常州大学2013年《670量子力学》考研专业课真题试卷

合集下载

中科院量子力学考研真题及答案详解(19902010共40套真题)

中科院量子力学考研真题及答案详解(19902010共40套真题)

1990年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型),00分。

、在,氢原子波函数为说明:共五道大题无选择题,计分在题尾标出,满分10t =100210211211一(,0)2r ψψψ=+⎣⎦ 其中右方函数下标表示量子数。

忽略自旋和辐射跃迁。

投影-⎡⎤(1) 此系统的平均能量是多少?nlm 0z L =(2) 这系统在任意时刻处于角动量的几率是多少? 、利用坐标与动量算符之间的对易投影关系,证明二()2∞00n nE E n x -=∑常数这里是哈密顿量n E 2ˆˆ()2p H V m=+x 的本征能量,相应的本征态为n 。

求出该常数。

、设一质量为μ的粒子在球对称势()(0)V r kr k =>三中运动。

利用测不准关系估算其(束缚态)类似于氢原子,只是用一个正电子代替质子作为核,在非基态的能量。

四、电子偶素e e +-种接触型自旋交换作用相对论极限下,其能量和波函数与氢原子类似。

今设在电子偶素的基态里,存在一8e p ˆˆˆ3H M M π和ˆpM '=-⋅其中ˆe M 是电子和正电子的自旋磁矩ˆˆ(,q )MS q ==e mc±量差,决定哪一个能量更低。

对普通的氢原子,基态波函数: 。

利用一级微扰论,计算此基态中自旋单态与三重态之间的能221137e c 1002,,r a a me ψ-==一质量为= μ的粒子被势场00()(0)r aV r V e V a -=>>所散射,用一级玻恩近似计算微分散射截面。

五、1990年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)分。

光电效应实验指出:当光照射到金属上,说明:共五道大题,无选择题,计分在题尾标出,满分100一、(1) a) 只有当光频率大于一定值0ν时,才有光电子发射出;b) 光电子的能量只与光的频率有关,而与光的强度无关;c) 只要光的频率大于0ν,光子立即产生。

试述:a) 经典理论为何不能解释上述现象,或者说这些实验现象与经典理论矛盾何斯坦假说正确解释上述实验结果。

量子力学习题

量子力学习题

河 北 大 学 课 程 考 核 试 卷— 学年第 学期 级 专业(类)考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 A(注:考生务必将答案写在答题纸上,写在本试卷上的无效)一、概念题:(共20分,每小题4分)1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

二(20分)设一粒子在一维势场c bx ax x U ++=2)(中运动(0>a )。

求其定态能级和波函数。

三(20分)设某时刻,粒子处在状态)cos (sin )(212kx kx B x +=ψ,求此时粒子的平均动量和平均动能。

四(20分)某体系存在一个三度简并能级,即E E E E ===)0(3)0(2)0(1。

在不含时微扰H 'ˆ作用下,总哈密顿算符Hˆ在)0(ˆH 表象下为⎪⎪⎪⎭⎫⎝⎛=**21100E E E H βαβα。

求受微扰后的能量至一级。

五(20分)对电子,求在x S ˆ表象下的xS ˆ、y S ˆ、z S ˆ的矩阵表示。

A —1—1河 北 大 学 课 程 考 核 试 卷— 学年第 学期 级 专业(类)考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 B(注:考生务必将答案写在答题纸上,写在本试卷上的无效)一、概念题:(共20分,每小题4分)1、何为束缚态?2、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

3、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示?4、简述定态微扰理论。

量子力学试卷三份合集

量子力学试卷三份合集

A. ih(Jˆ1x + Jˆ1y ) . B. ihJˆ1z . C. Jˆ1z . D. 0.
共 11 页,第 2 页
河北师范大学考试命题专用纸
试卷代号
学院
专业
年级
姓名
学号
| | | | | | | | | 密 | | | | | | | | | 封 | | | | | | | | | 线线 | | | |
()
0
0
0
0
A.1.3 A . B. 0.9 A . C. 0.5 A . D. 1.8 A .
2.设粒子的波函数为 ψ (x, y, z) ,在 x − x + dx 范围内找到粒子的几率为
()
A. ψ (x, y, z) 2 dxdydz .
B. ψ (x, y, z) 2 dx .
∫∫ ∫ ∫ ∫ 2
∑ C.
h
∂ ∂t
Ψ(rr1 , rr2 , t)
=

2 i =1
h2 2μ i
∇ i 2 Ψ(rr1 , rr2 , t)
+U (rr1, rr2 ,t)Ψ(rr1, rr2 ,t)
∑ D.
ih
∂ ∂t
Ψ(rr1 , rr2 , t) = − 2
i =1
h2 2μ i
∇ i 2 Ψ(rr1 , rr2 , t)
2 i =1
h2 2μ
∇i 2Ψ(rr1, rr2 , t)
+U (rr1 , rr2 , t)Ψ(rr1 , rr2 , t)
∑ B. h
∂ ∂t
Ψ(rr1 , rr2 , t)
=
2 i =1
h2 2μ
∇ i 2 Ψ(rr1 , rr2 , t)

(NEW)常州大学851工程流体力学历年考研真题汇编

(NEW)常州大学851工程流体力学历年考研真题汇编
10 流体在圆管内层流流动,速度分布、切应力分布有何特点? (画图并说明)
二、证明题(共1题,15分) 如图2所示,蓄水池侧壁装有直径为D的圆形闸门,闸门与水面夹 角为θ,闸门形心C处水深hC,闸门可绕通过形心C的水平轴旋转,证明 作用于闸门水压力对转轴的力矩与形心处水深hC无关。
图2
三、证明题(共1题,每题15分,共计15分) 平面不可压缩流体速度分布为νx=4x+1,νy=-4y。求: (1)该流动满足连续性方程否? (2)势函数φ、流函数ψ存在否?若不存在,说明原因。若存在, 求势函数φ、流函数ψ。
图1
6 绘制出如图2所示柱面AB上的压力体(保留作图痕迹)。
图2
7 量纲分析有何作用? 8 在串联管道中,各管段的流量和能量损失有何特点? 9 一根确定的管子是否永远保持为水力光滑管或水力粗糙管?为 什么? 10 如图3(a)所示为薄壁小孔口的稳定自由出流,其流量为Q1, 其他条件均不变,在孔口处接一段L=(3~4)D的管嘴,如图3(b) 所示,其流量为Q2,试比较Q1、Q2的大小,并说明理由。

算切应力”的说法是否正确?为什么?
2 为什么水坝都设计程上窄下宽的形式?试用流体静力学基本方 程式解释。
3 研究流体运动经常用拉格朗日法还是欧拉法?为什么?
4 根据尼古拉兹试验的结论判断“如果沿程阻力系数λ与雷诺数有 关,则流动处于紊流粗糙区”的命题是否正确?为什么?
5 流体在渐扩管道中,从截面1流向截面2,如图1所示,若已知在 截面1处流体作层流流动。试问流体在截面2处是否仍保持层流流动?为 什么?
目 录
2012年常州大学851工程流体力学考研真题 2013年常州大学851工程流体力学考研真题 2014年常州大学851工程流体力学考研真题 2015年常州大学851工程流体力学考研真题 2017年常州大学851工程流体力学考研真题 2018年常州大学851工程流体力学考研真题

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C。

经典电磁场理论不适用于黑体辐射公式;D。

黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B。

Ψ归一化后,代表微观粒子出现的几率密度;C。

Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:DA。

偏振光子的一部分通过偏振片;B。

偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A。

一定也是该方程的一个解;B. 一定不是该方程的解;C. Ψ与一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。

粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。

6.如果以表示角动量算符,则对易运算为:BA。

ihB。

ihC.iD。

h7.如果算符、对易,且=A,则:BA。

一定不是的本征态;B. 一定是的本征态;C。

一定是的本征态;D。

∣Ψ∣一定是的本征态。

8.如果一个力学量与对易,则意味着:CA。

一定处于其本征态;B.一定不处于本征态;C。

一定守恒;D。

其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:BA。

能量守恒;B。

动量守恒;C。

角动量守恒;D。

宇称守恒。

10.如果已知氢原子的n=2能级的能量值为-3。

4ev,则n=5能级能量为:DA. -1。

51ev;B。

—0。

85ev;C。

-0。

378ev;D。

—0。

544ev11.三维各向同性谐振子,其波函数可以写为,且l=N—2n,则在一确定的能量(N+)h下,简并度为:BA. ;B。

;C。

N(N+1);D。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA。

Ψ代表微观粒子的几率密度;B. Ψ归一化后,代表微观粒子出现的几率密度;C. Ψ一定是实数;D。

Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B。

偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A. 一定也是该方程的一个解;B。

一定不是该方程的解;C。

Ψ与一定等价;D。

无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。

粒子在势垒中有确定的轨迹;B。

粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。

6.如果以表示角动量算符,则对易运算为:BA。

ihB。

ihC。

iD.h7.如果算符、对易,且=A,则:BA. 一定不是的本征态;B. 一定是的本征态;C。

一定是的本征态;D。

∣Ψ∣一定是的本征态。

8.如果一个力学量与对易,则意味着:CA。

一定处于其本征态;B.一定不处于本征态;C。

一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:BA。

能量守恒;B。

动量守恒;C。

角动量守恒;D.宇称守恒。

10.如果已知氢原子的n=2能级的能量值为—3。

4ev,则n=5能级能量为:DA。

-1。

51ev;B.—0。

85ev;C。

-0。

378ev;D. -0.544ev11.三维各向同性谐振子,其波函数可以写为,且l=N—2n,则在一确定的能量(N+)h下,简并度为:B A。

;B. ;C。

N(N+1);D.(N+1)(n+2)12.判断自旋波函数是什么性质:CA。

(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)

(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)

(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
5.(30分)假设自由空间中有两个质量为m、自旋为 /2的粒子,它们 按如下自旋相关势
相互作用,其中r为两粒子之间的距离,g>0为常量,而 (i=l,2)为 分别作用于第1个粒子自旋的Pauli矩阵。
。算符 , 与升降算符之间的关系为:
其中
。对于体系基态,相关的平均值为:
所以,

最终得到:
。 4.(20分〉设有2维空间中的如下矩阵
(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
解:(a)矩阵A的转置共轭为:
因此,矩阵A为厄米矩阵。 (b)Pauli矩阵分别为:

,则 , 与哈密顿量对易。对于 ,此结果是显然的。对
于,
体系的角动量 显然也与哈密顿量及自旋对易。因此力学量组 即为体系的一组可对易力学量完全集。
(b)为考虑体系的束缚态,需要在质心系中考查,哈密顿量可改写 为:
其中 为质心动量。由于质心的运动相当于一自由粒子,体系的波函数 首先可分离为空间部分和自旋部分,空间部分可以进一步分解为质心部 分和与体系内部结构相关的部分。略去质心部分,将波函数写成力学量 完全集的本征函数:
目 录
2014年中国科学技术大学828量子力学 考研真题
2013年中国科学技术大学828量子力学 考研真题
2012年中国科学技术大学828量子力学 考研真题
2011年中国科学技术大学809量子力学 考研真题

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA. *ψ一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:CA. 粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。

6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧z l B. ih∧zl∧x l ∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态; B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。

8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒;D.宇称守恒。

10.如果已知氢原子的 n=2能级的能量值为,则 n=5能级能量为:D A. ;11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;(N+1); D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D.z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。

2013硕士招生量子力学试题

2013硕士招生量子力学试题
北 京 科 技 大 学 2013 年硕士学位研究生入学考试试题
=============================================================================================================
试题编号: 876 适用专业: 物理学
1 B. H a † a 2
C. H
p2 1 2m x
D. H
p2 kx 2m
(17)以下哪些哈密顿量存在能级简并?(___________)
E A. 0 0 0 E1 E B. 0 0 0 E0 E C. 0 E0
试题名称:
量子力学
(共
5
页)
说明: 所有答案必须写在答题纸上,做在试题或草稿纸上无效。
=============================================================================================================
5
2
(15)以下哪些算符是厄米算符?(_________) A.产生、湮灭算符 a † 和 a C.
a a† 2m
B.数算符 a † a D. i
m † a a 2
(16)以下哪些可表示线性谐振子的哈密顿量?(__________) A. H
p 2 m 2 x 2 2m 2




二)填空题(每空 2 分,共 40 分) : (1)自旋的泡利矩阵表示,在 z 表象下,请写出,单位算符 I __________,
x __________ , y _________ , z __________ , __________ ,

2013年中科院811量子力学考研真题解析讲义

2013年中科院811量子力学考研真题解析讲义


eax2 dx
,a 0) a
(1)求 t 0 时刻动量表象波函数~(k, t) 及粒子动量几率分布 (k, t) .
(2)求 t 0 时刻波函数 (x, t) ,以及坐标位置几率分布 P(x, t) .
(3)简述粒子动量几率分布 (k, t) 及位置几率分布 P(x, t) 随时间演化的特性.
中国科学院大学
2013 年招收攻读硕士学位研究生入学统一考试参考答案
科目名称:811 量子力学
考生须知: 1.本试卷满分为 150 分,全部考试时间总计 180 分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
一.质量为 的粒子在无限深球方势阱
V
(r)

0
ra ra
中运动,
(1)写出径向波函满足的方程.( 2

1 r
2 r 2
r

lˆ2 2r2

(2)求其中 l 0 的归一化能量本征函数和能量本征值.
二.考虑一质量为 的自由粒子的一维运动,设初始时刻波函数为

( x,0)

(
) e 1/ 4 ik0x
x2 / 2 ,(
k0

为实常数;
从而
k n , a
能级
En

2 2
k2

2 2
( n a
)2

Rn (r)

A sin( nr ) ra
总的波函数
n00 (r, , )

Rn (r)Y00 ()

A sin( nr ) , ra
归一化:
a 0
A2 r2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档