典型系统的瞬态响应和稳定性实验报告

合集下载

系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告实验课程:数字信号处理实验名称:系统响应及系统稳定性实验时间:12月1日实验设备:电脑、matlab软件实验目的:在matlab 环境下,掌握求系统相应的方法,掌握时域离散系统的时域特性。

实验内容:原理:在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

但是在实验中全部都假设系统的初始状态为零。

实验内容:(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,以及用filter函数或conv函数求解系统为3输出响应的主程序。

(2)给定一个低通滤波器的差分方程y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n),x2(n)=u(n)分别求出x1(n)=R8(n),x2(n)=u(n)的系统响应,并画出其波形。

实验一系统响应及系统稳定性实验报告

实验一系统响应及系统稳定性实验报告

一、实验目的(1)掌握求系统响应的方法(2)掌握时域离散系统的时域特性(3)分析、观察及检验系统的稳定性二、在时域中,描写系统特性的方法是差分方程和单位脉冲响应。

已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零。

二、实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

程序代码xn=[ones(1,32)];hn=[0.2 0.2 0.2 0.2 0.2];yn=conv(hn,xn);n=0:length(yn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a)y(n)波形');xlabel('n');ylabel('y(n)')输出波形(2)给定一个低通滤波器的差分方程为输入信号)()(81nRnx=①分别求出系统对)()(81nRnx=和)()(2nunx=的响应序列,并画出其波形。

中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。

研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。

2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。

3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。

2.原则1简介。

典型二阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:开环增益2。

典型三阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。

研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。

2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。

3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。

2.原则1简介。

典型二阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:开环增益2。

典型三阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。

系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。

由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。

将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。

2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。

实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。

2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。

3、分析系统特征方程的根,判断系统的稳定性。

4、探讨系统的性能指标,并初步探讨系统的优化方法。

实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。

3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。

根据根的位置,我们可以判断系统的稳定性。

由于系统的根都在左半平面,因此系统是稳定的。

4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。

在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。

结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。

在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。

实验二 典型系统瞬态响应和稳定性

实验二 典型系统瞬态响应和稳定性

实验二典型系统瞬态响应和稳定性三.实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。

如果选用虚拟示波器,只要运行LCAACT程序,选择自动控制菜单下的典型系统瞬态响应和稳定性实验项目,再选择开始实验,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见实验指导书第二章虚拟示波器部分。

1.典型二阶系统瞬态性能指标的测试典型二阶系统模似电路见图1-2-3。

该实验环节在A3单元的输出端又增加接入A6,Q其输入电阻R=10K,反馈电阻R=10K,用来调整输出波形。

实验步骤:注:‘S ST’不能用“短路套”短接!(1)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号(Ui):B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。

阶跃信号输出(B1-2的Y插孔)调整为2V(调整方法:调节电位器,用万用表测量Y插孔)。

(2)安置短路套、联线,构造模拟电路:(a)安置短路套(b)测孔联线(3(C(t))。

注:CH1选‘X1’档。

(4)运行、观察、记录:阶跃信号输出(B1-2的Y测孔)调整为2V,按下B1按钮,用示波器观察在三种情况下A3输出端C(t)的系统阶跃响应,并记录超调量MP,峰值时间tp和调节时间ts。

并将测量值和计算值(实验前必须按公式计算出)进行比较。

参数取值及响应曲线,详见表3-2-1。

★注意:在作欠阻尼阶跃响应实验时,由于虚拟示波器(B3)的频率限制,无法很明显的观察到正确的衰减振荡图形,此时可适当调节参数。

调节方法:减小运算模拟单元A3的输入电阻R=10K的阻值,延长衰减时间(参考参数:R=2K)。

(可将运算模拟单元A3的输入电阻的短路套(S1/S2/S4)去掉,将可变元件库(A7)中的可变电阻跨接到A3单元的H1和IN测孔上,调整可变电阻继续实验。

典型系统的瞬态响应和稳定性实验及其matlab程序

典型系统的瞬态响应和稳定性实验及其matlab程序

实验二 典型系统的瞬态响应和稳定性实验一、 实验目的1. 掌握频率特性的极坐标图(Nyquist 图)和频率特性对数坐标图(Bode 图)绘制方法以及典型环节的极坐标图和对数坐标图;2. 判定系统的稳定性。

二、 实验设备计算机,matlab 软件三、 实验内容一)频域响应分析1、系统的开环传递函数为2)50)(5.0()4(100)(+++=s s s s s G ,绘制系统的伯德图。

clear all;close all;k=100;z=[-4];p=[0 -0.5 -50 -50];[num,den]=zp2tf(z,p,k);bode(num,den)>>2、系统的开环传递函数为)2)(5(50)s (-+=s s G ,绘制系统的Nyquist 曲线。

并绘制对应的闭环系统的脉冲相应曲线。

clear all;close all;k=50;z=[ ];p=[-5,2];[num,den]=zp2tf(z,p,k);figure(1)nyquist(num,den)figure(2)[numc,denc]=cloop(num,den);impulse(numc,denc)3、系统的开环传递函数为)2)(5(50)s (++=s s G ,绘制系统的Bode 图。

并绘制对应的闭环系统的单位阶跃相应曲线。

>> clear all;close all;k=50;z=[ ];p=[-5,-2];[num,den]=zp2tf(z,p,k);figure(1)bode(num,den)figure(2)[numc,denc]=cloop(num,den);impulse(numc,denc)二)系统稳定性判定1、已知系统的特征方程为02510s 3234=++++s s s ,应用劳斯判据确定系统的稳定性。

v =-2.7362-0.87670.1398 + 0.5083i0.1398 - 0.5083i>>不稳定,复平面的右半平面存在共轭根2、已知单位负反馈系统的开环传递函数为)15.0)(1()15.0(s 2++++=s s s s s K G )(,确定系统稳定时K 的取值范围。

自动控制原理实验典型系统地时域响应和稳定性分析报告

自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

自动控制原理实验典型系统地时域响应和稳定性分析报告

自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

典型系统的瞬态响应和稳定性实验报告

典型系统的瞬态响应和稳定性实验报告

实验二 典型系统的瞬态响应和稳定性实验一、 实验目的1. 掌握频率特性的极坐标图(Nyquist 图)和频率特性对数坐标图(Bode 图)绘制方法以及典型环节的极坐标图和对数坐标图;2. 判定系统的稳定性。

二、 实验设备计算机,matlab 软件三、 实验内容一)频域响应分析1、系统的开环传递函数为2)50)(5.0()4(100)(+++=s s s s s G ,绘制系统的伯德图,并判断其闭环系统的稳定性。

程序:clc;clear all;close all;k=100;z=[-4];p=[0 ,-0.5,-50,-50][num,den]=zp2tf(z,p,k)w=logspace(-5,5);bode(num,den,w)grid运行结果:p =0 -0.5000 -50.0000 -50.0000num =0 0 0 100 400den =1.0e+003 *0.0010 0.1005 2.5500 1.2500 0>>因为开环系统稳定,且开环对数幅频特性曲线如图所示,先交于0dB 线,然后其对数相频特性曲线才相交于-180°线,所以其闭环系统稳定。

2、系统的开环传递函数为)2)(5(50)s (-+=s s G ,绘制系统的Nyquist 曲线。

并绘制对应的闭环系统的脉冲响应曲线,判断系统稳定性。

程序:clc;clear all;close all;k=50;z=[];p=[-5,2];[num,den]=zp2tf(z,p,k)figure(1)nyquist(num,den)figure(2)[numc,denc]=cloop(num,den);impulse(numc,denc)运行结果:num =0 0 50den =1 3 -10>>3从奈示图曲线中可看出曲线逆时针包围(-1,j0)点的半圆,且系统开环传递函数有一个右极点,p=1,所以,根据稳定判断可知闭环系统稳定。

实验一系统响应及系统稳定性实验报告

实验一系统响应及系统稳定性实验报告

一、实验目的1掌握求系统响应的方法2掌握时域离散系统的时域特性3分析、观察及检验系统的稳定性二、实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应;已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解;在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数;也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应;系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应;或者系统的单位脉冲响应满足绝对可和的条件;系统的稳定性由其差分方程的系数决定;实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件;可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数包括零,就可以断定系统是稳定的;系统的稳态输出是指当n→∞时,系统的输出;如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出;注意在以下实验中均假设系统的初始状态为零;二、实验内容及步骤1编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序;程序中要有绘制信号波形的功能;程序代码xn=ones1,32;hn=0.2 0.2 0.2 0.2 0.2;yn=convhn,xn;n=0:lengthyn-1;subplot2,2,1;stemn,yn,'.'title'ayn波形';xlabel'n';ylabel'yn'输出波形2给定一个低通滤波器的差分方程为输入信号)()(81nRnx=①分别求出系统对)()(81nRnx=和)()(2nunx=的响应序列,并画出其波形;②求出系统的单位冲响应,画出其波形;%内容1:调用filter解差分方程,由系统对un的响应判断稳定性%========================A=1,-0.9;B=0.05,0.05; %系统差分方程系数向量B和Ax1n=1 1 1 1 1 1 1 1 zeros1,50; %产生信号x1n=R8nx2n=ones1,128; %产生信号x2n=unhn=impzB,A,58; %求系统单位脉冲响应hnsubplot2,2,1;y='hn';tstemhn,y; %调用函数tstem绘图title'a 系统单位脉冲响应hn';box ony1n=filterB,A,x1n; %求系统对x1n的响应y1nsubplot2,2,2;y='y1n';tstemy1n,y;title'b 系统对R8n的响应y1n';box ony2n=filterB,A,x2n; %求系统对x2n的响应y2nsubplot2,2,4;y='y2n';tstemy2n,y;title'c 系统对un的响应y2n';box on3给定系统的单位脉冲响应为用线性卷积法分别求系统h1n和h2n对)()(81nRnx 的输出响应,并画出波形;%内容3:调用conv函数计算卷积%========================x1n=1 1 1 1 1 1 1 1 ; %产生信号x1n=R8nh1n=ones1,10 zeros1,10;h2n=1 2.5 2.5 1 zeros1,10;y21n=convh1n,x1n;y22n=convh2n,x1n;figure2subplot2,2,1;y='h1n';tstemh1n,y; %调用函数tstem绘图title'd 系统单位脉冲响应h1n';box onsubplot2,2,2;y='y21n';tstemy21n,y;title'e h1n与R8n的卷积y21n';box onsubplot2,2,3;y='h2n';tstemh2n,y; %调用函数tstem绘图title'f 系统单位脉冲响应h2n';box onsubplot2,2,4;y='y22n';tstemy22n,y;title'g h2n与R8n的卷积y22n';box on4给定一谐振器的差分方程为yn=1.8237yn-1-0.9801yn-2+b0xn-b0xn-2令b0 =1/100. 49,谐振器的谐振频率为0.4 rad;①实验方法检查系统是否稳定;输入信号为un时,画出系统输出波形y31n; ②给定输入信号为xn=sin0.014n+sin0.4n,求出系统的输出响应y32n,并画出其波形;%内容4:谐振器分析%========================un=ones1,256; %产生信号unn=0:255;xsin=sin0.014n+sin0.4n; %产生正弦信号A=1,-1.8237,0.9801;B=1/100.49,0,-1/100.49; %系统差分方程系数向量B和A y31n=filterB,A,un; %谐振器对un的响应y31ny32n=filterB,A,xsin; %谐振器对un的响应y31nfigure3subplot2,1,1;y='y31n';tstemy31n,y;title'h 谐振器对un的响应y31n';box onsubplot2,1,2;y='y32n';tstemy32n,y;title'i 谐振器对正弦信号的响应y32n';box on四、实验结果分析由各实验结果的截图可看出,每个图都直观地反映了我们想要求得的单位脉冲响应、给定信号作用后的输出响应,都符合预期结果;五、思考题1如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应如何求答:可以;把输入信号进行分段,分别进行卷积,最后将各段卷积结果相加即可;2如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化用前面第一个实验结果进行分析说明;答:时域信号的剧烈变化将被平滑,由实验内容1的内容可见,经过系统的低通滤波使输入信号和输出的阶跃变化变得缓慢上升与下降;六、实验心得及体会通过本次实验我重新温习了MATLAB这个软件的基本使用方法,运行环境;通过这款软件使我们的学习更加方便;实验中,我学会了filter和conv函数的基本用法,前者可计算知道输入信号的前提下求解输出响应的序列,后者则可通过输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应;。

稳定性实验实验报告

稳定性实验实验报告

一、实验目的1. 了解稳定性实验的基本原理和方法;2. 掌握实验仪器和设备的使用方法;3. 通过实验验证系统稳定性的基本理论;4. 分析系统稳定性的影响因素,提高系统稳定性。

二、实验原理稳定性是指系统在受到扰动后,能够恢复到原来平衡状态的能力。

在工程实践中,系统稳定性对于系统的可靠性和安全性至关重要。

本实验通过模拟电路来研究系统稳定性,主要涉及以下原理:1. 稳定条件:系统的特征方程的判别式小于0时,系统稳定;2. 稳定域:系统稳定时,输入信号的幅度和频率在稳定域内;3. 稳定裕度:系统稳定时,增益裕度和相位裕度越大,系统稳定性越好。

三、实验仪器与设备1. 实验箱:用于搭建模拟电路;2. 信号发生器:用于产生不同频率和幅度的信号;3. 示波器:用于观察和分析信号的波形;4. 计算器:用于计算和记录实验数据。

四、实验步骤1. 搭建实验电路:根据实验要求,搭建模拟电路,包括电阻、电容、运算放大器等元件;2. 设置实验参数:调整信号发生器的频率和幅度,设置示波器的参数,如时间基准、电压基准等;3. 测试系统稳定性:向系统输入不同频率和幅度的信号,观察系统的输出波形,分析系统的稳定性;4. 记录实验数据:记录实验过程中观察到的现象和数据,包括波形、幅度、频率等;5. 分析实验结果:根据实验数据和理论分析,判断系统的稳定性,并分析系统稳定性的影响因素。

五、实验结果与分析1. 实验结果通过实验,观察到了以下现象:(1)当输入信号频率较低时,系统输出波形稳定;(2)当输入信号频率较高时,系统输出波形出现振荡,稳定性下降;(3)当输入信号幅度较大时,系统输出波形失真,稳定性下降。

2. 实验分析(1)根据稳定条件,当系统特征方程的判别式小于0时,系统稳定。

在本实验中,通过调整电路参数,实现了系统稳定;(2)根据稳定域理论,系统稳定时,输入信号的幅度和频率在稳定域内。

在本实验中,通过调整信号发生器的参数,验证了稳定域的存在;(3)根据稳定裕度理论,系统稳定时,增益裕度和相位裕度越大,系统稳定性越好。

最新中南大学典型系统的时域响应和稳定性分析实验报告资料

最新中南大学典型系统的时域响应和稳定性分析实验报告资料
实验报告
实验名称典型系统的时域响应和稳定性分析

信息院
专业

姓名
学号
授课老师
预定时间
实验时间
实验台号
一、目的要求
1.研究二阶系统的特征参量(ξ、ωn)对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、原理简述
(3)R=100K时波形图
创新是时下非常流行的一个词,确实创新能力是相当重要的特别是对我们这种经营时尚饰品的小店,更应该勇于创新。在这方面我们是很欠缺的,故我们在小店经营的时候会遇到些困难,不过我们会克服困难,努力创新,把我们的小店经营好。
中式饰品风格的饰品绝对不拒绝采用金贵族气息的景泰蓝珠、粗糙前卫的金属字母珠片的材质也多种多样。
七、分析讨论
世界上的每一个国家和民族都有自己的饰品文化,将这些饰品汇集到一起再进行新的组合,便可以无穷繁衍下去,满足每一个人不同的个性需求。
我们熟练的掌握计算机应用,我们可以在网上搜索一些流行因素,还可以把自己小店里的商品拿到网上去卖,为我们小店提供了多种经营方式。1、典型二阶系统瞬态性能指标实验测试值
我们从小学、中学到大学,学的知识总是限制在一定范围内,缺乏在商业统计、会计,理财税收等方面的知识;也无法把自己的创意准确而清晰地表达出来,缺少个性化的信息传递。对目标市场和竞争对手情况缺乏了解,分析时采用的数据经不起推敲,没有说服力等。这些都反映出我们大学生创业知识的缺乏;
(1)价格低
关于DIY手工艺制品的消费调查
2.典型的三阶系统稳定性分析
五、内容步骤
1.典型的二阶系统稳定性分析
实验内容:

二,三阶系统瞬态响应和稳定性

二,三阶系统瞬态响应和稳定性

《自动控制原理》实验报告(4)2011- 2012 学年第 1 学期专业:班级:学号:姓名:2011 年11 月15 日一.实验题目:二、三阶系统瞬态响应和稳定性二.实验目的:1.了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

2.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ξ对过渡过程的影响。

3.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp、t p、t s的计算。

4.观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp、t p值,并与理论计算值作比对。

5.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。

6.了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。

7.观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。

8.了解和掌握利用MA TLAB的开环根轨迹求解系统的性能指标的方法。

9.掌握利用主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,估算系统的时域特性指标。

三.实验内容及步骤二阶系统瞬态响应和稳定性1.Ⅰ型二阶闭环系统模拟电路见图3-1-7,观察阻尼比ξ对该系统的过渡过程的影响。

改变A3单元中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数。

2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K,填入实验报告。

3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp,峰值时间tp,填入实验报告,並画出阶跃响应曲线。

图3-1-7 Ⅰ型二阶闭环系统模拟电路积分环节(A2单元)的积分时间常数Ti=R1*C1=1S惯性环节(A3单元)的惯性时间常数T=R2*C2=0.1S阻尼比和开环增益K的关系式为:临界阻尼响应:ξ=1,K=2.5,R=40kΩ欠阻尼响应:0<ξ<1 ,设R=4kΩ,K=25 ξ=0.316过阻尼响应:ξ>1,设R=70kΩ,K=1.43ξ=1.32>1实验步骤: 注:‘S ST ’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。

自控原理 三阶系统的稳定性和瞬态响应

自控原理 三阶系统的稳定性和瞬态响应

自控理论实验三姓名:***班级:06111002学号:**********三阶系统的稳定性和瞬态响应一.实验目的1.了解和掌握各典型三阶系统模拟电路的构成方法及I 型三阶系统的传递函数表达式。

2.了解和掌握求解高阶闭环系统临界稳定增益K 的多种方法(劳斯稳定判据法、代数求解法、MATLAB 根轨迹求解法)3.观察和分析各I 型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。

4.了解和掌握利用MATLAB 的开环根轨迹求解系统的性能指标的方法。

二.实验原理及说明典型I 型三阶单位反馈闭环系统如图1所示。

图1 典型I 型三阶单位反馈闭环系统 I 型三阶系统的开环传递函数为:32()(0.11)(0.51)0.050.6K Ks S S S K S S S K φ==++++++ (式3-1)闭环传递函数(单位反馈)为:1121()()1()(1)(1)i K K G s s G s T S T S T S K K φ==++++ (式3-2)I 型三阶闭环系统模拟电路如图2所示。

它由一个积分环节和两个惯性环节构成。

其积分时间常数为111i T R C s=⨯=,惯性时间常数分别为321320.1,/1i T R C s K R R =⨯===和24340.5,/500/T R C s K R R K R=⨯===。

图2 I 型三阶闭环系统模拟电路模拟电路的各环节参数代入式3-1,该电路的开环传递函数:32()(0.11)(0.51)0.050.6K KG s S S S S S S ==++++(式3)模拟电路的开环传递函数代入式3-2,该电路的闭环传递函数为:3216.7()=0.050.616.7s S S S φ+++(式4)求解高阶闭环系统的临界稳定增益K线性系统稳定的充分必要条件为:系统的全部闭环特征根都具有负实部;或者说,系统的全部闭环极点均位于左半S 平面 1)劳斯(Routh )稳定判据法 闭环系统的特征方程为:321()00.050.60G s S S S K +=⇒+++= (5)特征方程标准式为3201230a S a S a S a +++= (式6)把式6各项系数代入式5中,通过建立劳斯(Routh )行列阵为保证系统稳定,劳斯表中的第一列的系数的符号都应相同,因此由劳斯(Routh )稳定判据判断,得系统的临界稳定增益12K =。

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告

实验报告实验名称典型系统的时域响应和稳定性分析系信息院专业班姓名学号授课老师预定时间实验时间实验台号一、目的要求1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

二、原理简述1.典型的二阶系统稳定性分析(1) 结构框图:如图所示。

(2) 理论分析系统开环传递函数为:开环增益2.典型的三阶系统稳定性分析(1) 结构框图:如图所示。

(2) 理论分析系统开环传递函数为:系统的特征方程为:三、仪器设备PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

四、线路示图1.典型的二阶系统稳定性分析2.典型的三阶系统稳定性分析五、内容步骤1.典型的二阶系统稳定性分析实验内容:先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

系统闭环传递函数为:其中自然振荡角频率:阻尼比:2.典型的三阶系统稳定性分析实验内容实验前由Routh 判断得Routh 行列式为:为了保证系统稳定,第一列各值应为正数,所以有实验步骤:1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。

2. 典型二阶系统瞬态性能指标的测试(1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K。

(2) 用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。

(3) 分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、tp 和tS,及系统的稳定性。

并将测量值和计算值进行比较(实验前必须按公式计算出)。

自动控制原理实验二__典型系统的瞬态响应

自动控制原理实验二__典型系统的瞬态响应

实验二 典型系统的瞬态响应3.实验方法与步骤(1)进入Window 后,通过双击桌面上的MATLAB 图标即可启动该程序,这时将出现如下图所示的界面。

在该界面下的“>>”标志为MATLAB 的命令提示符,用户可以在该提示符后输入MATLAB 命令,进入MATLAB 后,键入“zksy ”(注意:用小写字母),按照实验三的方法找到本实验内容,即:点击实验四 典型系统的瞬态响应和稳定性分析和下一级相应的子菜单,就会出现本次实验的内容窗口。

(2)下面以二阶系统的瞬态响应为例说明如何进行下面的实验。

点击二阶系统的瞬态响应菜单将会出现如下的窗口:这就是我们典型系统的瞬态响应(二阶系统)的模型窗口,即排题图。

其中输入信号为阶跃响应输入模块(可以改变大小),示波器观察输出结果(可以改变设置),中间为仿真对象的模型(也可以改变)。

(3)进行典型二阶系统瞬态性能指标的测试,首先设置仿真对象的模型,根据前面的实验原理,设置相应的K 和T ,确定阻尼系数ζ和振荡频率n ω,分别作出系统欠阻尼、临界阻尼、过阻尼的情况。

(4)建立起来系统结构之后,当所有参数设置完成(输入信号大小、示波器的量程、模型参数等)以后,打开Simnulation (仿真分析)菜单,可得到如下图所示菜单结构。

在进行仿真过程之前,选择Simulation|Parameters 选项来设置仿真控制的参数(一定要合理设置否则影响结果),参见附录设置好有关仿真控制参数,则可以选择Simulation|Start选项启动仿真过程,记录仿真结果。

(5)同样按照上述步骤完成三阶系统的性能测试,要求自己设置好K1、K2、T1、T2各参数,确定不同的系统增益K,观察系统的响应曲线,确定系统的稳定性。

4.实验结果记录要求(1)二阶系统图一ξ=14.142>1 过阻尼K=0.05,T=0.025图二ξ=20>1 过阻尼K=0.025,T=0.025图三ξ=1 临界阻尼K=1,T=0.25图四0<ξ=0.707<1 欠阻尼K=2 ,T=0.25图五0<ξ=0.577<1 欠阻尼K=3 ,T=0.25图六0<ξ=0.500<1 欠阻尼K=4 ,T=0.25图七0<ξ= 0.447 <1 欠阻尼K=5 ,T=0.25三阶系统图一:T1=0.1,T2=0.51,K1=2,K2=1,K=2图二:T1=0.1,T2=0.51,K1=3,K2=3,K=2图三:T1=0.1,T2=0.51,K1=4,K2=2.99,K=11.96图四:T1=0.1,T2=0.51,K1=3,K2=4.5,K=13.5图五:T1=0.1,T2=0.51,K1=3.5,K2=5,K=17.58.思考题(1)在前面二阶系统的原理图中,改变增益K会发生不稳定的现象吗?答:不一定,阻尼比是由增益K 和T 有关,两者同时改变时,阻尼比变化不定,系统的稳定性不确定。

控制基础系统的瞬态响应及其稳定性分析

控制基础系统的瞬态响应及其稳定性分析

实验二 控制系统旳瞬态响应及其稳定性分析
一.实验目旳
1.理解掌握典型二阶系统旳过阻尼、临界阻尼、欠阻尼状态;
2.理解掌握典型三阶系统旳稳定状态、临界稳定、不稳定状态;
3.研究系统参数变化对系统动态性能和稳定性旳影响。

二.实验内容
1.搭建典型二阶系统,观测各个参数下旳阶跃响应曲线,并记录阶跃响应曲线旳超调量σ% 、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性旳影响;
2.搭建典型三阶系统,观测各个参数下旳阶跃响应曲线,并记录阶跃响应曲线旳超调量σ% 、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性旳影响。

三.实验环节
1. 典型二阶系统旳响应曲线
图1-2-1是典型二阶系统原理方块图,其中T 0=1S ,T 1=0.2S 。

图1-2-1 典型二阶系统原理方块图
开环传函:)
12.0()1()(11+=+=S S K S T S K S G 其中K=K 1/T 0=K 1=开环增益 闭环传函:2n
n 22n S 2S )S (W ωζωω++=其中011n T T /K =ω 110T K /T 2
1=ζ 表1-2-1列出有关二阶系统在三种状况(欠阻尼,临界阻尼,过阻尼)下具体参数旳体现上C(S)
式,以便计算理论值。

至于推导过程请参照有关原理书。

表1-2-1
典型二阶系统模拟电路如图1-2-2所示。

自动控制原理实验-典型系统的瞬态响应和稳定性分析

自动控制原理实验-典型系统的瞬态响应和稳定性分析

6、 误差分析 (1)对二阶系统分析可知,当0<ξ<1时,峰值时间tp和上升时间理
论计算值与实际测量值接近,误差较小;调节时间ts的理论计算值与实 际测量值有一定的误差,这是因为理论上当曲线在终值的2%以内就可 以,但实验中较难取到系统曲线刚好到达2%处的点,所以是以刚好达 到终值时的时间作为调节时间,此结果比计算值大些。
(2)典型三阶系统
R(s) E(s)
C(s)
开环传递函数为:G(S)H(S)== 其中:K=K1K2(开环增益),用劳斯判据可得出系统的稳定、临界稳 定、不稳定时的开环增益的范围。 五、实验结果及数据分析 (1)二阶系统
① ξ>1的情况
图一
已知条件:ξ=2 ωn=4 K=1 T=1/16 由图可知: c(tp)=1.003 c(∞)=1.003 tp=5s tr=2.2174s ts:测量值为5s 计算值为4.732s
④ ξ=0的情况
图八 已知条件:ξ=0 ω=0 K=0 T=1 由图可知是一条与横轴重合的直线
(2)三阶系统 令开环传递函数中的T1=1,T2=2,来分析该系统的稳定性 开环传递函数为G(s)H(s)== 特征方程为:s(s+1)(2s+1)+k=0
2s^3+3s^2+s+k=021 3k0源自k有劳斯判据可知:
微分环节:增加系统的阻尼比ξ,使超调量下降,调节时间也下 降,不影响系统的稳态误差和自然振荡频率。
比例环节:是开环增益增大从而减小稳态误差。 测速反馈环节:降低了开环增益,加大了斜坡信号输入时的稳态 误差,不影响自然振荡频率,提高了阻尼比ξ。 3、 根据实验结果,分析二阶系统ts、δ%与ξ、ωn之间的关系。 答:有已知公式可知其关系为: 超调量。 调节时间 4、考虑当二阶振荡环节的阻尼系数ξ<0和ξ<-1时,系统会出现什 么样的情况? 答:当ξ<0和ξ<-1时系统特征方程根实部为正数,特征根在s平 面的右半平面,系统为不稳定的系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 典型系统的瞬态响应和稳定性实验
一、 实验目的
1. 掌握频率特性的极坐标图(Nyquist 图)和频率特性对数坐标图(Bode 图)
绘制方法以及典型环节的极坐标图和对数坐标图;
2. 判定系统的稳定性。

二、 实验设备
计算机,matlab 软件 三、 实验内容
一)频域响应分析
1、系统的开环传递函数为2
)50)(5.0()
4(100)(+++=
s s s s s G ,绘制系统的伯德图,并判断
其闭环系统的稳定性。

程序: clc;
clear all; close all; k=100; z=[-4];
p=[0 ,-0.5,-50,-50] [num,den]=zp2tf(z,p,k) w=logspace(-5,5); bode(num,den,w) grid
运行结果: p =
0 -0.5000 -50.0000 -50.0000
num =
0 0 0 100 400
den =
1.0e+003 *
0.0010 0.1005 2.5500 1.2500 0 >>
因为开环系统稳定,且开环对数幅频特性曲线如图所示,先交于0dB 线,然后其对数相频特性曲线才相交于-180°线,所以其闭环系统稳定。

2、系统的开环传递函数为)
2)(5(50
)s (-+=
s s G ,绘制系统的Nyquist 曲线。

并绘
制对应的闭环系统的脉冲响应曲线,判断系统稳定性。

程序:
clc;
clear all; close all; k=50; z=[];
p=[-5,2];
[num,den]=zp2tf(z,p,k) figure(1)
nyquist(num,den)
figure(2)
[numc,denc]=cloop(num,den); impulse(numc,denc)
运行结果:
num =
0 0 50
den =
1 3 -10
>>
从奈示图曲线中可看出曲线逆时针包围(-1,j0)点的半圆,且系统开环传递函数有一个右极点,p=1,所以,根据稳定判断可知闭环系统稳定。

3、系统的开环传递函数为)
2)(5(50
)s (++=
s s G ,绘制系统的Bode 图。

并绘制对应
的闭环系统的单位阶跃相应曲线。

判断系统稳定性。

程序: clc;
clear all; close all; k=50; z=[];
p=[-5,-2];
[num,den]=zp2tf(z,p,k) figure(1)
bode(num,den) figure(2)
[numc,denc]=cloop(num,den); step(numc,denc) grid
运行结果:
num =
0 0 50 den =
1 7 10 >>
因为开环系统稳定,且开环对数幅频特性曲线如图所示,先交于0dB 线,然后其对数相频特性曲线才相交于-180°线,所以其闭环系统稳定。

二)系统稳定性判定
1、已知系统的特征方程为02510s 3234=++++s s s ,求特征根判断系统稳定性,并应用劳斯判据确定系统的稳定性,进行对比。

程序: clc;
clear all; close all;
a=[3,10,5,1,2] roots(2)
运行结果: a=
3 10 5 1 2 ans=
-2.7362 -0.8767
0.1398+0.5083i 0.1398-0.5083i
因为其特征根具有正实部,所以系统发散,不稳定。

2、已知单位负反馈系统的开环传递函数为)
15.0)(1()
15.0(s 2
++++=
s s s s s K G )(,确定系统稳定时K 的取值范围。

解:另附纸上。

四、 实验心得
第二次实验课,使用MATLAB 这个软件,相比第一次熟练多了。

机械工程控制基础是一门理论结合实际的相当抽象的边缘学科。

为了避免抽象化,我们学习MATLAB 软件,把抽象的概念柔进具体的实例中。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,方便我们更容易了解以及掌握课堂所学知识。

相关文档
最新文档