各种气化炉型的比较

合集下载

多种类水煤浆气化炉的基本概况比较

多种类水煤浆气化炉的基本概况比较

多类水煤浆气化炉的基本概况比较一、Texaco水煤浆气化1945年美国德士古公司在洛杉矶蒙特贝洛建成第一套中试装置,20世纪70年代开发并推出具有代表性的第二代加压水煤浆气化技术,80年代投入工业化生产。

该水煤浆气化炉采用单喷嘴下喷式的进料方式,壁炉为耐火砖,采用水激冷流程净化除尘,在发电项目中采用废锅流程回收热量。

单炉目前最大日投煤量可达2000t操作压力有4Mpa、6.5Mpa和8.4Mpa,操作温度为1350左右,有效气体成分(CO+H2)含量为82%左右,它的主要优点流程简单、煤种适应性广、压力较高、气化强度高、有利于环保、技术成熟、投资较低(但专利转让费用高15.9元/kNm3)。

我国最早引进该技术的是山东鲁南化肥厂,于1993年投产,现在为多家企业所使用。

不足之处是该技术对煤质有较严格的限制(灰熔点<1250℃)、气化效率和碳转化率相对较低、比氧耗高、总能耗略高、耐火砖寿命短不足两年、喷嘴运行一般为50天左右,不足三个月要维护或更换,黑水管线易堵塞、结垢、磨蚀,激冷环、激冷室易出问题等。

为了提高经济性,得到较高的气化效率及较好的合成气组分,要求水煤浆浓度(58%—65%)且稳定性和流动性(黏度<1200mpa.s)较好。

1、典型的工艺技术数据:(1)气化压力: 2.7—6.5Mpa(2)气化温度:1300—1500℃(3)煤浆浓度:60%以上,粒度分布70%以上大于200目(4) 原料煤消耗:610(kg/kNm3有效气)(5) 氧耗:400(Nm3/kNm3有效气)(6) 碳转化率:95%—99%(7) 冷煤气效率:72%(8) 煤气组分:有效成分(CO+H2)78%—82%2、煤炭质量要求:(1)发热量:大于25MJ/kg(2)灰分:小于15%,最好小于12%(3)挥发分:大于25%(4)水分:内水≤8%(5)灰熔点:1300℃以下,最好小于1250℃(6)可磨性要好二、多喷嘴对置式水煤浆气化多喷嘴对置式水煤浆气化技术是华东理工大学研究开发,是对Texaco气化炉技术的改进,通过四个对称布置在气化炉中上部同一水平的工艺喷嘴将煤浆与氧气混合喷入炉内,使颗粒产生湍流弥散、震荡运动、对流加热、辐射加热、煤浆蒸发、颗粒中挥发物的析出、气相反应、灰渣的形成等过程。

几种常用煤气化技术的优缺点

几种常用煤气化技术的优缺点

几种煤气化技术介绍煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。

一 Texaco水煤浆加压气化技术德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。

Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石(助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。

其优点如下:(1)适用于加压下(中、高压)气化,成功的工业化气化压力一般在4.0MPa 和6.5Mpa。

在较高气化压力下,可以降低合成气压缩能耗。

(2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。

便于气化炉的负荷调节,使装置具有较大的操作弹性。

(3)工艺技术成熟可靠,设备国产化率高。

同等生产规模,装置投资少。

该技术的缺点是:(1)由于气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。

对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。

而且,煤种的选择面也受到了限制,不能实现原料采购本地化。

(2)烧嘴的使用寿命短,停车更换烧嘴频繁(一般45~60天更换一次),为稳定后工序生产必须设置备用炉。

无形中就增加了建设投资。

几种气流床气化炉部分气化指标的对比分析

几种气流床气化炉部分气化指标的对比分析

几种气流床气化炉部分气化指标的对比分析几种气流床气化炉部分气化指标的对比分析王伟王延坤(兖矿国宏公司气化部,山东邹城,273500)摘要分析了三种气流床气化炉的氧耗问题!产气量问题和气体成分问题"关键词气流床气化指标对比分析中图分类号 TQ546.2 文献标识码 B 文章编号 1008-9411(2006)03-0059-03关于煤气化的几种气流床气化炉氧气消耗量的问题,单位质量原料煤有效气体产量高低的问题和出炉气体成分及二氧化碳含量高低的问题"这些问题都是煤气化过程当中的关键问题,分析这些问题有助于了解不同气化工艺的优劣,加深对不同气化工艺的认识,选择适宜的气化途径"首先列举德士古水煤浆气化工艺,对喷式新型气化工艺和谢尔干煤粉气化工艺的部分工艺指标"1 主要工艺指标1.1 德士古水煤浆气化工艺的主要工艺指标(1)入炉无水无灰基原料浆:8930kg(2)入炉水量:6700kg(3)入炉氧气流量:12360kg(4)产气量:25678kgCO 15980kg(折合570kmol)H2 890kg(折合445kmol)CO2 9108kg(折合207kmol)(5)每1kg煤需氧量:1.384kg(6)每1kg煤产有效气量:1.89kg(折合为01114kmol)(7)有效气体成分体积比:82.5%(8)二氧化碳体积比:17%1.2 新型水煤浆气化炉的主要工艺指标(1)无水无灰基原煤:28740kg(2)入炉水量:21700kg(3)氧气流量:37600kg(4)产气量:81921kgCO 52864kg(折合1888kmol)H2 2892kg(折合1446kmol)CO2 26165kg(折合594kmol)(5)每1kg煤需氧量:1.31kg(3)入炉氧气量:444kg(4)入炉总水量:49kg(5)产气量:956kgCO 788.8kg(折合28.17kmol)H2 28.2kg(折合14.1kmol)CO2 33.1kg(折合0.75kmol)(6)每1kg煤需氧量:0.95kg(7)每1kg煤产有效气量:1.74kg(折合为01090kmol)(8)有效气体成分体积比:90%(9)二氧化碳体积比:2.6%2 关于每1kg煤耗氧量的问题德士古水煤浆气化炉的每1kg煤需氧量为:11384kg对喷式新型水煤浆气化炉的每1kg煤需氧量:1131kg谢尔干煤气化炉的每1kg煤需氧量:0.95kg可以看出谢尔气化炉的耗氧量最低,这是因为谢尔气化炉是以干煤粉为原料的气化炉,入炉的水分非常的少,煤粉不完全燃烧产生的热量就非常多,炉内的热量相对比较富裕,所以每1kg煤的需氧量就比较低"不仅如此,还要加入一定量的蒸气,通过部分蒸气的分解来消耗一些热量,适当降低气化炉内的反应温度"德士古水煤浆气化炉和对喷式新型气化炉都是以水煤浆为原料的气化炉,炉内的热量平衡状况都相对比较紧张,都需要通过部分原料煤的完全燃烧来提供足够的热量,以满足气化反应的需要,所以它们的每1kg煤需氧量都比较高,但它们的每1kg煤的耗氧量也有一定的差距,这是因为新型气化炉的炉内操作温度比德士古气化炉的操作温度略低一些,德士古气化炉的操作温度必须要高一它的水蒸气分解量比较低,从水蒸气当中得到的氢比较少,因而表现出在出炉气当中碳氢元素的摩尔比远低于水煤浆气化工艺"这也是谢尔气化虽然它的出口气体当中有效气体(H2+CO)的含量比较高,但是每千克煤的有效气体产率却比较低的原因"水煤浆气化水蒸气的分解量高,导致了气化炉出口气体中氢气的比例高,导致了每1kg煤的有效气体产率比较高,虽然从质量上看每1kg煤的有效气体产率相差不大,但是从体积上看有效气体的产率相差就大了,因为氢的摩尔质量比较低,从质量上比较影响不明显"。

各类煤气化炉的特点与适应性分析

各类煤气化炉的特点与适应性分析

措 施 (加 压 气 化— —— 鲁 奇 炉 )。 为 了 得 到 较 纯 的 CO+H2 用于合成氨生产,采用了间歇制气的方式(中小化肥 厂常用的水煤气炉), 在吹风阶段主要进行反应(1)、 (2)。
这两个反应,积蓄热量、提高火层温度,然后用较 高压力的水蒸气 吹 入 炉 内 主 要 进 行 反 应 (3),以 得 到 较 纯 的 CO+H2。 固 定 床 气 化 炉 内 的 主 要 床 层 (自 下 而 上):灰渣层、氧化层、还原层、干馏层、干燥层。 煤和 气 化 介 质 在 炉 内 的 运 动 速 度 较 慢 、停 留 时 间 较 长 (1h~ 10h),接 触 和 反 应 时 间 充 分 。 1.2 流化床
3 各类煤气化炉煤气质量 (产品气组成)与 适应的用户分析
各种类型的煤气化炉, 由于其使用的煤种的不 同、气化剂的不同,得到的煤气组成也有所不同,因而 也可以适应不同的用户所需。 3.1 固定床
- 14 -
煤化工
2009年 第 5 期
常压固定床煤气发生炉在气化烟煤 (大同煤,空 气 、水 蒸 气 气 化 )时 的 典 型 煤 气 组 成 见 表 1[2]。
关于常压固定床气化用煤,有国家标准:《常压固 定床煤气发生炉用煤技术条件》。 随着煤炭开采技术 的提高,机采率越来越高,加上小煤窑的关停,块煤越 来越紧缺,价格越来越高,块煤与碎煤的差价越来越 大,使得固定床在原料方面的优势越来越小。
2.2 流化床 流化床煤气化炉的特点: 煤从上部或中部加入,
气化介质从下部吹入, 大部分煤粒悬浮在密相区,床 层位置基本不变,煤的停留时间较短。 因而它要求能 够气化的煤必须是: 有一定粒度的碎煤, 大部分在 1mm~10mm 之 间 , 太 大 的 颗 粒 沉 落 炉 底 , 难 以 反 应 完 全, 太小的颗粒又容易被气流携带迅速到达出口,来 不 及 反 应 ;灰 熔 融 软 化 温 度 (ST)越 高 越 好 ( 熔 渣 炉 除 外 ),因 为 在 灰 熔 点 以 下 操 作 ,灰 熔 点 高 ,可 以 适 当 提 高气化操作温度,有利于提高反应速度;黏结性要低 (不黏煤),有黏结性的煤,在密相区会黏结在一起,结 成大块沉落下去;反应活性要高,因为煤粒的停留时 间 较 短 、 炉 内 温 度 控 制 较 低 ( 一 般 900℃~1 000℃ ; 比 灰 熔 融 软 化 温 度 低 150℃~200℃ ,还 要 考 虑 炉 壁 耐 火 砖的耐温性能)、而粒度又不象气流床要求的那么小, 所以,只有活性高的煤,才能反应比较完全。水分含量 不能太高,因为用煤粒度较小,水分大容易黏连堵塞 无法输送,干燥和气化时耗热较多,一般要求入炉煤 水分低于 8%。 从这些特点可以看出,只有少数煤种能 满足要求,包括:部分褐煤、长焰煤、不黏煤。 2.3 气流床

Texaco、Shell、GSP三种气化技术对比

Texaco、Shell、GSP三种气化技术对比

• 即选用GSP煤气化技术!
各性能对比见下表:
五、主要工艺指标对比
• 经过以上学习和对比,我组认为:
• 德士古技术是单喷嘴,进料流向不均匀, 煤炭浪费较多。 • shell必须用干粉煤,且煤气中焦油及酚含 量高,污水处理复杂,难以大规模推广. • GSP没有工业化经验,因而没有竞争力,而 相同煤化工规模投资额度比较:Shell>德士 古
3、GSP气化反应原理
GSP 连续气化炉是在高温加压条件下进行的,属 气流床反应器,几根煤粉输送管均布进入最外环隙, 并在通道内盘旋,使煤粉旋转喷出给煤管线末端与喷 嘴顶端相切,在喷嘴外形成一个相当均匀的煤粉层, 与气化介质混合后在气化室中进行气化,反应完后最 终形成以 CO、H2为主的煤气进入激冷室。 以上 3 种气化炉其反应原理基本相同,其反应均 为不完全氧化还原反应生成粗合成气;不同之处是 前者采用的是水煤浆气化,而后两者采用干煤粉气 化。
3、GSP气化炉工艺流程
将预处理好的原料煤在磨煤机内磨碎到适于气化的粒度(对不同煤种有不 同的要求)并进行干燥用输气(N2 或CO2)从加料斗中将干煤粉送到气化 炉的组合喷嘴中。 加压干煤粉,氧气及少量蒸汽通过组合喷嘴进入到气化炉中。气化炉的操 作压力为2.5~4.0MP,根据煤粉的灰熔特性,气化操作温度控制在 1350~1750 ℃。高温气体与液态渣一起离开气化室向下流动直接进入激冷 室,被喷射的高压激冷水冷却,液态渣在激冷室底部水浴中成为颗粒状,定 期的从排渣锁斗中排入渣池,并通过捞渣机装车运出。从激冷室出来的达到 饱和的粗合成气经两级文氏管洗涤后,使含尘量达到要求后送出界区。 激冷室和文氏管排出的黑水经减压后送入两级闪蒸罐去除黑பைடு நூலகம்中的气体成 分,闪蒸罐内的黑水则送入沉降槽,加入少量絮凝剂以加速灰水中细渣的絮 凝沉降。沉降槽下部沉降物经过滤机滤出并压制成渣饼装车外送。沉降槽上 部的灰水与滤液一起送回激冷室作激冷水使用,为控制回水中的总盐含量, 需将少量污水送界区外的全厂污水处理系统。

多种类水煤浆气化炉的基本概况比较

多种类水煤浆气化炉的基本概况比较

多类水煤浆气化炉的基本概况比较一、Texaco水煤浆气化1945年美国德士古公司在洛杉矶蒙特贝洛建成第一套中试装置,20世纪70年代开发并推出具有代表性的第二代加压水煤浆气化技术,80年代投入工业化生产。

该水煤浆气化炉采用单喷嘴下喷式的进料方式,壁炉为耐火砖,采用水激冷流程净化除尘,在发电项目中采用废锅流程回收热量。

单炉目前最大日投煤量可达2000t操作压力有4Mpa、6.5Mpa和8.4Mpa,操作温度为1350左右,有效气体成分(CO+H2)含量为82%左右,它的主要优点流程简单、煤种适应性广、压力较高、气化强度高、有利于环保、技术成熟、投资较低(但专利转让费用高15.9元/kNm3)。

我国最早引进该技术的是山东鲁南化肥厂,于1993年投产,现在为多家企业所使用。

不足之处是该技术对煤质有较严格的限制(灰熔点<1250℃)、气化效率和碳转化率相对较低、比氧耗高、总能耗略高、耐火砖寿命短不足两年、喷嘴运行一般为50天左右,不足三个月要维护或更换,黑水管线易堵塞、结垢、磨蚀,激冷环、激冷室易出问题等。

为了提高经济性,得到较高的气化效率及较好的合成气组分,要求水煤浆浓度(58%—65%)且稳定性和流动性(黏度<1200mpa.s)较好。

1、典型的工艺技术数据:(1)气化压力: 2.7—6.5Mpa(2)气化温度:1300—1500℃(3)煤浆浓度:60%以上,粒度分布70%以上大于200目(4) 原料煤消耗:610(kg/kNm3有效气)(5) 氧耗:400(Nm3/kNm3有效气)(6) 碳转化率:95%—99%(7) 冷煤气效率:72%(8) 煤气组分:有效成分(CO+H2)78%—82%2、煤炭质量要求:(1)发热量:大于25MJ/kg(2)灰分:小于15%,最好小于12%(3)挥发分:大于25%(4)水分:内水≤8%(5)灰熔点:1300℃以下,最好小于1250℃(6)可磨性要好二、多喷嘴对置式水煤浆气化多喷嘴对置式水煤浆气化技术是华东理工大学研究开发,是对Texaco气化炉技术的改进,通过四个对称布置在气化炉中上部同一水平的工艺喷嘴将煤浆与氧气混合喷入炉内,使颗粒产生湍流弥散、震荡运动、对流加热、辐射加热、煤浆蒸发、颗粒中挥发物的析出、气相反应、灰渣的形成等过程。

各种气化炉工艺比较

各种气化炉工艺比较

煤制合成气技术比较作者/来源:陈英1,任照元2(1.兖矿鲁南化肥厂,山东滕州277527;2.水煤浆气化及煤化工国家工程研究中日期:2009-1-13Texaco水煤浆气化、Shell粉煤加压气化和GSP气化技术都是典型的洁净煤气化技术,各有特点,各企业在改造或新建时应根据煤种、灰熔点、装置规模、产品链设定和投资情况进行合理选择。

下面就上述气化技术及其选择和使用情况进行分析和评价,供大家参考。

1 Shell气流床加压粉煤气化该工艺在国外还没有用于化肥生产的成功范例。

中石化巴陵分公司是第一家引进该技术用于化肥原料生产的厂家。

到目前为止,国内已先后有18家企业引进了此项技术(装置)。

但该工艺选择的是废锅流程,由于合成原料气含有的蒸汽较少,3.0MPa下仅为14%;因此用于生产合成氨后续变换工序要补充大量的水蒸气,用于甲醇生产也要补充一部分水蒸气于变换工序,工艺复杂,也使系统能量利用不合理。

湖北双环科技股份有限公司是第一家正式投运的厂家,于2006年5月开始试车。

据反映,试车期间曾发生烧嘴处水冷壁烧漏,输煤系统不畅引发氧煤比失调、炉温超温,渣口处水冷壁管严重腐蚀,水冷液管内异物堵塞和烧嘴保护罩烧坏等问题。

引进该技术的项目投资大。

2006年5月贵州天福与Shell签约,气化岛规模为每小时17.05万m3CO+H2,投资9.7亿元人民币,为同规模水煤浆气化岛投资的1.8倍。

气化装置设备结构复杂,制造周期长。

气化炉、导管、废锅内件定点西班牙、印度制造,加工周期14~18个月,海运3个月;压力壳可国内制造,但材料仍需进口,周期也较长;设备、仪表、材料的国产化率与水煤浆气化相比差距比较大。

建厂时间长(3~5 a),将使企业还贷周期长,财务负担加重。

2001年与Shell签约的中石化巴陵分公司、湖北双环、柳州化工股份有限公司只有双环于2006年5月试车;2003年与Shell签约的中石化湖北化肥分公司、中石化安庆分公司、云天化集团公司、云维集团沾化分公司只有安庆于2006年10月开始煮炉。

Texaco、Shell、GSP气化炉对比

Texaco、Shell、GSP气化炉对比
项目三
Texaco、Shell、GSP
1
项目三
中国的煤化工建设热,对煤气化技术呈现 出巨大的需求。近几年,国内外各种气化技术纷 纷登场,中国已经成为世界上煤气化技术应用种 类最多的国家。
项目三
序 号 1 2 3 4 5 气化技术 鲁奇碎煤气化
GE(德士古)水煤浆气化
国内主要煤气化技术一览表
类型 固定床 气流床 气流床 气流床 气流床 技术 拥有方 德国鲁奇公司 美国GE公司 西北化工研究院 华东理工大学 英荷壳牌 适应煤种 褐煤、不粘结性或弱粘 结性的煤 低灰熔点的煤 低灰熔点的煤 低灰熔点的煤 煤种基本无限制 代表企业 天脊煤化工 渭河化工 安徽淮化 江苏灵谷 安庆石化
项目三
2.GSP 气化技术
技术优点
(1)原料煤适应范围宽:GSP 气化对煤质要求不苛刻,产物完全无焦油。 (2)水冷壁结构可靠性高:即所谓的“以渣抗渣”的结构。避免了因高温、 溶渣腐蚀及开停车产生应力对耐火料的破坏而导致气化炉无法长周期运行。可 单炉运行,不需要备用炉,可靠性高。 (3)反应速率高,生产能力大:有效气体(CO+H2)含量高达 91%以上,碳转 化率高达 99%以上。 (4)工艺紧凑,流程简单:激冷流程,气化炉点火升温迅速,设备及运行费用 较低,使得项目一次投资较shell小。 1 台套2 000 t /d 投煤量的气化装置 不足 4 亿元人民币,采用该气化技术是一种比较经济、现实的考虑。 (5)气化炉寿命长:水冷壁系统寿命在十年以上,炉体寿命更长。
Shell
7000 25000 6000 89-93 >99
Texaco
6000 8500 6200 78-81 >98
GSP
7000 15000 6000 89-91 >99

煤气化炉的分类

煤气化炉的分类

煤气化炉的分类煤气化炉的种类有很多,比如鲁奇炉、BGL、德士古水煤浆炉、壳牌熔渣气化炉、灰熔聚、恩德炉、航天炉、E-GAS、多喷嘴、温克勒等。

我们按气化炉中的流体力学条件分,只有三种:固定床、流化床、气流床。

1.气化炉分类:1.1 固定床气化也称移动床气化。

固定床一般以块煤或煤焦为原料,煤由气化炉顶加入,气化剂(氧气、蒸汽)由炉底送入。

流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本维持不变,因而称为固定床气化。

另外,由于煤从气化炉顶加入,含有残碳的灰渣自炉底排出,在气化过程中,煤粒在气化炉内是从上到下缓慢移动的。

因而又称为移动床气化。

固定床的特点是简单可靠。

气化剂与煤逆流接触,气化过程比较完全,热量利用比较合理,热效率较高。

1.2 流化床气化流化床气化又称为沸腾床气化。

以小颗粒为气化原料,这些细粒煤在自下而上的气化剂的作用下,保持着连续不断和无秩序的沸腾和悬浮状态运动,迅速地进行着混合和热交换,其结果导致整个床层温度和组成的均一。

流化床技术得到了迅速发展,其原因在于:①生产强度比固定床大;②可用小颗粒煤,无需块煤;③可用褐煤等高灰劣质煤。

1.3 气流床气化气流床技术是一种并流式气化。

气化剂将粉煤(70%以上的煤粉通过200目筛孔)夹带入气化炉,在1500-1900℃高温下将煤一步转化为CO、H2、CO2等气体,残渣以熔渣形式排除气化炉。

也可将煤粉制成水煤浆,用泵送入气化炉。

煤炭细粉粒与气化剂经特殊喷嘴进入反应室,会在瞬间着火,直接发生火焰反应,同时处于不充分的氧化条件下。

因此,其热解、燃烧以及吸热的气化反应,几乎是同时发生的。

随着气流的运动,未反应的气化剂、热解挥发物、燃烧产物裹挟着煤焦粒子高速运动,运动过程中进行着煤焦颗粒的气化反应。

这种运送形态,相当与流化技术领域里对固体颗粒的“气流输送”,因此称为气流床气化。

1.4 熔融床气化熔融床气化也称熔浴床气化或熔融流态床气化。

煤炭气化方法—工业上常用炉型的比较(煤气化技术课件)

煤炭气化方法—工业上常用炉型的比较(煤气化技术课件)

2.设备选择计算
(4)空气鼓风机流量计算 当气体温度为20℃,绝对压力为1X105Pa时,空气的密度为1.29kg/m3,空气湿度一般忽略不计。
鼓风机在压力一定后,主要应考虑风量,计算公式如下:
式中v——空气鼓风机的设计流量,m3/h; Vl ——实际生产需空气流量,m3/h; t——实际空气温度;℃; P——实际生产时的绝对压力,Pa; d——实际生产时的空气湿度,g/m3。
(m2·h)。 通过上式,由给定的气化强度和煤气用量进行计算和选择。对于煤气用量较大的工厂,计算出来的直径较
大,无系列规格时,可以在给定的气化强度下,选用几台系列产品并行操作,满足煤气的需用量。
2.设备选择计算
(2)煤气发生炉的台数 计算煤气发生炉台数的计算公式如下:
式中N——煤气发生炉的台数,台; Vmax-最大产气量,m3/h; n——煤气泄漏损耗率,一般为设计产气量的2%~5%; q1——气化强度,kg煤/(m2·h); F——炉膛截面积,m2; v——煤的产气率,m3/kg; N’——备用台数,台。
2.设备选择计算 (1)煤气发生炉的直径计算 煤气发生炉直径的计算公式如下:
式中D--煤气炉直径,m; G——最大煤气用量,m3/h; q2—用煤气来表示的气化强度(单位时间、单位炉截面积生成的煤气量),m3/
(m2·h)。 通过上式,由给定的气化强度和煤气用量进行计算和选择。对于煤气用量较大的工厂,计
3.6
10.0
3.0
7.07
3.0
7.07
3.0
7.07
3.0
7.07
3.0
7.07
2.4
3.1
2.0
3.14
1.6
2.0
1.5

鲁奇炉、shell、德士古、恩德炉、灰熔炉等气化炉工艺性能比较

鲁奇炉、shell、德士古、恩德炉、灰熔炉等气化炉工艺性能比较

几种常见煤气化炉的工艺性能比较德士古、壳牌、GSP气化炉具体参数比较名称Texaco Shell GSP原料要求(1)烟煤、无烟煤、油渣;(2)粒经40%~45%<200目;(3)水煤浆质量分数>60%;(4)灰熔融性温度<1350℃;(5)灰份<15%(1)褐煤-无烟煤全部煤种;(2)粒经90%<100目含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1500℃;(4)灰份8%~20%(1)褐煤-无烟煤全部煤种、石油焦、油渣、生物质;(2)粒经250μm~500μm含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1500℃;(4)灰份1%~20%气化温度/℃1450~1600 1450~1600 1450~1600 气化压力/MPa 4.0~8.0 4.0 4.0气化炉特点水煤浆供料,顶部单喷嘴。

热壁Al2O3-Cr2O3-ZrO2耐火衬里,冷激流程(用于IGCC时有废锅流程),除喷嘴外全为碳钢干煤粉供料,下部多喷嘴对喷。

承压外壳内有水冷壁,废锅流程,充分回收废热产蒸汽。

材质碳钢、合金钢、不锈钢。

干粉煤供料,顶部单喷嘴。

承压外壳内有水冷壁,激冷流程。

由水冷壁回收少量蒸汽,除喷嘴外材质全为碳钢。

投煤2000t/d 单台气化炉尺寸/mmφ内=4500标准炉:φ外=2794和φ外=3175(投煤800t/d)H=11500φ内=4600(投煤2300t/d)H=31640φ内=3500H=17000耐火砖或水冷壁寿命/a1 20 20喷嘴寿命60d 1a~1.5a 10a前端部分1a 60万t/a甲醇气化炉台数4+1 1(φ内约为5000mm) 2冷激室或废锅尺寸/mm2794 2500 冷激室φ内=3500 除尘冷却方式洗涤干式过滤、洗涤分离+洗涤出变换温度/℃210 40 220建筑物(不包括变换)装置占地:9100m2高约55m(气化部分)装置占地:9000m2高约85m~90m(气化部分)装置占地:9000m2高约55m(气化部分)。

鲁奇加压气化炉和BGL加压化炉的比较

鲁奇加压气化炉和BGL加压化炉的比较

鲁奇加压气化炉和BGL加压化炉的比较鲁奇炉和BGL炉同属于移动床碎煤煤气化炉;煤在炉内均经过干燥、干馏、还原、氧化四个阶段;气化产物均为:粗煤气、煤焦油、中油等,煤气水中含有较多的酚、氨类物质;加煤系统、汽化炉本体、水夹套等结构基本相同。

现将其不同点比较如下:一、结构比较鲁奇炉和BGL炉主体结构基本相同,均由煤斗、煤锁、炉体、夹套、排灰系统等构成。

结构的主要不同点在于:鲁奇炉的蒸汽、氧气进气位置在炉箅子下部的布气块和炉箅子共同构成的四个半径依次缩小的布气上,而BGL炉则是通过四个对置的喷嘴进气;BGL炉在进气喷嘴附近可以加装粉煤进料喷嘴,可以直接喷入占总进料量30%左右的粉煤,而鲁奇炉无此结构,基本上不能气化粉煤;BGL炉的排灰系统为液态排渣,排灰系统由排渣口、激冷室、灰锁构成,在拍渣口附近有空气进口,以保证液态排渣,鲁奇炉的排灰系统由炉箅子和灰锁构成。

鲁奇炉结构图如下:BGL炉结构如下图:二、气化温度主要的不同点在于:气化温度不同,BGL炉气化温度高,一般1200-14000C(鲁奇900-1200 0C);气化效率是鲁奇炉的2-4倍;液态排渣(鲁奇为固态排渣);蒸汽分解率是鲁奇炉的3倍,废水产量约为鲁奇炉的25%。

具体比较如下:鲁奇炉要求气化温度低于煤的灰熔点,不能使灰渣熔化,否则会产生大块的灰渣堵塞排灰通道,因此、气化温度多选择在1000度左右;BGL汽化炉要求气化温度高于煤的灰熔点,以便使灰渣以液态排出,因此,气化温度多选择在1300度左右。

三、处理能力由于BGL汽化炉提高了气化温度,所以反应速度大大加快,使得单炉处理能力大大提高,一般情况是鲁奇炉的2-3倍左右,如:同样为3.8米内径的汽化炉,鲁奇炉日投煤量约900吨左右,BGL炉可达到2000吨以上。

四、蒸汽、氧气消耗BGL汽化炉蒸汽分解率高,蒸汽耗量约为鲁奇炉的30%,氧气耗量略高于鲁奇炉。

五、废水产量移动床气化工艺因经过了煤的干燥、干馏阶段,因此都要产生含油、酚、氨等物质,这些物质随未分解的水蒸气进入粗煤气,冷却分离后产生含油废水,BGL工艺由于提高了气化温度,提高了蒸汽利用率,所以废水产量大大降低,仅为鲁奇炉的25%左右。

生物质气化

生物质气化

2. 氧气气化
与空气气化相比,氧气气化的特点表现在以下2个方面:
燃气热值高,可达15MJ/Nm3 使气化反应设备容积减小
实际应用过程中生物质氧气气化工艺多采用富氧气化。富 氧气化就是通过提高空气中氧的体积分数来降低气化介质中N2 的体积分数。
2. 氧气气化
氧气浓度 (%) Biomass
热裂解产生的挥发分是一种非常复杂的混合气体,至少包括 数百种碳氢化合物,有些可以在常温下被冷凝成液体,即焦 油,不可冷凝气体则可直接作为气体燃料使用。
生物质 H2+CO+CO2+H2O+CH4+CnHm+焦油+炭+…… 作为一种复杂混合物,一部分焦油成分还会继续发生二次裂解反应, 如下式: 焦油 H2+CO+CO2+……
7.水封
干式净化系统
除焦油技术
催化裂解除焦油:通过高温热裂解可以将焦油转化为燃气。 对焦油裂解具有催化作用的材料很多,其中效果较好的材
料主要有三种,即木炭、白云石、镍基催化剂
催化剂 镍基催化

木炭
白云石
反应温度 /℃
750
800 900
800 900
接触时间 /s
约1.0
约0.5 约0.5
约0.5 约0.5
干燥 热裂解反应 氧化反应 还原反应
1. 干燥
进入气化炉的生物质原料首先被加热,在 热量的作用下,原料所携带的水分被蒸发析出。 此时原料所处的温度环境大约为100~150℃, 在该温度范围内并没有化学反应的发生,只有原 料的干物质与水分分离过程,因此这是一个物理 过程。
2. 热裂解
净化装置类型 沙床过滤器 喷淋塔洗涤器 文丘里管洗涤器 湿式静电除尘器 纤维过滤器
几种气体净化装置的除焦油和除尘效果

三种煤气化炉技术介绍

三种煤气化炉技术介绍

三种煤气化炉技术介绍煤气化是一种利用化学反应将固体煤转化为可燃气体的技术过程,可以将煤转化为煤气、合成气和合成油等能源。

煤气化可以通过不同的煤气化炉技术实现,下面将介绍三种常见的煤气化炉技术。

1.固定床煤气化炉:固定床煤气化炉是最早应用的煤气化技术之一、在固定床煤气化炉中,煤炭被填充在炉膛中,煤气化反应通过从煤床底部通入的氧气或氧气与蒸汽的混合物进行。

煤床通过由炉膛底部从下而上通过的气流进行流化,从而促进反应的进行。

在固定床煤气化炉中,煤气化反应主要发生在煤床下部的炉膛区域,温度通常在900°C至1400°C之间。

固定床煤气化炉的优点是操作稳定、适应性强,但由于床层热阻较大,炉温难以控制并且煤气质量较低。

2.流化床煤气化炉:流化床煤气化炉是一种采用流化床技术进行的煤气化工艺,该技术首次在20世纪60年代得到应用。

在流化床煤气化炉中,煤炭经过细磨和干燥后与气化剂(如氧气和水蒸汽的混合物)一起输入炉膛。

煤炭在流化床内扬起并形成流化状态,反应通过高速气流中的煤颗粒与气体热交换实现。

在流化床煤气化炉中,温度通常在800°C至1000°C之间。

流化床煤气化炉具有热传递效率高、反应速度快的优点,产生的煤气质量较高,但操作复杂,需要高流速和高压力的气流。

3.级联煤气化炉:级联煤气化炉是一种将两个或多个煤气化反应装置相连接以提高反应效率和煤气品质的技术。

在级联煤气化炉中,通常使用高温煤气化反应器作为第一级反应器,将煤炭和气化剂进行气化反应;然后,将第一级反应器的产物气流引入低温煤气化反应器中进行进一步的气化和合成反应。

级联煤气化炉可通过优化不同反应器之间的温度和气体组成来实现高效率的煤气化过程。

级联煤气化炉的优点是可以提高煤气化效率和产气量,并可根据需要调整煤气的组成。

综上所述,固定床煤气化炉、流化床煤气化炉和级联煤气化炉是三种常见的煤气化炉技术。

每种技术都有其特点和适用范围,可以根据具体需求选择合适的煤气化炉技术。

几种煤气化炉炉型的比较

几种煤气化炉炉型的比较

气化工艺各有千秋1.常压固定床间歇式无烟煤(或焦炭)气化技术目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。

2.常压固定床无烟煤(或焦炭)富氧连续气化技术其特点是采用富氧为气化剂、连续气化、原料可采用?准8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。

3.鲁奇固定床煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。

其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。

焦油分离、含酚污水处理复杂,不推荐用以生产合成气。

4.灰熔聚煤气化技术中国科学院山西煤炭化学研究所技术。

其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。

可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。

缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。

此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。

5.恩德粉煤气化技术属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。

在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。

属流化床气化炉,床层中部温度1000~1050℃。

目前最大的气化炉产气量为4万m3/h半水煤气。

缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。

几种煤气化炉炉型的比较

几种煤气化炉炉型的比较

1.常压固定床间歇式无烟煤(或焦炭)气化技术目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。

2.常压固定床无烟煤(或焦炭)富氧连续气化技术其特点是采用富氧为气化剂、连续气化、原料可采用?准8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。

3.鲁奇固定床煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。

其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。

焦油分离、含酚污水处理复杂,不推荐用以生产合成气。

4.灰熔聚煤气化技术中国科学院山西煤炭化学研究所技术。

其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。

可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。

缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。

此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。

5.恩德粉煤气化技术属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。

在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。

属流化床气化炉,床层中部温度1000~1050℃。

目前最大的气化炉产气量为4万m3/h半水煤气。

缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。

三种煤气化炉技术介绍

三种煤气化炉技术介绍

一、概述煤气化技术的开发与应用大约经历了200年的发展历史。

煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。

图1 各种煤气化炉模式图1. 固定床。

固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。

通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。

特点是单位容积的煤处理量小,大型化困难。

目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC- 鲁奇炉两种。

2.流化床。

流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。

流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。

3.气流床。

气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。

特点是不副产焦油,生成气中甲烷含量少。

气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。

气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。

前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。

二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。

1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。

鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。

德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。

我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。

1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。

三种气化炉比较

三种气化炉比较

1。

Lurgi加压气化炉Lurgi炉是一种固定床加压气化炉。

严格来说,Lurgi加压气化炉属于第一代煤气化技术,但自发明以来不断得到改进,至今在南非仍有大规模使用。

Lurgi气化工艺具有以下特点:(1)使用粒度在5~50mm之间的粒煤;(2)可能气化从褐煤到无烟煤的各种煤,但对原料的热稳定性、机械强度、粘结剂等性能指标有一定要求;(3)操作压力从2~3MPa;(4)气化烟煤时,粗煤气中CO:15%~25%;CO2:24%~34%;H2:34%~40%;CH4:9%~13%;(5)炉顶煤气温度250~350℃;(6)单炉产气量30000~50000Nm3/h;(7)冷煤气效率可达80%。

从以上工艺特点可以看出,Lurgi的煤气温度较低,煤气中CH4及焦油含量较高,粗煤气净化和焦油处理单元不可避免,由此引起的环保问题比较突出。

从煤气成份来看,Lurgi是最适合于直接还原的制气技术,只要对煤气进行脱碳处理后就可以直接供还原竖炉使用。

2 。

Texaco水煤浆气化炉Texaco炉是美国Texaco公司在重油气化基础上开发出的煤气化技术,是目前商业业绩最多的第二代气流床气化工艺,优点是压力高,运行和操作经验丰富,气化温度高,煤气有效成分高,主要技术特点如下:(1)进料采用75%以上-200目煤粉制成的水煤浆,煤浆中煤粉质量分数为65~70%。

理论上Texaco可用于各种煤的气化,但经验表明最适宜的煤种应是灰熔点为1300℃左右、灰分低于20%的煤种;(2)气化压力从2.6~8.4MPa;(3)碳转化率在95%以上,冷煤气效率可达到70%以上;(4)干煤气中的(CO+H2)有效气成份在80%以上,CO约占49%,H2约占31%,CO2约占18%(大同煤);(5)气化温度达到1300~1400℃,水激冷后的粗煤气温度为200~260℃。

如果采用热能回收式气化炉,粗煤气的温度换热后从1370℃降至400℃;(6)采用单喷嘴、热壁炉的设备形式,喷嘴寿命平均在1500h,耐材寿命在1~2年,所以必须设有备用系统;(7)生产1000Nm3(CO+H2)有效气的氧耗在400Nm3左右,煤耗在640kg左右;(8)单炉设计最大日处理煤量可达到2000t。

气化炉的类型

气化炉的类型

煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。

气化工艺在很大程度上影响煤化工产品的成本和效率,采用高效、低耗、无污染的煤气化工艺(技术)是发展煤化工的重要前提,其中反应器便是工艺的核心,可以说气化工艺的发展是随着反应器的发展而发展的,为了提高煤气化的气化率和气化炉气化强度,改善环境,新一代煤气化技术的开发总的方向,气化压力由常压向中高压( MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。

1、固定床气化固定床气化也称移动床气化。

固定床一般以块煤或焦煤为原料。

煤由气化炉顶加入,气化剂由炉底加入。

流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本保持不变,因而称为固定床气化。

另外,从宏观角度看,由于煤从炉顶加入,含有残炭的炉渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。

固定床气化的特性是简单、可靠。

同时由于气化剂于煤逆流接触,气化过程进行得比较完全,且使热量得到合理利用,因而具有较高的热效率。

固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。

前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有20多台炉子,多用于生产城市煤气;该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。

(1)、固定床间歇式气化炉(UGI)以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。

该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低、原料单一、能耗高,间歇制气过程中,大量吹风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种气化炉型的比较
1.常压固定床间歇式无烟煤(或焦炭)气化技术
目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。

2.常压固定床无烟煤(或焦炭)富氧连续气化技术
其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。

3.鲁奇固定床煤加压气化技术
主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。

其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。

焦油分离、含酚污水处理复杂,不推荐用以生产合成气。

4.灰熔聚煤气化技术
中国科学院山西煤炭化学研究所技术。

其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。

可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。

缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。

此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。

5.恩德粉煤气化技术
属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。

在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。

属流化床气化炉,床层中部温度1000~1050℃。

目前最大的气化炉产气量为4万m3/h半水煤气。

缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。

此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。

6.GE水煤浆加压气化技术
属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。

单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。

设计中的气化炉能力最大为1600t/d。

对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。

但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。

气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。

气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。

气化炉结构简单,为耐火砖衬里,制造方便、造价低。

煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。

国外已建成投产6套装置15台气化炉;国内已建成投产7套装置21台气化炉,正在建设、设计的还有4套装置13台气化炉。

已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、CO、燃料气、联合循环发电,各装置建成投产后,一直连续稳定长周期运行。

装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法 : GSP法 : 多喷嘴水煤浆加压气化法 : GE水煤浆法=(2.0~2.5):(1.4~1.6):1.2:1.0。

缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜于气化低灰熔点的煤;碳转化率较低;比氧耗和比煤耗较高;气化炉耐火砖使用寿命较短,一般为1~2年;气化炉烧嘴使用寿命较短。

7.多元料浆加压气化技术
西北化工研究院开发的具有自主知识产权的煤气化技术,属气流床单烧嘴下行制气。

典型的多
元料浆组成为含煤60%~65%,油料10%~15%,水20%~30%。

笔者认为在制备多元料浆时掺入油类
的办法不符合当前我国氮肥工业以煤代油改变原料路线的方针,有待改进。

8.多喷嘴(四烧嘴)水煤浆加压气化技术
由华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司共同开发。

属气流床多烧嘴下行制气,气化炉内用耐火砖衬里。

在山东德州华鲁恒生化工股份有限公司建设1套气化压力为6.5MPa、
处理煤750t/d的气化炉系统,于2005年6月正式投入运行,至今运转良好。

在山东滕州兖矿国泰
化工有限公司建设2套气化压力为4.0MPa、处理煤1150t/d的气化炉系统,于2005年7月21日一
次投料成功,运行至今。

以北宿洗精煤为原料气化,多喷嘴水煤浆加压气化与单烧嘴加压气化气化
技术指标见表1。

: b; a4 p3 Z; g
表1 多喷嘴气化与单烧嘴气化结果对比 ( kg/km3)
碳转化率/%有效气比
有效气成分/%
多喷嘴气化84.9 98.8 535
单烧嘴气化82~83 96~98 ~547 多喷嘴气化炉调节负荷比单烧嘴气化炉灵活,适宜于气化低灰熔点的煤。

已建成及在建的有11
套装置30台气化炉。

已顺利投产的有3套装置4台气化炉。

在建最大的气化炉投煤量为2000t/d,
气化压力6.5MPa。

目前暴露出来的问题是气化炉顶部耐火砖磨蚀较快;同样直径同等生产能力的气
化炉,其高度比GE单烧嘴气化炉高,多了3套烧嘴和与其相配套的高压煤浆泵、煤浆阀、氧气阀、
止回阀、切断阀及连锁控制仪表,1套投煤量1000t/d的气化炉投资比单烧嘴气化炉系统的投资多2000万~3000万元。

但该技术属我国独有的自主知识产权技术,在技术转让费方面比引进GE水煤
浆气化技术具有竞争力。

9.Shell干煤粉加压气化技术
属于气流床加压气化技术。

可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。

入炉原料煤
为经过干燥、磨细后的干煤粉。

干煤粉由气化炉下部进入,属多烧嘴上行制气。

目前国外最大的气
化炉处理量为2000t/d煤,气化压力为3.0MPa。

这种气化炉采用水冷壁,无耐火砖衬里。

可以气化
高灰熔点的煤,但仍需在原料煤中添加石灰石做助熔剂。

国内2000年以来已引进19台,其目标产
品有合成氨、甲醇,气化压力3.0~4.0MPa。

我国引进的Shell煤气化装置只设1台气化炉单系列
生产,没有备用炉,在煤化工生产中能否常年连续稳定运行尚待检验。

1套不设备用炉的装置投资
相当于设备用炉的GE气化装置或多喷嘴水煤浆气化装置的投资的2~2.5倍,排出气化炉的高温煤
气用庞大的、投资高的废热回收锅炉回收显热副产蒸汽后,如用于煤化工,尚需将蒸汽返回后续CO
变换系统,如用于制合成氨和氢气,副产的蒸汽量还不够用。

同时还需要另设中压过热蒸汽系统用
于气化炉的过热蒸汽。

笔者认为目前Shell带废热锅炉的干煤粉加压气化技术并不适用于煤化工生产,有待改进。

10.GSP干煤粉加压气化技术
属于气流床加压气化技术,入炉原料煤为经过干燥、磨细后的干煤粉,干煤粉由气化炉顶部进入,属单烧嘴下行制气。

气化炉内有水冷壁内件,目前国外最大的GSP气化炉投煤量为720t/d褐煤。

因采用水激冷流程,投资比Shell炉省,适用于煤化工生产。

正常时要燃烧液化气或其他可燃气体,
以便于点火、防止熄火和确保安全生产。

目前世界上采用GSP气化工艺技术的有3家,但是现在都
没有用来气化煤炭,其中黑水泵煤气化厂只有6年气化褐煤的业绩,没有长期气化高灰分、高灰熔
点煤的业绩。

神华宁夏煤业集团有限责任公司已决定采用GSP干煤粉加压气化技术建设83万t/a二
甲醚,一期60万t/a甲醇项目,单炉投煤量约2000t/d。

11.两段式干煤粉加压气化技术。

相关文档
最新文档