.97︒≈,tan140.25︒≈,sin24.30.41︒≈,cos24.30.91︒≈,tan 24.30.45)︒≈24.(10分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件. (1)求出y 与x 的函数关系式,并写出自变量x 的取值范围. (2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤) 25.(12分)已知:在ABC ∆外分别以AB ,AC 为边作AEB ∆与AFC ∆.(1)如图1,AEB ∆与AFC ∆分别是以AB ,AC 为斜边的等腰直角三角形,连接EF .以EF 为直角边构造Rt EFG ∆,且EF FG =,连接BG ,CG ,EC . 求证:①AEF CGF ∆≅∆. ②四边形BGCE 是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在ABC ∆外分别以AB ,AC 为斜边作Rt AEB ∆与Rt AFC ∆,并使30FAC EAB ∠=∠=︒,取BC 的中点D ,连接DE ,EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出EDEF的值及DEF ∠的度数. (3)小颖受到启发也做了探究:如图3,在ABC ∆外分别以AB ,AC 为底边作等腰三角形AEB 和等腰三角形AFC ,并使90CAF EAB ∠+∠=︒,取BC 的中点D ,连接DE ,EF 后发现,当给定EAB α∠=时,两者间也存在一定的数量关系且夹角度数一定,若AE m =,AB n =,请你帮助小颖用含m ,n 的代数式直接写出EDEF的值,并用含α的代数式直接表示DEF ∠的度数.八、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤) 26.(14分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于B ,C 两点,与y 轴交于点A ,直线122y x =-+经过A ,C 两点,抛物线的对称轴与x 轴交于点D ,直线MN 与对称轴交于点G ,与抛物线交于M ,N 两点(点N 在对称轴右侧),且//MN x 轴,7MN =. (1)求此抛物线的解析式. (2)求点N 的坐标.(3)过点A 的直线与抛物线交于点F ,当1tan 2FAC ∠=时,求点F 的坐标. (4)过点D 作直线AC 的垂线,交AC 于点H ,交y 轴于点K ,连接CN ,AHK ∆沿射线AC 以每秒1个单位长度的速度移动,移动过程中AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为(05)t t,请直接写出S与t的函数关系式.。

2019年辽宁丹东中考数学试卷及答案

2019年辽宁丹东中考数学试卷及答案

【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁丹东2019年中考将于6⽉中旬陆续开始举⾏,辽宁丹东中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁丹东中考数学试卷及答案信息。

考⽣可点击进⼊辽宁丹东中考频道《、》栏⽬查看辽宁丹东中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁丹东中考数学试卷答案信息,特别整理了《2019辽宁丹东中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁丹东中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

【2019年中考数学】辽宁省丹东市2019年中考数学试卷及答案解析

【2019年中考数学】辽宁省丹东市2019年中考数学试卷及答案解析

2019年辽宁省丹东市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)﹣5的相反数是(的相反数是( )A. B.5 C.﹣ D.﹣52.(3分)一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该)字相对的汉字是(正方体中和“静”字相对的汉字是(A.细.规 D.范.细 B.心.心 C.规3.(3分)据《中国教育报》近期报道,4年来全国在义务教育阶段经费累计投)亿.万亿用科学记数法表示为(入2.39万亿元,数据2.39万亿用科学记数法表示为(A.2.39×103 B.2.39×104 C.2.39×105 D.0.239×1064.(3分)下列事件是必然事件的是(分)下列事件是必然事件的是( )A.车辆随机经过一个路口,遇到红灯B.任意买一张电影票,座位号是2的整数倍C.在地球上,上抛出去的篮球会下落D.打开电视机,任选一个频道,正在播放世乒赛5.(3分)如图,直线l1∥l2,则α=( )A.160° B.150° C.140°140° D D.130°6.(3分)下列计算结果正确的是(分)下列计算结果正确的是( )A.m3+m4=m9 B.(m3)4=m91 C.m4÷m3=m D.m4•m3=m129.(3分)如图,将矩形ABCD绕点A旋转至矩形AEFG的位置,此时点D恰好)与AF的中点重合,AE交CD于点H,若BC=,则HC的长为(的长为(A.4 B. C. D.69.(3分)在△ABC中,∠BAC=90°,AB=2AC,点A(2,0)、B(0,4),点C在第一象限内,双曲线y=(x>0)经过点C.将△ABC沿y轴向上平移m个单)的值为(位长度,使点A恰好落在双曲线上,则m的值为(A.2 B. C.3 D.二、填空题(每小题3分,共24分)9.(3分)因式分解:3ax2﹣3ay4= .10.(3分)一组数据2,x,4,3,3的平均数是3,则这组数据的中位数是则这组数据的中位数是 . 11.(3分)如图,在△ABC中,∠C=90°,AB=5,AD是△ABC的角平分线,若CD=,则△ABD的面积为的面积为 .12.(3分)不等式组的解集为的解集为 .13.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC 的中点,连接MN.若MN=1,BD=,则菱形的周长为,则菱形的周长为 .14.(3分)某班共有学生45人,其中男生的2倍比女生的3倍少10人.设该.班的男生有x人,女生有y人,请列出满足题意的方程组人,请列出满足题意的方程组15.(3分)如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为.个图形中小圆点的个数为16.(3分)如图,在△ABC中,∠A=90°,AC=3,AB=4.动点P从点A出发以每秒1个单位长度的速度沿A→B匀速运动;同时动点Q从点B出发以每秒4个单位长度的速度沿B→C→A匀速运动.当点Q到达点A时,P、Q两点同时停止运动,过点P的一条直线与BC交于点D.设运动时间为t秒,当t为 秒时,将△PBD沿PD翻折,使点B恰好与点Q重合.三、解答题(每小题9分,共16分)19.(9分)计算:(3﹣π)0﹣()﹣1+|2﹣|+2cos45°19.(9分)在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A2BC2,并直接写出此过程中线段BA扫过图形的面积(结果保留π)四、解答题(每小题10分,共20分)19.(10分)某中学为了了解本校学生喜爱的球类运动,在本校范围内随机调查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次一共调查了多少名学生? (2)补全条形统计图;(3)求“足球”在扇形统计图中所占圆心角的度数;(4)若已知该校有500名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?20.(10分)小明到离家2.9千米的学校参加文艺汇演,骑自行车到学校比他步行到学校用时少30分钟,且骑自行车的速度是步行速度的4倍,求小明步行的速度(单位:米/分)是多少?五、解答题(每小题10分,共20分)21.(10分)在一个不透明的盒子中,装有一个红球和两个白球,它们除了颜色外其余都相同,现任意拿出一个球,记下球的颜色,然后放回盒中,搅匀后再任意拿出一个球,记下球的颜色.(1)若随机地从盒子中拿出一个球,则拿出“白球”的概率是;的概率是(2)请你用列表法或画树状图的方法,求恰好拿到“一红、一白”球的概率. 22.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AB上一点,以CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.(1)求证:AB是⊙O的切线;(2)若DF=2,DC=6,求BE的长.六、解答题(每小题10分,共20分)23.(10分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为95m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).24.(10分)某超市销售一种成本为每台20元的台灯,规定销售单价不低于成本价,又不高于每台32元.销售中平均每月销售量y(台)与销售单价x(元)的关系可以近似地看做一次函数,如下表所示:x 22 24 26 29y 90 90 90 60(1)请直接写出y与x之间的函数关系式;(2)为了实现平均每月395元的台灯销售利润,这种台灯的售价应定为多少?这时每月应购进台灯多少个?(3)设超市每月台灯销售利润为ω(元),求ω与x之间的函数关系式,当x 取何值时,ω的值最大?最大值是多少?七、解答题(本题12分)25.(12分)已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.八、解答题(本题14分)26.(14分)如图,在平面直角坐标系中,△ABC的一边AB在x轴上,∠ABC=90°,点C(4,9)在第一象限内,AC与y轴交于点E,抛物线y=+bx+c经过A、B 两点,与y轴交于点D(0,﹣6).(1)请直接写出抛物线的表达式;(2)求ED的长;(3)点P是x轴下方抛物线上一动点,设点P的横坐标为m,△PAC的面积为S,试求出S与m的函数关系式;(4)若点M是x轴上一点(不与点A重合),抛物线上是否存在点N,使∠CAN=∠MAN.若存在,请直接写出点N的坐标;若不存在,请说明理由.2019年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)﹣5的相反数是(的相反数是( )A. B.5 C.﹣ D.﹣5【解答】解:﹣5的相反数是5,故选:B.2.(3分)一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该)字相对的汉字是(正方体中和“静”字相对的汉字是(A.细.规 D.范.细 B.心.心 C.规【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴“细”与“心”是相对面,“冷”与“规”是相对面,“静”与“范”是相对面.故选:D.3.(3分)据《中国教育报》近期报道,4年来全国在义务教育阶段经费累计投万亿用科学记数法表示为()亿.入2.39万亿元,数据2.39万亿用科学记数法表示为(A.2.39×103 B.2.39×104 C.2.39×105 D.0.239×106【解答】解:由题可得:2.39万亿=23900亿=2.39×104.故选:B.4.(3分)下列事件是必然事件的是(分)下列事件是必然事件的是( )A.车辆随机经过一个路口,遇到红灯B.任意买一张电影票,座位号是2的整数倍C.在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播放世乒赛【解答】解:A .车辆随机经过一个路口,遇到红灯,是随机事件;B .任意买一张电影票,座位号是2的整数倍,是随机事件;C .在地球上,上抛出去的篮球会下落,是必然事件;.在地球上,上抛出去的篮球会下落,是必然事件;D .打开电视机,任选一个频道,正在播放世乒赛,是随机事件; 故选:C .5.(3分)如图,直线l 1∥l 2,则α=( )A .160°B .150°C .140°140°D D .130°【解答】解:如图,∵∠β=1β=190°90°﹣120°120°=60°=60°, ∴∠ACB=60°+90°90°=130°=130°, ∵直线l 1∥l 2,∴∠α=∠ACB=130°, 故选:D .6.(3分)下列计算结果正确的是(分)下列计算结果正确的是( ) A .m 3+m 4=m 9 B .(m 3)4=m 91 C .m 4÷m 3=m D .m 4•m 3=m 12 【解答】解:A .m 3+m 4≠m 9,错误; B .(m 3)4≠m 91,错误; C .m 4÷m 3=m ,正确; D .m 4•m 3≠m 12,错误; 故选:C .9.(3分)如图,将矩形ABCD绕点A旋转至矩形AEFG的位置,此时点D恰好)的长为(与AF的中点重合,AE交CD于点H,若BC=,则HC的长为(A.4 B. C. D.6【解答】解:由旋转的性质可知:AC=AF,∵D为AF的中点,∴AD=AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠EAF=∠CAB=30°,∴∠EAC=30°,∴AH=CH,∴DH=AH=CH,∴CH=2DH,∵CD=AD=BC=6,∴HC=CD=4.故选:A.9.(3分)在△ABC中,∠BAC=90°,AB=2AC,点A(2,0)、B(0,4),点C在第一象限内,双曲线y=(x>0)经过点C.将△ABC沿y轴向上平移m个单位)的值为(长度,使点A恰好落在双曲线上,则m的值为(A.2 B. C.3 D.【解答】解:作CH⊥x轴于H.∵A(2,0)、B(0,4),∴OA=2,OB=4,∵∠ABO+∠OA B=90°,∠OAB+∠CAH=90°,∴∠ABO=∠CAH,∵∠AOB=∠AHC,∴△ABO∽△CAH,∴===2,∴CH=1,AH=2,∴C(4,1),∵C(4,1)在y=上,∴k=4,∴y=,当x=2时,y=2,∵将△ABC沿y轴向上平移m个单位长度,使点A恰好落在双曲线上,∴m=2,故选:A.二、填空题(每小题3分,共24分)9.(3分)因式分解:3ax2﹣3ay4= 3a(x+y2)(x﹣y2) . 【解答】解:原式=3a(x2﹣y4)=3a(x+y2)(x﹣y2),故答案为:3a(x+y2)(x﹣y2)10.(3分)一组数据2,x,4,3,3的平均数是3,则这组数据的中位数是则这组数据的中位数是 3 . 【解答】解:∵数据2,x,4,3,3的平均数是3,∴(2+x+4+3+3)÷5=3,∴x=3,把这组数据从小到大排列为:2,3,3,3,4,则这组数据的中位数为3;故答案为:3.11.(3分)如图,在△ABC中,∠C=90°,AB=5,AD是△ABC的角平分线,若CD=,则△ABD 的面积为的面积为 .【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×5×=.故答案是:.12.(3分)不等式组的解集为的解集为 x> .【解答】解:由①得,x>,由②得,x>,故不等式组的解集为:x>,故答案为x>.13.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD=,则菱形的周长为,则菱形的周长为 9 .【解答】解:∵M、N是AB和BC的中点,即MN是△ABC的中位线,∴AC=2MN=2,∴OA=1,OB=,在Rt△ABO中,AB=,所以菱形的周长为9,故答案为:914.(3分)某班共有学生45人,其中男生的2倍比女生的3倍少10人.设该.人,请列出满足题意的方程组班的男生有x人,女生有y人,请列出满足题意的方程组【解答】解:根据题意可得,故答案为:.15.(3分)如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下100 .去,则第10个图形中小圆点的个数为个图形中小圆点的个数为【解答】解:由题意可得,第一个图形的小圆点的个数为:3×3=9,第二个图形的小圆点的个数为:4×4=15,第三个图形的小圆点的个数为:5×5=25,……第十个图形的小圆点的个数为:10×10=100,故答案为:100.16.(3分)如图,在△ABC中,∠A=90°,AC=3,AB=4.动点P从点A出发以每秒1个单位长度的速度沿A→B匀速运动;同时动点Q从点B出发以每秒4个单位长度的速度沿B→C→A匀速运动.当点Q到达点A时,P、Q两点同时停止运动,过点P的一条直线与BC交于点D.设运动时间为t秒,当t为 或2或 秒时,将△PBD沿PD翻折,使点B恰好与点Q重合.【解答】解:∵∠A=90°,AC=3,AB=4,∴BC=5,分两种情况:①当Q在BC上时,如图1,由题意得:PA=t,BQ=4t,由B与Q对称可知:PD⊥BQ,BD=DQ=2t,∴PB=PQ=4﹣t∵∠PDB=∠A=90°,∠B=∠B,∴△PDB∽△CAB,∴,∴,∴t=;②当Q在AC上时,如图2,CQ=4t﹣5,∴AQ=AC﹣CQ=3﹣(4t﹣5)=9﹣4t,连接BQ,∵B、Q对称,∴PD是BQ的垂直平分线,∴PB=PQ=4﹣t,Rt△PQA中,由勾股定理得:PQ2=PA2+AQ2,(4﹣t)2=t2+(9﹣4t)2,2t2﹣9t+6=0,(t﹣2)(2t﹣3)=0,t1=2,t2=,∵Q在AC上,∴<t≤2,t=2时,Q与A重合,如图3,翻折,使点使点B恰好与点Q秒时,将△综上所述,当t为秒或2秒或秒时,将△PBD沿PD翻折,重合.故答案为:或2或.三、解答题(每小题9分,共16分)19.(9分)计算:(3﹣π)0﹣()﹣1+|2﹣|+2cos45°【解答】解:原式=1﹣3+2﹣2+=3﹣4.19.(9分)在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A2BC2,并直接写出此过程中线段BA扫过图形的面积(结果保留π)【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2BC2即为所求,∵AB==、∠ABA2=90°,∴此过程中线段BA扫过图形的面积为=π.四、解答题(每小题10分,共20分)19.(10分)某中学为了了解本校学生喜爱的球类运动,在本校范围内随机调查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次一共调查了多少名学生?(2)补全条形统计图;(3)求“足球”在扇形统计图中所占圆心角的度数;(4)若已知该校有500名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?【解答】解:(1)调查的学生总数=20÷20%=100(名);(2)其它:10%×100=10(名),足球:100﹣30﹣20﹣10=40(名),补全条形统计图如下:(3)“足球”在扇形统计图中所占圆心角的度数=×100%×360°360°=144°=144°;(4)爱好“足球”和“排球”的学生共有×100%×500=350(名).20.(10分)小明到离家2.9千米的学校参加文艺汇演,骑自行车到学校比他步行到学校用时少30分钟,且骑自行车的速度是步行速度的4倍,求小明步行的速度(单位:米/分)是多少?【解答】解:设小明步行的速度为x 米/分,则骑自行车的速度4x 米/分.由题意:﹣=30, 解得x=90,经检验:x=90是分式方程的解.答:小明步行的速度为90米/分.五、解答题(每小题10分,共20分)21.(10分)在一个不透明的盒子中,装有一个红球和两个白球,它们除了颜色外其余都相同,现任意拿出一个球,记下球的颜色,然后放回盒中,搅匀后再任意拿出一个球,记下球的颜色.(1)若随机地从盒子中拿出一个球,则拿出“白球”的概率是的概率是 ;(2)请你用列表法或画树状图的方法,求恰好拿到“一红、一白”球的概率.【解答】解:(1)P 白球=故答案为:(2)列表法:白1 白2 红白1 白1白1 白1白2 白1红白2 白2白1 白2白2 白2红红 红白1 红白2 红红从表中可以看出,可能出现的结果有9种.其中出现一红一白的结果有4种所以:P(一红一白)=22.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D, E是AB上一点,以CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.(1)求证:AB是⊙O的切线;(2)若DF=2,DC=6,求BE的长.【解答】(1)证明:∵AB=AC,AD⊥BC,∴CD=DB,又CO=OE,∴OD∥BE,∴∠CEB=∠DOC=90°,∴CE⊥AB,∴AB是⊙O的切线;(2)解:连接EF、ED,∵BD=CD=6,∴BF=BD﹣DE=4,∵CO=OE,∠DOC=90°,∴DE=DC=6,∵CE为⊙O的直径,∴∠EFC=90°,∴EF==4,∴BE==4.六、解答题(每小题10分,共20分)23.(10分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为95m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).【解答】 解:过A作AD⊥BC,在Rt△ACD中,tan∠ACD=,即CD==AD,在Rt△ABD中,tan∠ABD=,即BD==AD,由题意得:AD﹣AD=95,解得:AD=300m,则热气球离底面的高度是300m.24.(10分)某超市销售一种成本为每台20元的台灯,规定销售单价不低于成本价,又不高于每台32元.销售中平均每月销售量y (台)与销售单价x (元)的关系可以近似地看做一次函数,如下表所示:x 22 24 26 29y 90 90 90 60(1)请直接写出y 与x 之间的函数关系式;(2)为了实现平均每月395元的台灯销售利润,这种台灯的售价应定为多少?这时每月应购进台灯多少个?(3)设超市每月台灯销售利润为ω(元),求ω与x 之间的函数关系式,当x 取何值时,ω的值最大?最大值是多少?【解答】解:(1)设y 与x 之间的函数关系式是y=kx +b ,,得,即y 与x 之间的函数关系式是y=﹣5x +200;(2)由题意可得,(x ﹣20)(﹣5x +200)=395,解得,x 1=25,x 2=35(舍去),y=﹣5×25+200=95,答:这种台灯的售价应定25元,这时每月应购进台灯95个;(3)由题意可得,ω=(x ﹣20)(﹣5x +200)=﹣5(x ﹣30)2+500,∵20≤x ≤32,∴当x=30时,ω取得最大值,最大值是500.七、解答题(本题12分)25.(12分)已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.【解答】解:(1)CD2+BD2=AD2,理由:∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(2)CD2+BD2=AD2,理由:∵BA=BC=2AC,DA=DE=2AE,∴,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴△BAD∽△CAE,∴=2,∴BD=2CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(3)(mCD)2+(pBD)2=(nAD)2,理由:∵AB:BC:AC=AD:DE:AE=m:n:p,∴DE=AD,△ABC∽△ADE,∴∠BAC=∠DAE,∵,∴△ABD∽△ACE,∴,∴CE=BD,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,∴(mCD)2+(pBD)2=(nAD)2八、解答题(本题14分)26.(14分)如图,在平面直角坐标系中,△ABC的一边AB在x轴上,∠ABC=90°,点C(4,9)在第一象限内,AC与y轴交于点E,抛物线y=+bx+c经过A、B 两点,与y轴交于点D(0,﹣6).(1)请直接写出抛物线的表达式;(2)求ED 的长;(3)点P 是x 轴下方抛物线上一动点,设点P 的横坐标为m ,△PAC 的面积为S ,试求出S 与m 的函数关系式;(4)若点M 是x 轴上一点(不与点A 重合),抛物线上是否存在点N ,使∠CAN=∠MAN .若存在,请直接写出点N 的坐标;若不存在,请说明理由.【解答】解:(1)∵BC ⊥x 轴,点C (4,9),∴B (4,0),把B (4,0),C (0,﹣6)代入y=+bx +c 得,解得,∴抛物线解析式为y=﹣x ﹣6; (2)设直线AC 的解析式为y=px +q ,把A (﹣2,0),C (4,9)代入得,解得,∴直线AC 的解析式为y=x +,当x=0时,y=x +=,则E (0,),∴DE=+6=;(3)如图1,作PQ ∥y 轴交AC 于Q ,设P (m , m 2﹣x ﹣6),则Q (m , m +),∴PQ=m +﹣(m 2﹣x ﹣6)=﹣m 2+m +,∴S=S △PAQ +S △PCQ =•6•PQ=﹣m 2+m +26(﹣2<m <4);(4)如图2,当点M在x的正半轴,AN交BC于F,作FH⊥AC于H,则FH=FB, 易得AH=AB=6,∵AC===10,∴CH=10﹣6=4,∵cos∠ACB==,∴CF==5,∴F(4,3),易得直线AF的解析式为y=x+1,解方程组得或,∴N点坐标为(,);当点Mʹ在x的负半轴上时,ANʹ交y轴与G,∵∠CANʹ=∠MʹANʹ,∴∠KAMʹ=∠CAK,而∠CAN=∠MAN,∴∠KAC+∠CAN=90°,而∠MAN+∠AFB=90°,∴∠KAC=∠AFB,而∠KAMʹ=∠GAO,∴∠GAO=∠AFB,∴Rt△OAG∽Rt△BFA,∴=,即=,解得OG=4,∴G(0,﹣4),易得直线AG的解析式为y=﹣2x﹣4,解方程组得或,∴Nʹ的坐标为(,﹣),综上所述,满足条件的N点坐标为(,);(,﹣).。

辽宁省丹东市2019届中考数学模拟试卷(十二)含答案解析

辽宁省丹东市2019届中考数学模拟试卷(十二)含答案解析

2019年辽宁省丹东市中考数学模拟试卷(十二)一、选择题(共8小题,每小题3分,满分24分,每小题只有一个正确答案)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.下列计算正确的是()A.﹣3a+2a=﹣a B.(3a2)2=6a4C.a6+a2=a3D.2a+3b=5ab3.如图,观察这个立体图形,它的俯视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.如图是某射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、9 B.7、8 C.8、9 D.8、106.如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A.30°B.32.5° C.35°D.37.5°7.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.8.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x 的函数图象大致为()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)9.一种微粒的半径是0.00004m,则该数用科学记数法表示为m.10.分解因式:x3﹣2x2+x=.11.函数y=中自变量x的取值范围是12.一名儿童行走在如图所示的地板上,当他随意停下时,最终停在阴影部分的概率是.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为.14.如图,边长为a的正六边形内有两个三角形(数据如图),则=.15.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C.且AB=AC,则k的值为.16.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2019的长度为.三、解答题(共2小题,满分16分)17.先化简,再求值:(1+)÷﹣,其中a=3.18.如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.四、解答题(共2小题,满分20分)19.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.20.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.五、解答题(共2小题,满分20分)21.某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2019年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?六、解答题(共2小题,满分20分)23.如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连接AD,己知BC=10,BE=2,求sin∠BAD的值.24.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.七、解答题(共1小题,满分12分)25.已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE 的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.八、解答题(共1小题,满分14分)26.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C(0,3),点D是抛物线上的点,且CD∥x轴,点E是抛物线的顶点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线L,当L平移到何处时,恰好将△BCD的面积分为相等的两部分?(3)点F在线段CD上,若以点C,E,F为顶点的三角形与△COE相似,试求点F的坐标.2019年辽宁省丹东市中考数学模拟试卷(十二)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分,每小题只有一个正确答案)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列计算正确的是()A.﹣3a+2a=﹣a B.(3a2)2=6a4C.a6+a2=a3D.2a+3b=5ab【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A正确;B、积的乘方等于乘方的积,故B错误;C、不是同底数幂的除法指数不能相减,故C错误;D、不是同类项不能合并,故D错误;故选:A.【点评】本题考查了积的乘方,熟记法则并根据法则计算是解题关键.3.如图,观察这个立体图形,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是等宽的三个矩形,故选:D.【点评】本题考查了简单组合体的三视图,从上面看是俯视图.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由2x+1>3,解得x>1,3x﹣2≤4,解得x≤2,不等式组的解集为1<x≤2,故选:C.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图是某射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、9 B.7、8 C.8、9 D.8、10【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中7是出现次数最多的,故众数是将这组数据从小到大的顺序排列(7,7,8,9,10),处于中间位置的那个数是8,则这组数据的中位数是8;故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A.30°B.32.5° C.35°D.37.5°【考点】平行线的性质.【分析】根据平行线的性质求出∠EOB,根据三角形的外角性质求出即可.【解答】解:设AB、CE交于点O.∵AB∥CD,∠C=65°,∴∠EOB=∠C=65°,∵∠E=30°,∴∠A=∠EOB﹣∠E=35°,故选:C.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠EOB的度数和得出∠A=∠EOB﹣∠E.7.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题.【分析】设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•.故选:D.【点评】本题考查由实际问题抽象出分式方程,关键是设出速度,以时间做为等量关系列方程.8.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x 的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;数形结合.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共8小题,每小题3分,满分24分)9.一种微粒的半径是0.00004m,则该数用科学记数法表示为4×10﹣5m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00004=4×10﹣5.故答案为:4×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.分解因式:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.函数y=中自变量x的取值范围是x≥﹣1且x≠0【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【专题】计算题.【分析】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≥0且x≠0;解可得答案.【解答】解:根据题意得:x+1≥0且x≠0,解得x≥﹣1且x≠0.故答案为x≥﹣1且x≠0.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.一名儿童行走在如图所示的地板上,当他随意停下时,最终停在阴影部分的概率是.【考点】几何概率.【分析】根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.【解答】解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.故答案为:【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为60°.【考点】旋转的性质.【专题】计算题.【分析】先利用互余得到∠A=60°,再根据旋转的性质得CA′=CA,∠ACA′等于旋转角,然后判断△ACA′为等边三角形得到∠ACA′=60°,从而得到旋转角的度数.【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故答案为60°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是证明△ACA ′为等边三角形,14.如图,边长为a 的正六边形内有两个三角形(数据如图),则= .【考点】正多边形和圆. 【分析】先求出正六边形的面积,再求出阴影部分面积、空白部分面积即可.【解答】解:∵S 正六边形=6וa 2=a 2,S 空白=2ו•a ••a=a 2,∴S 阴=a 2,∴=.故答案为.【点评】本题考查正多边形与圆的有关知识、三角形的面积公式、直角三角形30度角的性质,记住等边三角形的面积=a 2(a 是等边三角形边长),解题的关键是理解正六边形是由6个等边三角形构成的,属于中考常考题型.15.如图,直线y=x ﹣1与x 轴交于点B ,与双曲线y=(x >0)交于点A ,过点B 作x 轴的垂线,与双曲线y=交于点C .且AB=AC ,则k 的值为 4 .【考点】反比例函数与一次函数的交点问题.【专题】推理填空题.【分析】根据题目中的信息,可以用含k的式子表示点C的坐标,由AB=AC,可知点A在线段BC的垂直平分线上,从而可以得到点A的纵坐标,从而可以表示出点A的坐标,又由点A在直线y=x﹣1上,可以得到k的值,本题得以解决.【解答】解:∵直线y=x﹣1与x轴交于点B,∴当y=0时,x=2,∴点B的坐标为(2,0),又∵过点B作x轴的垂线,与双曲线y=交于点C,∴点C的坐标为(2,),∵AB=AC,∴点A在线段BC的垂直平分线上,∴点A的纵坐标为,∵点A在双曲线y=上,∴,得x=4,又∵点A(4,)在直线y=x﹣1上,∴解得k=4.故答案为:4.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,灵活变化,认真推导.16.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2019的长度为21008.【考点】规律型:点的坐标.【分析】根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2019即可.【解答】解:∵点M0的坐标为(1,0),∴OM0=1,∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形,∴OM1=OM0=,同理,OM2=OM1=()2,OM3=OM2=()3,…,∴OM n=()n,∴OM2019=()2019=21008.故答案为:21008.【点评】本题是对点的坐标变化规律的考查,主要利用了等腰直角三角形的判定与性质.注意得到规律:OM n=()n是关键.三、解答题(共2小题,满分16分)17.先化简,再求值:(1+)÷﹣,其中a=3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=•﹣=﹣=﹣,当a=3时,原式=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.【考点】全等三角形的判定与性质;矩形的性质.【专题】证明题.【分析】(1)先由四边形ABCD是矩形,得出AB=DC,∠BAD=∠CDA=90°.由EA=ED,得出∠EAD=∠EDA,根据等式的性质得到∠EAB=∠EDC.然后利用SAS即可证明△EAB≌△EDC;(2)由△EAB≌△EDC,得出∠AEF=∠DEG,根据三角形外角的性质得出∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,即可证明∠EFG=∠EGF.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=DC,∠BAD=∠CDA=90°.∵EA=ED,∴∠EAD=∠EDA,∴∠EAB=∠EDC.在△EAB与△EDC中,,∴△EAB≌△EDC(SAS);(2)∵△EAB≌△EDC,∴∠AEF=∠DEG,∵∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,∴∠EFG=∠EGF.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的性质,三角形外角的性质以及等式的性质,证明出△EAB≌△EDC是解题的关键.四、解答题(共2小题,满分20分)19.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)直接根据概率公式求解;(2)通过列表展示所有12种等可能性的结果数;(3)找出在第一象限或第三象限的结果数和第二象限或第四象限的结果数,然后根据概率公式计算两人获胜的概率.【解答】解:(1)小红摸出标有数字3的小球的概率是;故答案为;(2)列表如下:(3)从上面的表格可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,第二象限或第四象限的结果有8种,所以小红获胜的概率==,小颖获胜的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.五、解答题(共2小题,满分20分)21.某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).【考点】解直角三角形的应用.【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得AC的长;在Rt△BFD 中已知∠BDF与FB的长,进而得出AB的长.【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.【点评】此题考查了三角函数的基本概念,主要是正切函数的概念及运算,关键把实际问题转化为数学问题加以计算.22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2019年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?【考点】一元二次方程的应用;一次函数的应用.【分析】(1)首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可;(2)设A型车x辆,根据“A型车不少于B型车的2倍,但不超过B型车的2.8倍”列出不等式组,求出x的取值范围;然后求出利润W的表达式,根据一次函数的性质求解即可.【解答】解:(1)设平均增长率为a,根据题意得:64(1+a)2=100解得:a=0.25=25%或a=﹣2.25四月份的销量为:100•(1+25%)=125(辆).答:四月份的销量为125辆.(2)设购进A型车x辆,则购进B型车辆,根据题意得:2×≤x≤2.8×解得:30≤x≤35利润W=(700﹣500)x+(1300﹣1000)=9000+50x.∵50>0,∴W随着x的增大而增大.当x=35时,不是整数,故不符合题意,∴x=34,此时=13(辆).答:为使利润最大,该商城应购进34辆A型车和13辆B型车.【点评】本题考查了一元二次方程、一元一次不等式组和一次函数的应用,解题关键是根据题意列出方程或不等式,这也是本题的难点.六、解答题(共2小题,满分20分)23.如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连接AD,己知BC=10,BE=2,求sin∠BAD的值.【考点】切线的判定;锐角三角函数的定义.【专题】几何图形问题.【分析】(1)连结OD,利用角平分线的定义得∠CBD=∠QBD,而∠OBD=∠ODB,则∠ODB=∠QBD,于是可判断OD∥BQ,由于DE⊥PQ,根据平行线的性质得OD⊥DE,则可根据切线的判定定理得到DE与⊙O相切;(2)连结CD,根据圆周角定理由BC是⊙O的直径得到∠BDC=90°,再证明Rt△BCD∽△BDE,利用相似比可计算出BD=2,在Rt△BCD中,根据正弦的定义得到sin∠C==,然后根据圆周角定理得∠BAD=∠C,即有sin∠BAD=.【解答】(1)证明:连结OD,如图,∵BD平分∠CBQ交⊙O于点D,∴∠CBD=∠QBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠QBD,∴OD∥BQ,∵DE⊥PQ,∴OD⊥DE,∴DE与⊙O相切;(2)解:如图:Φ连接CD,∵BC是⊙O的直径,∴∠BDC=90°,∵DE⊥AB,∴∠BED=90°,∵∠CBD=∠QBD,∴Rt△BCD∽△BDE,∴=,即=,∴BD=2,在Rt△BCD中,sin∠C===,∵∠BAD=∠C,∴sin∠BAD=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、锐角三角函数和相似三角形的判定与性质.24.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.【考点】一次函数的应用.【专题】应用题.【分析】(1)先根据图象和题意知道,甲是分段函数,所以分别设0≤x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.(2)注意相遇时是在6﹣14小时之间,求交点时应该套用甲中的函数关系式为y=﹣75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.【解答】解:(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴解得∴y=﹣75x+1050∴y=.(2)当x=7时,y=﹣75×7+1050=525,==75(千米/小时).V乙【点评】本题根据实际问题考查了一次函数的运用,注意分段函数的求算方法和代数求值时对应的函数关系式.七、解答题(共1小题,满分12分)25.已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE 的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.。

辽宁丹东2019中考试卷-数学

辽宁丹东2019中考试卷-数学

辽宁丹东2019中考试卷-数学考试时间120分钟试卷总分值150分第一部分客观题〔请用2B 铅笔将正确答案涂在答题卡对应的位置上〕【一】选择题〔以下各题的备选答案中,只有一个是正确的、每题3分,共24分〕 1、-0.5的绝对值是 2、用科学记数法表示数5230000,结果正确的选项是 3、如图是一个几何体的三视图,那么那个几何体是 A.圆柱B.圆锥C.球D.三棱柱4、不等式组的解集是A.-3<x <4B.3<x ≤4C.-3<x ≤4D.x <45、如图,菱形ABCD 的周长为24cm ,对角线AC 、BD 相交 于O 点,E 是AD 的中点,连接OE ,那么线段OE 的长等于 A.3cm B.4cm C.2.5cm D.2cm6、以下事件为必定事件的是A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.3个人分成两组,一定有2个人分在一组D.三根长度为2cm ,2cm ,4cm 的木棒能摆成三角形 7、如图,点A 是双曲线在第二象限分支上的任意一点, 点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的 对称点、假设四边形ABCD 的面积是8,那么k 的值为 A.-1B.1C.2D.-2 8、如图,正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE =BF =1,CE 、DF 交于点O.以下结论: ①∠DOC =90°,②OC =OE ,③tan ∠OCD =,④中,正确的有 A.1个B.2个C.3个D.4个第二部分主观题〔请用0.5mm 黑色签字笔将答案写在答题卡对应的位置上〕 【二】填空题〔每题3分,共24分〕9.如图,直线a ∥b ,∠1=60°,那么∠2=°、10.分解因式:、 11.一组数据-1,-2,x ,1,2的平均数为0,那么这组数据 的方差为、12.如图,一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,那么此圆锥的侧面积是、13.漂亮的丹东吸引了许多外商投资,某外商向丹东连续投资3年,2017年初投资2亿元,2018年初投资3亿元、设每年投资的平 均增长率为x ,那么列出关于x 的方程为、 14.如图,在梯形ABCD 中,AD ∥BC ,E 是CD 的中点,连接AE并延长交BC 的延长线于点F ,且AB ⊥AE 、假设AB =5,AE =6, 那么梯形上下底之和为、 15.将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形有第5题图 A .0.5 B . -0.5 C . -2 D . 2 A.523×104B.5.23×104C.52.3×105D.5.23×106 B C A DE Ox ky =第9题图 =+-x x x 232x1 2a b c 第14题图 34第8题图 A B C DEF A B F D C EOBEOFODC S S 四边形=∆个五角星.16.如图,边长为6的正方形ABCD 内部有一点P ,BP =4, ∠PBC =60°,点Q 为正方形边上一动点,且△PBQ 是等腰三角形,那么符合条件的Q 点有个. 【三】解答题〔每题8分,共16分〕17.先化简,再求值:,其中18.:△ABC 在坐标平面内,三个顶点的坐标分别为A 〔0,3〕,B 〔3,4〕,C 〔2,2〕.〔正方形网格中, 每个小正方形的边长是1个单位长度〕〔1〕画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直截了当写出C 1点的坐标; 〔2〕以点B 为位似中心,在网格中...画出△A 2BC 2, 使△A 2BC 2与△ABC 位似,且位似比为2︰1,并直截了当写出C 2点的坐标及△A 2BC 2的面积、【四】〔每题10分,共20分〕19.某小型企业实行工资与业绩挂钩制度,工人工资分为A 、B 、C 、D 四个档次、小明对该企业三月份工人工资进行调查,并依照收集到的数据,绘制了如下尚不完整的统计表与扇形统计图、依照上面提供的信息,回答以下问题: 〔1〕求该企业共有多少人? 〔2〕请将统计表补充完整;〔3〕扇形统计图中“C 档次”的扇形所对的圆心角是度.20.某商场为了吸引顾客,设计了一种促销活动、在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样、规定:顾客在本商场同一日内,消费每满300元,就能够从箱子里先后摸出两个球〔每次只摸出一个球,第一次摸出后不放回〕、商场依照两个小球所标金额之和返还相应价格的购物券,能够重新在本商场消费、某顾客消费刚好满300元,那么在本次消费中: (1)该顾客至少可得___元购物券,至多可得___元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率、 【五】〔每题10分,共20分〕21.如图,在△ABC 中,∠BAC =30°,以AB 为直径的⊙O 通过点C .过点C 作⊙O 的切线交AB 的延长线于点P .点D 为圆上一点,且BC =CD ,弦AD 的延长线交切线PC 于点E ,连接BC 、〔1〕判断OB 和BP 的数量关系,并说明理由; 〔2〕假设⊙O 的半径为2,求AE 的长、 22.暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达、抢险队的动身地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少? 六、〔每题10分,共20分〕xx x x 1)111(2÷-+-12-=x ⌒ ⌒第21题图23.南中国海是中国固有领海,我渔政船经常在此海域执勤巡察、一天我渔政船停在小岛A 北偏西37°方向的B 处,观看A 岛周边海域、据测算,渔政船距A 岛的距离AB 长为10海里、如今位于A 岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发明在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号、渔政船接警后,马上沿BC 航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C 处? (参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77) 24.甲、乙两工程队同时修筑水渠,且两队所修水渠总长度相等、右图是两队所修水渠长度y (米)与修筑时间x (时)函数图像的一部分、请依照图中信息,解答以下问题: 〔1〕①直截了当写出甲队在0≤x ≤5的时间段内,y 与x 的函数关系式;②直截了当写出乙队在2≤x ≤5的时间段内,y 与x 的函数关系式;〔2〕求开修几小时后,乙队修筑的水渠长度开始超过甲队? 〔3〕假如甲队施工速度不变,乙队在修筑5小时后,施 工速度因故减少到5米/时,结果两队同时完成任务, 求乙队从开修到完工所修水渠的长度为多少米?七、〔此题12分〕25.:点C 、A 、D 在同一条直线上,∠ABC =∠ADE =α,线段BD 、CE 交于点M 、〔1〕如图1,假设AB =AC ,AD =AE①问线段BD 与CE 有怎么样的数量关系?并说明理由; ②求∠BMC 的大小〔用α表示〕; 〔2〕如图2,假设AB =BC =kAC ,AD =ED =kAE那么线段BD 与CE 的数量关系为,∠BMC =〔用α表示〕;〔3〕在〔2〕的条件下,把△ABC 绕点A 逆时针旋转180°,在备用图中作出旋转后的图形〔要求:尺规作图,不写作法,保留作图痕迹〕,连接EC 并延长交BD 于点M . 那么∠BMC =〔用α表示〕、八、〔此题14分〕26.抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是〔-1,0〕,O 是坐标原点,且OAOC 3=、〔1〕求抛物线的函数表达式;〔2〕直截了当写出直线BC 的函数表达式;〔3〕如图1,D 为y 轴的负半轴上的一点,且OD =2,以OD 为边作正方形ODEF .将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,在运动过程中,设正方形ODEF 与△OBC 重叠部分的面积为s ,运动的时间为t 秒〔0<t ≤2〕. 求:①s 与t 之间的函数关系式;②在运动过程中,s 是否存在最大值?假如存在,直截了当写出那个最大值;假如不存在,请说明理由、第23题图 cax ax y +-=22)〔4〕如图2,点P 〔1,k 〕在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?假设存在,请直截了当写出M 点坐标;假设不存在,请说明理由.2018年丹东市初中毕业生毕业升学考试数学试卷参考答案及评分标准〔假设有其它正确方法,请参照此标准赋分〕【一】选择题:(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 选项 A D B A A C D C【二】填空题〔每题3分,共24分〕 9.12010.()21-x x 11.212.60πcm 213.()3122=+x 14.1315.12016.5【三】解答题〔每题8分,共16分〕 17.解:=112--x x ·x ………………………………………………2′=x x +2…………………………………4′ 当=x 12-时,()()121222-+-=+x x ………………………………5′=121222-++-………………………………7′=22-…………………………………8′18.解:〔1〕如图,△A 1B 1C 1即为所求,C 1(2,-2) ………………………………………3′〔2〕如图,△A 2BC 2即为所求,C 2〔1,0〕………6′△A 2BC 2的面积等于10…………………………………8′【四】〔每题10分,共20分〕 19.解:〔1〕20÷=100〔人〕∴该企业共有100人;36072第18题图………………………………3′分〕………………………………8′6′ … …………………………6′ 从上面的树状图或表格能够看出,两次摸球可能出现的结果共有12种, 每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果 共有6种、………………………8′因此该顾客所获购物券的金额不低于50元的概率是21.……………………………10′【五】〔每题10分,共20分〕21.解:〔1〕OB=BP ……………………1′ 理由:连接OC,∵PC 切⊙O 于点C ………………2′ ∴∠OCP=90o∵OA=OC ,∠OAC=30o∴∠OAC=∠OCA=30o ………………3′ ∴∠COP=60o∴∠P=30o…………………………………………4′ 在Rt △OCP 中OC=21OP=OB=BP ……………………………………………5′〔2〕由〔1〕得OB=21OP∵⊙O 的半径是2∴AP=3OB=3×2=6…………………………6′ ∵BC=CD∴∠CAD=∠BAC=30o …………………………………7′ ∴∠BAD=60o ……………………………………8′⌒ ⌒ 第21题图∵∠P=30o∴∠E=90o …………………………………9′ 在Rt △AEP 中 AE=21AP=3621=⨯………………………10′22.解:设第一队的平均速度是x 千米/时,那么第二队的平均速度是1.5x 千米/时……………………1′ 依照题意,得:215.19090=-x x ……………………5′ 解那个方程,得x=60……………………7′经检验,x=60是所列方程的根,……………………8′1.5x=1.5×60=90〔千米/时〕……………………9′答:第一队的平均速度是60千米/时,第二队的平均速度是 90千米/时.………………………10′ 六、〔每题10分,共20分〕23.解:过B 点作BD ⊥AC,垂足为D.……………………………1′ 依照题意,得:∠ABD=∠BAM=37o ,∠CBD=∠BCN=50o 在Rt △ABD 中 ∵cos ∠ABD=ABBDcos37○=80.010≈BD∴BD ≈10×0.8=8〔海里〕……………………4′在Rt △CBD 中∵cos ∠CBD=BCBD ∴cos50○=BC 8≈0.64∴BC ≈8÷0.64=12.5〔海里〕………………………………7′ ∴12.5÷30=125〔小时〕……………………8′125×60=25〔分钟〕……………………9′答:渔政船约25分钟到达渔船所在的C 处.…………10′ 24.解:〔1〕①y=10x ……………………………2′②y=20x-30…………………………4′题图MN)(2)方法一:依照题意得:20x-30>10x 20x-10x>30解得:x>3………………6′ ∴开修3小时后,乙队修筑的水渠长度开始超过甲队.…………7′ 方法二:依照题意得:解得:x=3………………………6′∴开修3小时后,乙队修筑的水渠长度开始超过甲队.…………7′ 〔3〕由图像得,甲队的速度是50÷5=10〔米/时〕设:乙队从开修到完工所修水渠的长度为m 米.依照题意,得: 解得:90=m ………………9′答:乙队从开修到完工所修水渠的长度为90米.……………10′25.解:(1) ①BD=CE …………1′∵AD=AE∴∠AED=∠ADE=α∴∠DAE=180°-2∠ADE=180°-2α 同理可得:∠BAC=180°-2α ∴∠DAE=∠BAC∴∠DAE+∠BAE=∠BAC+∠BAE 即:∠BAD=∠CAE …………2′ 在△ABD 与△ACE 中⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD ACAB∴△ABD ≌△ACE 〔SAS 〕∴BD=CE …………………………4′ ②∵△ABD ≌△ACE ∴∠BDA=∠CEA∵∠BMC=∠MCD+∠MDC ∴∠BMC=∠MCD+∠CEA=∠EAD=180°-2α…………………………6′ 〔2〕BD=kCE ……………………7′第24题图 5701050-=-m m BC ADEM BCA DEM图1 图226.解:〔1〕∵A 〔-1,0〕,OAOC 3=∴C 〔0,-3〕………1′∵抛物线通过A 〔-1,0〕, C 〔0,-3〕 ∴()()⎩⎨⎧=+-⨯-⨯--=012132c a a c∴⎩⎨⎧-==31c a∴y=x 2-2x -3…………………3′〔2〕直线BC 的函数表达式为y=x -3…………………5′〔3〕当正方形ODEF 的顶点D 运动到直线BC 上时,设D 点的坐标为〔m ,-2〕,依照题意得:-2=m-3,∴m=1…………………6′ ①当0<t ≤1时 S 1=2t …………………7′ 当1<t ≤2时S 2=O O DD S 11矩形-HG D S 1∆=2t -()2121-⨯t=-213212-+t t …………………9′②当t=2秒时,S 有最大值,最大值为……………10′ 〔4〕M 1〔-12-,0〕M 2〔12-,0〕M 3〔63-,0〕M 4〔63+,0〕………………14′。

2019年辽宁省丹东市中考数学试卷-学生版+解析版(无水印)

2019年辽宁省丹东市中考数学试卷-学生版+解析版(无水印)

2019年辽宁省丹东市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•丹东)2019的相反数是( ) A .2019-B .2019C .12019-D .120192.(3分)(2019•丹东)十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A .22.74810⨯B .4274.810⨯C .62.74810⨯D .70.274810⨯3.(3分)(2019•丹东)如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A .B .C .D .4.(3分)(2019•丹东)下面计算正确的是( ) A .321a a -=B .224246a a a +=C .325()x x =D .826x x x ÷=5.(3分)(2019•丹东)如图,点C 在AOB ∠的边OA 上,用尺规作出了//CP OB ,作图痕迹中,FG 是( )A .以点C 为圆心、OD 的长为半径的弧B .以点C 为圆心、DM 的长为半径的弧 C .以点E 为圆心、DM 的长为半径的弧D .以点E 为圆心、OD 的长为半径的弧6.(3分)(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( ) A .11B .12C .13D .147.(3分)(2019•丹东)等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程260x x k -+=的两个实数根,则k 的值是( ) A .8B .9C .8或9D .128.(3分)(2019•丹东)如图,二次函数2(0)y ax bx c a =++≠的图象过点(2,0)-,对称轴为直线1x =.有以下结论: ①0abc >; ②80a c +>;③若1(A x ,)m ,2(B x ,)m 是抛物线上的两点,当12x x x =+时,y c =;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM PN ⊥,则a 的取值范围为1a …; ⑤若方程(2)(4)2a x x +-=-的两根为1x ,2x ,且12x x <,则1224x x -<<…. 其中结论正确的有( )A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2019•丹东)因式分解:32288x x x -+= .10.(3分)(2019•丹东)在函数y =中,自变量x 的取值范围是 .11.(3分)(2019•丹东)有5张无差别的卡片,上面分别标有1-,0,13,π,从中随机抽取1张,则抽出的数是无理数的概率是 .12.(3分)(2019•丹东)关于x 的不等式组2401x a x ->⎧⎨->-⎩的解集是24x <<,则a 的值为 .13.(3分)(2019•丹东)如图,在ABC ∆中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若1DE =,则BC 的长是 .14.(3分)(2019•丹东)如图,点A 在双曲线6(0)y x x =>上,过点A 作AB x ⊥轴于点B ,点C 在线段AB 上且:1:2BC CA =,双曲线(0)ky x x=>经过点C ,则k = .15.(3分)(2019•丹东)如图,在平面直角坐标系中,点A ,C 分别在x 轴、y 轴上,四边形ABCO 是边长为4的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP ,AP ,当点P 满足DP AP +的值最小时,直线AP 的解析式为 .16.(3分)(2019•丹东)如图,在平面直角坐标系中,1OA =,以OA 为一边,在第一象限作菱形1O A A B ,并使60AOB ∠=︒,再以对角线1OA 为一边,在如图所示的一侧作相同形状的菱形121OA A B ,再依次作菱形232OA A B ,343OA A B ,⋯⋯,则过点2018B ,2019B ,2019A 的圆的圆心坐标为 .三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(8分)(2019•丹东)先化简,再求代数式的值:2222421121x x x x x x x ---÷+--+,其中3cos60x =︒.18.(8分)(2019•丹东)在下面的网格中,每个小正方形的边长均为1,ABC ∆的三个顶点都是网格线的交点,已知B ,C 两点的坐标分别为(3,0)-,(1,1)--.(1)请在图中画出平面直角坐标系,并直接写出点A 的坐标. (2)将ABC ∆绕着坐标原点顺时针旋转90︒,画出旋转后的△A B C '''.(3)接写出在上述旋转过程中,点A 所经过的路径长.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(10分)(2019•丹东)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题: (1)本次抽样调查学生的人数为 .(2)补全两个统计图,并求出扇形统计图中A 所对应扇形圆心角的度数. (3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)(2019•丹东)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A 上只修改一个数字使游戏公平(不需要说明理由).五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)21.(10分)(2019•丹东)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)(2019•丹东)如图,在Rt ABC∠=︒,点D在AB上,以AD为ACB∆中,90直径的O与边BC相切于点E,与边AC相交于点G,且A G E G=,连接GO并延长交O 于点F,连接BF.(1)求证:①AO AG=.②BF是O的切线.(2)若6BD=,求图形中阴影部分的面积.六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)23.(10分)(2019•丹东)如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14︒,向前行走25m到达B处,在地面测得路灯MN的顶端仰角为24.3︒,已知点A,B,Q,N在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m.参考数据:︒≈,sin24.30.41︒≈,cos24.30.91︒≈,︒≈,tan140.25︒≈,cos140.97sin140.24︒≈tan24.30.45)24.(10分)(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y 件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤) 25.(12分)(2019•丹东)已知:在ABC ∆外分别以AB ,AC 为边作AEB ∆与AFC ∆. (1)如图1,AEB ∆与AFC ∆分别是以AB ,AC 为斜边的等腰直角三角形,连接EF .以EF 为直角边构造Rt EFG ∆,且EF FG =,连接BG ,CG ,EC . 求证:①AEF CGF ∆≅∆. ②四边形BGCE 是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在ABC ∆外分别以AB ,AC 为斜边作R t A E B ∆与Rt AFC ∆,并使30FAC EAB ∠=∠=︒,取BC 的中点D ,连接DE ,EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出EDEF的值及DEF ∠的度数. (3)小颖受到启发也做了探究:如图3,在ABC ∆外分别以AB ,AC 为底边作等腰三角形AEB 和等腰三角形AFC ,并使90CAF EAB ∠+∠=︒,取BC 的中点D ,连接DE ,EF 后发现,当给定EAB α∠=时,两者间也存在一定的数量关系且夹角度数一定,若AE m =,AB n =,请你帮助小颖用含m ,n 的代数式直接写出EDEF的值,并用含α的代数式直接表示DEF ∠的度数.八、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤) 26.(14分)(2019•丹东)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于B ,C 两点,与y 轴交于点A ,直线122y x =-+经过A ,C 两点,抛物线的对称轴与x 轴交于点D ,直线MN 与对称轴交于点G ,与抛物线交于M ,N 两点(点N 在对称轴右侧),且//MN x 轴,7MN =. (1)求此抛物线的解析式. (2)求点N 的坐标.(3)过点A 的直线与抛物线交于点F ,当1tan 2FAC ∠=时,求点F 的坐标. (4)过点D 作直线AC 的垂线,交AC 于点H ,交y 轴于点K ,连接CN ,AHK ∆沿射线AC 以每秒1个单位长度的速度移动,移动过程中AHK ∆与四边形DGNC 产生重叠,设重叠面积为S ,移动时间为(0t t 剟,请直接写出S 与t 的函数关系式.2019年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•丹东)2019的相反数是( ) A .2019-B .2019C .12019-D .12019【解答】解:2019的相反数是2019-, 故选:A .2.(3分)(2019•丹东)十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A .22.74810⨯B .4274.810⨯C .62.74810⨯D .70.274810⨯【解答】解:数据274.8万用科学记数法表示为46274.810 2.74810⨯=⨯. 故选:C .3.(3分)(2019•丹东)如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A .B .C .D .【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D .4.(3分)(2019•丹东)下面计算正确的是( ) A .321a a -=B .224246a a a +=C .325()x x =D .826x x x ÷=【解答】解:32a a a -=,故选项A 错误; 222246a a a +=,故选项B 错误;。

丹东市2019届中考数学模拟试卷(一)含答案解析

丹东市2019届中考数学模拟试卷(一)含答案解析

2019年辽宁省丹东市中考数学模拟试卷(一)一、选择题(共8小题,每小题3分,满分24分)1.的相反数是()A. B. C.D.2.下列运算正确的是()A.x2+x2=2x4B.x4•x2=x6C.3x2÷x=2x D.(x2)3=x53.一个不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同,从袋子中随机地摸出2个球,这2个球都是白球的概率为()A.B.C.D.4.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.5.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1 B.y=(x+1)2C.y=x2﹣1 D.y=(x﹣1)26.在Rt△ABC中,∠C=90°,若BC=2AC,则∠A的正切值是()A.B.C. D.27.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1 B.2 C.3 D.4二、填空题(共8小题,每小题3分,满分24分)9.因式分解:x2﹣5x=.10.今年我市投入10 000 000 000元用于绿化、造林,将10 000 000 000用科学记数法表示为.11.不等式﹣2x+4<x﹣8的解集是.12.有意义的x的取值范围是.13.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(﹣2,3),则点B的坐标为.14.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.15.某射击小组进行射击练习,教练将该小组成员的某次射击成绩绘制成统计图(如图),则这组成绩的众数是.16.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=1,DC=2,点P是AB上的动点,则PC+PD的最小值为.三、解答题(共2小题,满分16分)17.计算:()﹣1+(+1)2﹣.18.解不等式组:.四、解答题(共2小题,满分20分)19.如图,在▱ABCD中,点E,F在对角线BD上,且ED=BF.求证:AE=CF.20.某校为了解七年级男生体操测试情况,随机抽取了50名男生的测试成绩进行统计,根据评分标准,将他们的成绩分为A,B,C,D四个等级,并绘制成频数分布表和扇形统计图(如图).(1)在被调查的男生中,成绩为B等级的有人,占被调查男生人数的%,m=;(2)求a,b,n的值;(3)如果该校七年级共有200名男生,试估计这200名男生中成绩达到A等级和B等级的共有多少人.五、解答题(共2小题,满分20分)21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.22.某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?六、解答题(共2小题,满分20分)23.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC相交于点F.(1)求证:FD=DC;(2)若AE=8,DE=5,求⊙O的半径.24.某数学兴趣小组想测量河流的宽度AB,河流两岸AC,BD互相平行,河流对岸有两棵树A和C,且A、C之间的距离是60m,他们在D处测得∠BDC=36°,前行140米后测得∠BPA=45°,请根据这些数据求出河流的宽度.(结果精确到0.1米,参考数据:tan36°≈0.73,sin36°≈0.59,cos36°≈0.81)七、解答题(共1小题,满分12分)25.在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:(填“成立”或“不成立”)八、解答题(共1小题,满分14分)26.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO 时,请直接写出线段BM的长.2019年辽宁省丹东市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.的相反数是()A. B. C.D.【考点】相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:的相反数是,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的概念.2.下列运算正确的是()A.x2+x2=2x4B.x4•x2=x6C.3x2÷x=2x D.(x2)3=x5【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法和除法以及幂的乘方计算即可.【解答】解:A、x2+x2=2x2,错误;B、x4•x2=x6,正确;C、3x2÷x=3x,错误;D、(x2)3=x6,错误;故选B【点评】此题考查同类项、同底数幂的乘法和除法以及幂的乘方,关键是根据法则进行计算.3.一个不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同,从袋子中随机地摸出2个球,这2个球都是白球的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这2个球都是白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这2个球都是白球的有2种情况,∴这2个球都是白球的概率为:=.故选B.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,即可得出答案.【解答】解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;故选C.【点评】本题考查了由三视图判断几何体,考查学生的空间想象能力,是一道基础题,难度不大.5.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1 B.y=(x+1)2C.y=x2﹣1 D.y=(x﹣1)2【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向右平移1个单位,那么新抛物线的顶点为(1,0);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2,故选D.【点评】抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.6.在Rt△ABC中,∠C=90°,若BC=2AC,则∠A的正切值是()A.B.C. D.2【考点】锐角三角函数的定义.【分析】此题根据已知可设AC=x,则BC=2x,根据三角函数的定义从而求出∠A的正切值.【解答】解:设AC=x,则BC=2x,∵∠C=90°,∴tanA=,故选:D.【点评】此题考查的知识点是锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1 B.2 C.3 D.4【考点】待定系数法求反比例函数解析式.【专题】压轴题.【分析】首先根据E点横坐标得出D点横坐标,再利用AB=2BC,得出D点纵坐标,进而得出k的值.【解答】解:∵在矩形OABC中,AB=2BC,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,∴D点横坐标为:2,AB=OC=4,BC=AB=2,∴D点纵坐标为:1,∴k=xy=1×2=2.故选:B.【点评】此题主要考查了点的坐标性质以及k与点的坐标性质,得出D点坐标是解题关键.二、填空题(共8小题,每小题3分,满分24分)9.因式分解:x2﹣5x=x(x﹣5).【考点】因式分解-提公因式法.【分析】根据提公因式法,可分解因式.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】本题考查了因式分解,提公因式法分解因式的关键是确定公因式.10.今年我市投入10 000 000 000元用于绿化、造林,将10 000 000 000用科学记数法表示为1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10000000000=1010,故答案为:1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.不等式﹣2x+4<x﹣8的解集是x>4.【考点】解一元一次不等式.【分析】根据一元一次不等式的解法解不等式.【解答】解:移项得:﹣2x﹣x<﹣8﹣4,合并同类项得:﹣3x<﹣12,系数化为1得:x>4.故答案为:x>4.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.有意义的x的取值范围是x≥.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,由被开方数大于等于0可知.【解答】解:根据二次根式的意义,被开方数3x﹣4≥0,解得x≥,故答案为:x≥.【点评】主要考查了二次根式的意义和性质.解题的关键是明确被开方数大于等于0.13.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(﹣2,3),则点B的坐标为(2,﹣3).【考点】反比例函数图象的对称性.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点A的坐标是(﹣2,3),∴B点的坐标为(2,﹣3).故答案是:(2,﹣3).【点评】本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.14.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90度.【考点】方向角;平行线的性质;三角形内角和定理.【专题】应用题.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.15.某射击小组进行射击练习,教练将该小组成员的某次射击成绩绘制成统计图(如图),则这组成绩的众数是7.【考点】众数;条形统计图.【分析】根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.【解答】解:由条形统计图可知7出现的次数最多,则众数是7(环).故答案为7.【点评】本题主要考查了众数和条形统计图的知识,解答本题要掌握众数是一组数据中出现次数最多的数,此题比较简单.16.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=1,DC=2,点P是AB上的动点,则PC+PD的最小值为.【考点】轴对称-最短路线问题;等腰直角三角形.【分析】首先确定DC′=DP+PC′=DP+CP的值最小,然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.∵BD=1,DC=2,∴BC=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=3,根据勾股定理可得DC′===.故答案为:.【点评】此题考查了线路最短的问题,确定动点E何位置时,使PC+PD的值最小是关键.三、解答题(共2小题,满分16分)17.计算:()﹣1+(+1)2﹣.【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式第一项利用负整数指数幂法则计算,第二项利用完全平方公式化简,最后一项化为最简二次根式即可得到结果.【解答】解:原式=2+6+2﹣2=8.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x≥﹣2,故不等式组的解集为:﹣2≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、解答题(共2小题,满分20分)19.如图,在▱ABCD中,点E,F在对角线BD上,且ED=BF.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,,∴△AED≌△CFB(SAS),∴AE=CF.【点评】此题主要考查了平行四边形的性质和全等三角形的判定和性质,关键是掌握平行四边形对边平行且相等.20.某校为了解七年级男生体操测试情况,随机抽取了50名男生的测试成绩进行统计,根据评分标准,将他们的成绩分为A,B,C,D四个等级,并绘制成频数分布表和扇形统计图(如图).(1)在被调查的男生中,成绩为B等级的有23人,占被调查男生人数的46%,m=0.38;(2)求a,b,n的值;(3)如果该校七年级共有200名男生,试估计这200名男生中成绩达到A等级和B等级的共有多少人.【考点】频数(率)分布表;用样本估计总体;扇形统计图.【分析】(1)根据频数分布表知B等级的人数、占被调查男生人数的百分比,由扇形统计图可知A 等级的频率;(2)根据A等级频数=总人数×A等级频率可得a的值,用总人数减去其余三组人数和可得b的值,用C等级人数÷总人数可得n的值;(3)用七年级总人数乘以A、B等级的频率和可估计人数.【解答】解:(1)根据频数分布表知,B等级人数为23人,占被调查人数的46%,由扇形统计图可知A等级的频率为38%=0.38;(2)a=50×0.38=19,b=50﹣(19+23+3)=5,n=5÷50=0.1;(3)(0.38+0.46)×200=168(人)故这200名男生中成绩达到A等级和B等级的大约有168人.故答案为:(1)23,46,0.38.【点评】本题考查的是频数分布表和扇形统计图的综合运用.读懂统计图表,从不同的统计图中得到必要的信息是解决问题的关键.五、解答题(共2小题,满分20分)21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.【考点】列表法与树状图法;一元二次方程的解.【专题】计算题.【分析】(1)列表得出所有等可能的情况数即可;(2)找出恰好是方程x2﹣3x+2=0的解的情况数,求出所求的概率即可.【解答】解:(1)列表如下:(2)所有等可能的情况数为9种,其中是x2﹣3x+2=0的解的为(1,2),(2,1)共2种,=.则P是方程解【点评】此题考查了列表法与树状图法,以及一元二次方程的解,用到的知识点为:概率=所求情况数与总情况数之比.22.某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?【考点】一次函数的应用.【分析】(1)设出成本y(元/kg)与进货量x(kg)的函数解析式,由图象上的点的坐标利用待定系数法即可求得结论;(2)令成本y=9.6,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设成本y(元/kg)与进货量x(kg)的函数解析式为y=kx+b,由图形可知:,解得:.故y关于x的函数解析式为y=﹣0.1x+11,其中10≤x≤30.(2)令y=﹣0.1x+11=9.6,即0.1x=1.4,解得:x=14.故该商场购进这种商品的成本为9.6元/kg,则购进此商品14千克.【点评】本题考查了一次函数的图象以及用待定系数法求函数解析式,解题的关键:(1)设出解析式在图象上找出点的坐标利用待定系数法去求系数;(2)令y=9.6,得出关于x的一元一次方程.本题属于基础题,难度不大,解决该类题型的方法是利用图象得出点的坐标,结合待定系数法求出结论.六、解答题(共2小题,满分20分)23.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC相交于点F.(1)求证:FD=DC;(2)若AE=8,DE=5,求⊙O的半径.【考点】切线的性质.【专题】计算题.【分析】(1)由切线的性质得BA⊥AC,则∠2+∠BAD=90°,再根据圆周角定理得∠ADB=90°,则∠B+∠BAD=90°,所以∠B=∠2,接着由DA=DE得到∠1=∠E,由圆周角定理得∠B=∠E,所以∠1=∠2,可判断AF=AC,根据等腰三角形的性质得FD=DC;(2)作DH⊥AE于H,如图,根据等腰三角形的性质得AH=EH=AE=4,再根据勾股定理可计算出DH=3,然后证明△BDA∽△EHD,利用相似比可计算出AB=,从而可得⊙O的半径.【解答】(1)证明:∵AC是⊙O的切线,∴BA⊥AC,∴∠2+∠BAD=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠B=∠2,∵DA=DE,∴∠1=∠E,而∠B=∠E,∴∠B=∠1,∴∠1=∠2,∴AF=AC,而AD⊥CF,∴FD=DC;(2)解:作DH⊥AE于H,如图,∵DA=DE=5,∴AH=EH=AE=4,在Rt△DEH中,DH==3,∵∠B=∠E,∠ADB=∠DHE=90°,∴△BDA∽△EHD,∴=,即=,∴AB=,∴⊙O的半径为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的判定与性质、圆周角定理、勾股定理和相似三角形的判定与性质.24.某数学兴趣小组想测量河流的宽度AB,河流两岸AC,BD互相平行,河流对岸有两棵树A和C,且A、C之间的距离是60m,他们在D处测得∠BDC=36°,前行140米后测得∠BPA=45°,请根据这些数据求出河流的宽度.(结果精确到0.1米,参考数据:tan36°≈0.73,sin36°≈0.59,cos36°≈0.81)【考点】解直角三角形的应用.【分析】作CH⊥BD,设AB为x米,则CD为x米,在Rt△ABP中,易求HD,在Rt△CHD中,根据36度角的锐角三角函数可建立方程,解方程求出x的值即可.【解答】解:作CH⊥BD,则BH=AC=60米,设AB为x米,则CH为x米,在Rt△ABP中,tan45°=1,∴BP=x,∴HD=BP+PD﹣BH=x+140﹣60=(x+80)米,在Rt△CHD中,∵tan∠CDH=,∴x+80=,∴x=(x+80)tan36°,∴x≈216.3(米),答:河流的宽度约为216.3米.【点评】本题考查了解直角三角形的应用,此类题目一般是据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.七、解答题(共1小题,满分12分)25.在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:成立(填“成立”或“不成立”)【考点】相似形综合题.【专题】压轴题.【分析】(1)过A作AF⊥AC交CO延长线于F,连接MF,根据相似求出AF=BC,CO=OF,求出FM=CM,根据勾股定理求出即可;(2)过A作AF⊥AC交CO延长线于F,连接MF,根据相似求出AF=BC,CO=OF,求出FM=CM,根据勾股定理求出即可;(3)结论依然成立.【解答】(1)证明:如图1,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∴==,∵O为AB中点,∴OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(2)解:还成立,理由是:如图2,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∴==,∵OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(3)成立.【点评】本题考查了直角三角形,相似三角形的性质和判定,勾股定理的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好,证明过程类似.八、解答题(共1小题,满分14分)26.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO 时,请直接写出线段BM的长.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求出抛物线的函数表达式;(2)由∠BDA=∠DAC,可知BD∥x轴,点B与点D纵坐标相同,解一元二次方程求出点D的坐标;(3)①由BE与OA平行且相等,可判定四边形OAEB为平行四边形;②点M在点B的左右两侧均有可能,需要分类讨论.综合利用相似三角形的性质、等腰三角形的性质和勾股定理,求出线段BM的长度.【解答】解:(1)将A(,0)、B(1,)代入抛物线解析式y=x2+bx+c,得:,解得:.∴y=x2x+.(2)当∠BDA=∠DAC时,BD∥x轴.∵B(1,),当y=时,=x2x+,解得:x=1或x=4,∴D(4,).(3)①四边形OAEB是平行四边形.理由如下:抛物线的对称轴是x=,∴BE=﹣1=.∵A(,0),∴OA=BE=.又∵BE∥OA,∴四边形OAEB是平行四边形.②∵O(0,0),B(1,),F为OB的中点,∴F(,).过点F作FN⊥直线BD于点N,则FN=﹣=,BN=1﹣=.在Rt△BNF中,由勾股定理得:BF==.∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,∴∠FBM=2∠BMF.(I)当点M位于点B右侧时.在直线BD上点B左侧取一点G,使BG=BF=,连接FG,则GN=BG﹣BN=1,在Rt△FNG中,由勾股定理得:FG==.∵BG=BF,∴∠BGF=∠BFG.又∵∠FBM=∠BGF+∠BFG=2∠BMF,∴∠BFG=∠BMF,又∵∠MGF=∠MGF,∴△GFB∽△GMF,∴,即,∴BM=;(II)当点M位于点B左侧时.设BD与y轴交于点K,连接FK,则FK为Rt△KOB斜边上的中线,∴KF=OB=FB=,∴∠FKB=∠FBM=2∠BMF,又∵∠FKB=∠BMF+∠MFK,∴∠BMF=∠MFK,∴MK=KF=,∴BM=MK+BK=+1=.综上所述,线段BM的长为或.【点评】本题是中考压轴题,考查了二次函数的图象与性质、待定系数法、解方程、相似三角形、等腰三角形、平行四边形、勾股定理等知识点.难点在于第(3)②问,满足条件的点M可能有两种情形,需要分类讨论,分别计算,避免漏解.。

辽宁省丹东市2019年中考数学试题及答案【word版】

辽宁省丹东市2019年中考数学试题及答案【word版】

D
E
的度数为 A. 70 °
B. 80
B
C
°
C. 40
第 5 题图
°
D. 30
°
6. 下列计算正确的是
A. 3 1 3 B. x 3 x 4 x 7 C.
2 3 5 D.
p2q 3
p5q3
7. 如图,反比例函数 y1 k1 和一次函数 x
A、 B 两点 . A 、 B 两点的横坐标分别为
y2 k2 x b 的图象交于 2, -3. 通过观察图象,
20. 某服装厂接到一份加工 3000 件服装的订单 . 应客户要求,需提前供货,该服装厂决定提高加工速度,实际每 天加工的件数是原计划的 1.5 倍,结果提前 10 天完工 . 原计划每天加工多少件服装?
五、(每小题 10 分,共 20 分)
21. 甲、乙两人用如图所示的两个分格均匀的转盘
A、B 做游戏, 游戏规则如下: 分别转动两个转盘, 转盘停止后,
E
BF
C
第 15 题图
经过 t 秒△ DEF为等边三角形,则 t 的值为
.
16. 如图,在平面直角坐标系中, A、 B 两点分别在 x 轴和 y 轴上, OA=1,OB= 3 ,连接 AB,过 AB中点 C1 分别作 x 轴和 y 轴的
y B
B1
C1
B2 C2
垂线,垂足分别是点 A1、 B1,连接 A1B1,再过 A1B1 中点 C2 作 x

指针分别指向一个数字(若指针停止在等份线上, 那么重转一次,直到指针指向某一数字为止) . 用所指的两
个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜
. 请你解决下列问题:
( 1)用列表格或画树状图的方法表示游戏所有可能出

2019年辽宁省丹东市中考数学试卷(解析版)

2019年辽宁省丹东市中考数学试卷(解析版)

2019年辽宁省丹东市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.2019的相反数是()A.﹣2019 B.2019 C.﹣D.2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为()A.2.748×102B.274.8×104C.2.748×106D.0.2748×1073.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.4.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧6.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11 B.12 C.13 D.147.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.128.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(共8小题)9.因式分解:2x3﹣8x2+8x=﹣.10.在函数y=中,自变量x的取值范围是.11.有5张无差别的卡片,上面分别标有﹣1,0,,,π,从中随机抽取1张,则抽出的数是无理数的概率是.12.关于x的不等式组的解集是2<x<4,则a的值为.13.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.14.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=.15.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为﹣.16.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为﹣.三、解答题(共10小题)17.先化简,再求代数式的值:,其中x=3cos60°.18.在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.(3)接写出在上述旋转过程中,点A所经过的路径长.19.为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).21.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.23.如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14°,向前行走25m到达B处,在地面测得路灯MN的顶端仰角为24.3°,已知点A,B,Q,N在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m.参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)24.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?25.已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF.②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠F AC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB =90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.26.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠F AC=时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t (0≤t≤),请直接写出S与t的函数关系式.2019年辽宁省丹东市中考数学试卷(解析版)参考答案一、单选题(共8小题)1.【分析】根据只有符号不同的两个数互为相反数,可得答案【解答】解:2019的相反数是﹣2019,故选:A.【知识点】相反数2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据274.8万用科学记数法表示为274.8×104=2.748×106.故选:C.【知识点】科学记数法—表示较大的数3.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D.【知识点】简单组合体的三视图4.【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【解答】解:∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.【知识点】整式的混合运算5.【分析】根据平行线的判定,作一个角等于已知角的方法即可判断.【解答】解:由作图可知作图步骤为:①以点O为圆心,任意长为半径画弧DM,分别交OA,OB于M,D.②以点C为圆心,以OM为半径画弧EN,交OA于E.③以点E为圆心,以DM为半径画弧FG,交弧EN于N.④过点N作射线CP.根据同位角相等两直线平行,可得CP∥OB.故选:C.【知识点】平行线的判定、作图—复杂作图6.【分析】根据中位数和众数的定义分析可得答案.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4.所以这5个数据分别是x,y,2,4,4,且x<y<4,当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,所以这组数据可能的最大的和是0+1+2+4+4=11.故选:A.【知识点】中位数、众数7.【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.【解答】解:当等腰三角形的底边为2时,此时关于x的一元二次方程x2﹣6x+k=0的有两个相等实数根,∴△=36﹣4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,当等腰三角形的腰长为2时,此时x=2是方程x2﹣6x+k=0的其中一根,∴4﹣12+k=0,∴k=8,此时另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选:B.【知识点】一元二次方程的解、三角形三边关系、根的判别式、等腰三角形的性质8.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.【知识点】二次函数图象与系数的关系、根的判别式、抛物线与x轴的交点、根与系数的关系、二次函数图象上点的坐标特征二、填空题(共8小题)9.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2x(x2﹣4x+4)=2x(x﹣2)2.故答案为:2x(x﹣2)2.【知识点】提公因式法与公式法的综合运用10.【分析】函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式的性质,被开方数大于等于0可知:1﹣2x≥0,即x≤时,二次根式有意义.又因为0做除数无意义,所以x≠0.因此x的取值范围为x≤且x≠0.故答案为:x≤且x≠0.【知识点】函数自变量的取值范围11.【分析】先找出无理数的个数,再根据概率公式可得答案.【解答】解:在﹣1,0,,,π中,无理数有,π,共2个,则抽出的数是无理数的概率是.故答案为:.【知识点】概率公式、无理数12.【分析】分别求出不等式组中两个不等式的解集,根据题意得到关于a的方程,解之可得.【解答】解:解不等式2x﹣4>0,得:x>2,解不等式a﹣x>﹣1,得:x<a+1,∵不等式组的解集为2<x<4,∴a+1=4,即a=3,故答案为:3.【知识点】解一元一次不等式组13.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.【解答】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为:3.【知识点】含30度角的直角三角形、线段垂直平分线的性质14.【分析】根据反比例函数系数k的几何意义即可得到结论.【解答】解:连接OC,∵点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=×6=3,∵BC:CA=1:2,∴S△OBC=3×=1,∵双曲线y=(x>0)经过点C,∴S△OBC=|k|=1,∴|k|=2,∵双曲线y=(x>0)在第一象限,∴k=2,故答案为2.【知识点】反比例函数图象上点的坐标特征15.【分析】根据正方形的性质得到点A,C关于直线OB对称,连接CD交OB于P,连接P A,PD,则此时,PD+AP的值最小,求得直线CD的解析式为y=﹣x+4,由于直线OB的解析式为y=x,解方程组得到P(,),由待定系数法即可得到结论.【解答】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接P A,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P(,),设直线AP的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为y=﹣2x+8,故答案为:y=﹣2x+8.【知识点】轴对称-最短路线问题、正方形的性质、待定系数法求一次函数解析式16.【分析】过A1作A1C⊥x轴于C,由菱形的性质得到OA=AA1=1,∠A1AC=∠AOB=60°,根据勾股定理得到OA1==,求得∠A2B1A3=60°,解直角三角形得到B1A3=2,A2A3=3,求得OA3=OB1+B1A3=3=()3得到菱形OA2A3B2的边长=3=()2,设B1A3的中点为O1,连接O1A2,O1B2,推出过点B1,B2,A2的圆的圆心坐标为O1(0,2),以此类推,于是得到结论.【解答】解:过A1作A1C⊥x轴于C,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=,AC=,∴OC=OA+AC=,在Rt△OA1C中,OA1==,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=2,A2A3=3,∴OA3=OB1+B1A3=3=()3∴菱形OA2A3B2的边长=3=()2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B1==()1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,2),∵菱形OA3A4B3的边长为3=()3,∴OA4=9=()4,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=()2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,3),…以此类推,菱形菱形OA2019A2020B2019的边长为()2019,OA2020=()2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=()2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣()2018,()2019),即过点B2018,B2019,A2019的圆的圆心坐标为(﹣()2018,()2019),故答案为:(﹣()2018,()2019).【知识点】垂径定理、菱形的性质、规律型:点的坐标三、解答题(共10小题)17.【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用锐角三角函数值得出x的值,继而代入计算可得.【解答】解:原式=﹣•=﹣=,当x=3cos60°=3×=时,原式==.【知识点】分式的化简求值、特殊角的三角函数值18.【分析】(1)利用B、C点的坐标建立直角坐标系,然后写出A点坐标;(2)利用网格特点和旋转的性质画出A、B、C的对应点A′、B′、C′,从而得到△A′B'C′;(3)先利用勾股定理计算出OA,然后利用弧长公式计算点A所经过的路径长.【解答】解:(1)如图,A点坐标为(﹣2,3);(2)如图,△A′B′C′为所作;(2)如图,OA==,所以点A所经过的路径长==π.△A2B2C2为所作;点A2的坐标为(﹣1,﹣1).【知识点】作图-旋转变换、轨迹19.【分析】(1)根据B的人数和所占的百分比可以求得本次抽样调查学生人数;(2)根据统计图中的数据和(1)中的结果可以将统计图中所缺的数据补充完整并计算出扇形统计图中A所对应扇形圆心角的度数;(3)根据统计图中的数据可以计算出获得三等奖的人数.【解答】解:(1)本次抽样调查学生的人数为:8÷20%=40,故答案为:40;(2)A所占的百分比为:×100%=5%,D所占的百分比为:×100%=50%,C所占的百分比为:1﹣5%﹣20%﹣50%=25%,获得三等奖的人数为:40×25%=10,补全的统计图如右图所示,扇形统计图中A所对应扇形圆心角的度数是360°×5%=18°;(3)840×25%=210(人),答:获得三等奖的有210人.【知识点】条形统计图、扇形统计图、用样本估计总体、全面调查与抽样调查20.【分析】(1)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得;(2)先计算出数字之积为偶数的概率,判断概率是否相等即可得知游戏是否公平.【解答】解:(1)列表如下:﹣2﹣3231﹣2﹣3232﹣4﹣6463﹣6﹣969由表可知,共有12种等可能结果,其中指针所在区域的数字之积为奇数的有4种结果,所以甲获胜概率为=;(2)∵指针所在区域的数字之积为偶数的概率为=,∴这个游戏规则对甲、乙双方不公平,将转盘A上的数字2改为1,则游戏公平.【知识点】游戏公平性、列表法与树状图法21.【分析】设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意列方程即可得到结论.【解答】解:(1)设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x 米/分钟,根据题意得+2.5=+,解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m.【知识点】分式方程的应用22.【分析】(1)①先利用切线的性质判断出∠ACB=∠OEB,再用平行线结合弧相等判断出∠AOG=∠AGO,即可得出结论;②先判断出△AOG是等边三角形,进而得出∠BOF=∠AOG=60°,进而判断出∠EOB=60°,得出△OFB≌△OEB,得出∠OFB=90°,即可得出结论;(2)先判断出∠ABC=30°,进而得出OB=2BE,建立方程6+r=2r,继而求出AG=6,AB=18,AC=9,CG=3,再判断出△OGE是等边三角形,得出GE=OE=6,进而利用根据勾股定理求出CE=3,即可得出结论.【解答】解:(1)证明:①如图1,连接OE,∵⊙O与BC相切于点E,∴∠OEB=90°,∵∠ACB=90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,∵,∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O的半径为r,∵OB=OD+BD,∴6+r=2r,∴r=6,∴AG=OA=6,AB=2r+BD=18,∴AC=AB=9,∴CG=AC﹣AG=3,由(1)知,∠EOB=60°,∵OG=OE,∴△OGE是等边三角形,∴GE=OE=6,根据勾股定理得,CE===3,∴S阴影=S梯形GCEO﹣S扇形OGE=(6+3)×﹣=.【知识点】圆的综合题23.【分析】设PQ=MN=xm,根据正切的定义分别用x表示出AQ、BN,根据题意列式计算即可.【解答】解:设PQ=MN=xm,在Rt△APQ中,tan A=,则AQ=≈=4x,在Rt△MBN中,tan∠MBN=,则BN=≈=x,∵AQ+QN=AB+BN,∴4x+10=25+x,解得,x≈8.4,答:路灯的高度约为8.4m.【知识点】解直角三角形的应用-仰角俯角问题24.【分析】(1)当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;(2)利用(售价﹣进价)乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;(3)由(2)方程式左边,可得每月获得的利润函数,写成顶点式,再结合函数的自变量取值范围,可求得取最大利润时的x值及最大利润.【解答】解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200 (30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【知识点】一元二次方程的应用、二次函数的应用25.【分析】(1)①根据SAS即可证明三角形全等.②想办法证明BE=CG,BE∥CG即可.(2)如图2中,延长ED到G,使得DG=ED,连接CG,FG.证明△CGF∽△AEF,推出==,∠CFG=∠AFE,推出∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,推出tan∠DEF==,可得∠DEF=30°即可解决问题.(3)如图3中,延长ED到G,使得DG=ED,连接CG,FG.作EH⊥AB于H,连接FD.想办法证明∠AEH=∠DEF,利用勾股定理求出EH,即可解决问题.【解答】(1)证明:①如图1中,∵△EFC与△AFC都是等腰直角三角形,∴F A=FC,FE=FG,∠AFC=∠EFG=90°,∴∠AFE=∠CFG,∴△AFE≌△CFG(SAS).②∵△AFE≌△CFG,∴AE=CG,∠AEF=∠CGF,∵△AEB是等腰直角三角形,∴AE=BE,∠BEA=90°,∴CG=BE,∵△EFG是等腰直角三角形,∴∠FEG=∠FGE=45°,∴∠AEF+∠BEG=45°,∵∠CGE+∠CGF=45°,∴∠BEG=∠CGE,∴BE∥CG,∴四边形BECG是平行四边形.(2)解:如图2中,延长ED到G,使得DG=ED,连接CG,FG.∵点D是BC的中点,∴BD=CD,∵∠EDB=∠GDC,∴EB=GC,∠EBD=∠GCD,在Rt△AEB与Rt△AFC中,∵∠EAB=∠F AC=30°,∴=,=,∴=,∵∠EBD=∠2+60°,∴∠DCG=∠2+60°,∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3=360°﹣120°﹣(∠2+∠3)=360°﹣120°﹣(180°﹣∠1)=60°+∠1,∵∠EAF=30°+∠1+30°=60°+∠1,∴∠GCF=∠EAF,∴△CGF∽△AEF,∴==,∠CFG=∠AFE,∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,∴tan∠DEF==,∴∠DEF=30°,∴FG=EG,∵ED=EG,∴ED=FG,∴=.(3)如图3中,延长ED到G,使得DG=ED,连接CG,FG.作EH⊥AB于H,连接FD.∵BD=DC,∠BDE=∠CDG,DE=DG,∴△CDG≌△BDE(SAS),∴CG=BE=AE,∠DCG=∠DBE=α+∠ABC,∵∠GCF=360°﹣∠DCG﹣∠ACB﹣∠ACF=360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF,∴△EAF≌△GCF(SAS),∴EF=GF,∠AFE=∠CFG,∴∠AFC=∠EFC,∴∠DEF=∠CAF=90°﹣α,∵∠AEH=90°﹣α,∴∠AEH=∠DEF,∵AE=m,AH=AB=n,∴EH===,∵DE=DG,EF=GF,∴DF⊥EG,cos∠DEF=cos∠AEH===.【知识点】相似形综合题26.【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=,点N的横坐标为:+=5,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t≤、<t≤两种情况,分别求解即可.【解答】解:(1)直线y=﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣x2+bx+2,将点C坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2…①;(2)抛物线的对称轴为:x=,点N的横坐标为:+=5,故点N的坐标为(5,3);(3)∵tan∠ACO==tan∠F AC=,即∠ACO=∠F AC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠F AC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=,即点R的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AR的表达式为:y=﹣x+2…②,联立①②并解得:x=,故点F(,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tanα==,则sinα=,cosα=;①当0≤t≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT====t,DS=,S=S△DST=DT×DS=t2;②当<t≤时(右侧图),同理可得:S=S梯形DGS′T′=×DG×(GS′+DT′)=3+(+﹣)=t﹣;综上,S=.【知识点】二次函数综合题。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① ;
② ;
③若 , 是抛物线上的两点,当 = 时, = ;
④点 , 是抛物线与 轴的两个交点,若在 轴下方的抛物线上存在一点 ,使得 ,则 的取值范围为 ;
⑤若方程 = 的两根为 , ,且 ,则 .
其中结论正确的有()
A. 个B. 个C. 个D. 个
二、填空题(本大题共8小题,每小题3分,共24分)
先化简,再求代数式的值: ,其中 .
在下面的网格中,每个小正方形的边长均为 , 的三个顶点都是网格线的交点,已知 , 两点的坐标分别为 , .
请在图中画出平面直角坐标系,并直接写出点 的坐标;
将 绕着坐标原点顺时针旋转 ,画出旋转后的 .
直接写出在上述旋转过程中,点 所经过的路径长.
四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)
(2)当销售单价为多少元时,销售这种童装每月可获利 元?
(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?
七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤)
已知:在 外分别以 , 为边作 与 .
(1)如图 , 与 分别是以 , 为斜边的等腰直角三角形,连接 .以 为直角边构造 ,且 = ,连接 , , .
如图,在 中, = ,点 在 上,以 为直径的 与边 相切于点 ,与边 相交于点 ,且 ,连接 并延长交 于点 ,连接 .
(1)求证:
① = .
② 是 的切线.
(2)若 = ,求图形中阴影部分的面积.
六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)
如图,在某街道路边有相距 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面 处测得路灯 的顶端仰角为 ,向前行走 到达 处,在地面测得路灯 的顶端仰角为 ,已知点 , , , 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到 .参考数据: , , , , , )
D.以点 为圆心、 的长为半径的弧
6.在从小到大排列的五个整数中,中位数是 ,唯一的众数是 ,则这五个数和的最大值是()
A. B. C. D.
7.等腰三角形一边长为 ,它的另外两条边的长度是关于 的一元二次方程 = 的两个实数根,则 的值是()
A. B. C. D. 或
8.如图,二次函数 = 的图象过点 ,对称轴为直线 = .有以下结论:
如图,点 在双曲线 上,过点 作 轴于点 ,点 பைடு நூலகம்线段 上且 = ,双曲线 经过点 ,则 =________.
如图,在平面直角坐标系中,点 , 分别在 轴、 轴上,四边形 是边长为 的正方形,点 为 的中点,点 为 上的一个动点,连接 , ,当点 满足 的值最小时,直线 的解析式为________.
因式分解: =________.
在函数________.
有 张无差别的卡片,上面分别标有 , , , , ,从中随机抽取 张,则抽出的数是无理数的概率是________.
关于 的不等式组 的解集是 ,则 的值为________.
如图,在 中, = , 是 的垂直平分线, 恰好平分 .若 = ,则 的长是________.
某服装超市购进单价为 元的童装若干件,物价部门规定其销售单价不低于每件 元,不高于每件 元.销售一段时间后发现:当销售单价为 元时,平均每月销售量为 件,而当销售单价每降低 元时,平均每月能多售出 件.同时,在销售过程中,每月还要支付其他费用 元.设销售单价为 元,平均月销售量为 件.
(1)求出 与 的函数关系式,并写出自变量 的取值范围.
(3)若该校共有 名学生,请根据抽样调查结果估计获得三等奖的人数.
如图所示,甲、乙两人在玩转盘游戏时,分别把转盘 , 分成 等份和 等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.
(1)利用画树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘 上只修改一个数字使游戏公平(不需要说明理由).
五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)
甲、乙两同学的家与某科技馆的距离均为 .甲、乙两人同时从家出发去科技馆,甲同学先步行 ,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的 倍,公交车的速度是乙骑自行车速度的 倍,结果甲同学比乙同学晚到 .求乙到达科技馆时,甲离科技馆还有多远.
3.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()
A. B. C. D.
4.下面计算正确的是( )
A. B. C. D.
5.如图,点 在 的边 上,用尺规作出了 ,作图痕迹中, 是()
A.以点 为圆心、 的长为半径的弧
B.以点 为圆心、 的长为半径的弧
C.以点 为圆心、 的长为半径的弧
为纪念“五四运动” 周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:
(1)本次抽样调查学生的人数为________.
(2)补全两个统计图,并求出扇形统计图中 所对应扇形圆心角的度数.
如图,在平面直角坐标系中, = ,以 为一边,在第一象限作菱形 ,并使 = ,再以对角线 为一边,在如图所示的一侧作相同形状的菱形 ,再依次作菱形 , ,……,则过点 , , 的圆的圆心坐标为________ ) ,( ) ).
三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤)
2019年辽宁省丹东市中考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 的相反数是()
A. B. C. D.
2.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到 万件.数据 用科学记数法表示为
A. B. C. D.
相关文档
最新文档