机器视觉人工智能与其应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在初始简图和二维半简图中,信息往往是以与观察者有关的 坐标系表示的。因此,这种表达法称为观察者中心表达法。
联为-稻草人自动化
3.三维模型 三维表达法能够完全而又清晰地表示有关物体形状的信息,其方法之
一即为广义柱体。广义柱体的概念十分重要,而其表示方法又十分简单, 如图9.4所示。图中,柱体的横截面沿轴线的投影不变。一个普通圆柱可看 做是一个圆周沿其中心垂线移动而成;一个楔形物是一个三角形沿其中垂 线移动而得的,等等。一般地说,一个广义柱体是二维轮廓图沿其轴线移 动而成的。在移动过程中,轮廓与轴线之间保持固定的角度不变。轮廓可 为任何形状,而且在移动过程中其尺寸可能是变化的,其轴线也不一定是 垂线或直线,如图9.5所示。
联为-稻草人自动化
复杂物体往往是由一些广义柱体连接而成的。一 般地,一个中央主柱体被一些凹槽或凸面所修正。这样, 复杂物体就可以由一些基本图形构成。
联为-稻草人自动化
9.1.1视觉信息的表达方法
根据马氏(Marr)提出的假设,视觉信息处 理过程包括三个主要表达层次,即初始简图、 二维半简图和三维简图,如图9.1所示。
联为-稻草人自动化
1.初始简图 亮度图像含有两种重要信息:图像的亮度变化和局部几何特征。初始简
图是一种本原表达法,它能完全而又清楚地表示上述信息。初始简图所包含 的信息大部分集中在与实际边缘以及边缘终止点有关的剧烈灰度变化上。 对于每一边缘亮度变化,在初始简图上都有对应的描述。这些描述包括:与 边缘有关的亮度变化率、总的亮度变化、边缘长度、曲率和方向等。粗略 地说,初始简图是以勾画草图的形式来表示图像中的亮度变化的。 图9.2即为初始简图的一个例子,说明它的 辉亮边界描述和亮度变化。如果所用边缘 检测方法所产生的是短线段,那么,就要利 用聚集过程把那些相容的描述线段连接起 来。
联为-稻草人自动化
Βιβλιοθήκη Baidu 9.1图像的理解与分析
对图像的理解和解释是计算机视觉的研究 中心,也是人工智能研究的焦点之一。可以把视 觉理解为一个从外部世界图像产生对观察者有 用的描述过程。这些描述依次由许多不同的记 录了的景物某一方向的固定表达组成。因此,选 择视觉系统的表达方法,对于视觉系统是至关重 要的。
根据马氏理论产生初始简图,并不需 要关于特定物体的有关知识。也就是说, 马氏建议试图描述图像具有的属性,而对 景物可能与什么事物有关则不作任何假设。
联为-稻草人自动化
2.二维半简图 要对图像进行更深入的描述,需要知道其内在特性。这些内
在特性包括表面方向、从观察者至被观察表面的距离、反射和 入射光照表面的纹理以及材料特性等。二维半简图(2½D sketch) 包含景物表面的信息,可以把它看做某些内在特性的混合信息。 二维半简图清楚地表示物体表面方向的信息。物体表面法线从 物体内部穿出来,使物体好像穿刺满了针一样。有时,这种二维 半简图又称为指针图,或简称针图(needle diagram)。此外,二维 半简图还包含从观察者到图像各部分的距离。图9.3表示出二 维半简图的表面方向信息。图中,指针的箭头表示垂直于表面的 矢量,即为表面法线。
机器视觉包含众多的研究课题,如视觉可计算性原理、图像 的形成和获取、图像预处理、边缘检测与分割、特征抽取与匹 配、区域生成与分割、形状分析与识别、运动视觉、主动视觉、 三维视觉以及视觉知识的表示和视觉系统的控制策略等。机器 视觉已发展成为一门独立的学科。因此,对机器视觉的系统、全 面和深入的研究,已不是本书的任务。本章仅对机器视觉进行导 论性介绍,仅限于讨论一些比较基本的问题,这些问题可能与机 器人视觉有比较直接的关系。
联为-稻草人自动化
视觉是人类最重要的感觉能力之一。视觉数据是人的最复 杂和最有用的感觉输入信息。人眼能感觉颜色,因为它具有全色 能力。人眼能感觉运动,因为视网能提供所出现事物的实际响应。
当代科学技术能否用机器来完全解释、模拟、复现和处理 人的视觉呢?作为一种感觉输入数据,人们已能以有限的但是比 较重要的方法重现视觉信息。机器视觉涉及对相似视觉数据的 解释。接至计算机的视觉传感器感受到图像的明暗信号,并把这 些信号变换为可供处理的形式。把视觉传感器装在机器人的机 械手上,只要物体与其背景的对比度明显不同,而且不相互接触 或重叠,那么就能够让机器人通过图像轮廓来识别物体。这种视 觉系统已获得应用。
除了对各种单一的传感信息进行研究外,近年来又出现了 对多种传感信息的集成与融合(integration and fusion)研究; 它利用各种传感器性能上的差异性与互补性,融合不同传感器 的信息源并加以综合分析,以得到正确理解的、稳定可靠的周 围环境信息,使系统具有容错性,提高系统的信息处理速度,保 证决策的正确性和准确性。
联为-稻草人自动化
大多数工业装配任务,包括一些看起来很简单的任务(如把 车辆装在汽车上),一般都需要采用视觉技术。在恶劣环境下(例 如,在太空和水下)或在加工有害材料时,一般都需要机器视觉。 对于许多应用,视觉系统必须是自主的。
计算机视觉(即机器视觉)就是由图像数据来产生视野环境 内有用符号描述的过程。所开发的计算机视觉的特点与过程往 往与其应用场合有关。
人工智能及其应用
第九章 机器视觉
对人类感觉信息的理解与处理是人工智能研究和应用又 一重要领域。人类的这些感觉信息是多种多样的,包括视觉、 听觉、力觉、触觉、嗅觉、味觉、接近感和临场感 (telexistence或telepresence)以及情感等。其中,对视觉和力 觉的研究最为重要,且均已进入实用阶段。对触觉和听觉的研 究也已获得显著进展。不过,对嗅觉,尤其是味觉的研究尚未有 重大突破。至于对人工情感的研究,仍停留在科学幻想阶段。
由机器来感觉环境并执行要完成的任务具有明显的优点,并 获得多方面的应用。除了用于由机器人进行装配和检验作业外, 还可用于星际空间搜索、医用X-射线自动鉴别、地球资源遥感 监视和各种军事应用等。这种视觉机器有助于执行许多日常单 调的甚至对人危险的任务;如果没有某种感觉能力,那么这些任 务是很难甚至无法完成的。
联为-稻草人自动化
3.三维模型 三维表达法能够完全而又清晰地表示有关物体形状的信息,其方法之
一即为广义柱体。广义柱体的概念十分重要,而其表示方法又十分简单, 如图9.4所示。图中,柱体的横截面沿轴线的投影不变。一个普通圆柱可看 做是一个圆周沿其中心垂线移动而成;一个楔形物是一个三角形沿其中垂 线移动而得的,等等。一般地说,一个广义柱体是二维轮廓图沿其轴线移 动而成的。在移动过程中,轮廓与轴线之间保持固定的角度不变。轮廓可 为任何形状,而且在移动过程中其尺寸可能是变化的,其轴线也不一定是 垂线或直线,如图9.5所示。
联为-稻草人自动化
复杂物体往往是由一些广义柱体连接而成的。一 般地,一个中央主柱体被一些凹槽或凸面所修正。这样, 复杂物体就可以由一些基本图形构成。
联为-稻草人自动化
9.1.1视觉信息的表达方法
根据马氏(Marr)提出的假设,视觉信息处 理过程包括三个主要表达层次,即初始简图、 二维半简图和三维简图,如图9.1所示。
联为-稻草人自动化
1.初始简图 亮度图像含有两种重要信息:图像的亮度变化和局部几何特征。初始简
图是一种本原表达法,它能完全而又清楚地表示上述信息。初始简图所包含 的信息大部分集中在与实际边缘以及边缘终止点有关的剧烈灰度变化上。 对于每一边缘亮度变化,在初始简图上都有对应的描述。这些描述包括:与 边缘有关的亮度变化率、总的亮度变化、边缘长度、曲率和方向等。粗略 地说,初始简图是以勾画草图的形式来表示图像中的亮度变化的。 图9.2即为初始简图的一个例子,说明它的 辉亮边界描述和亮度变化。如果所用边缘 检测方法所产生的是短线段,那么,就要利 用聚集过程把那些相容的描述线段连接起 来。
联为-稻草人自动化
Βιβλιοθήκη Baidu 9.1图像的理解与分析
对图像的理解和解释是计算机视觉的研究 中心,也是人工智能研究的焦点之一。可以把视 觉理解为一个从外部世界图像产生对观察者有 用的描述过程。这些描述依次由许多不同的记 录了的景物某一方向的固定表达组成。因此,选 择视觉系统的表达方法,对于视觉系统是至关重 要的。
根据马氏理论产生初始简图,并不需 要关于特定物体的有关知识。也就是说, 马氏建议试图描述图像具有的属性,而对 景物可能与什么事物有关则不作任何假设。
联为-稻草人自动化
2.二维半简图 要对图像进行更深入的描述,需要知道其内在特性。这些内
在特性包括表面方向、从观察者至被观察表面的距离、反射和 入射光照表面的纹理以及材料特性等。二维半简图(2½D sketch) 包含景物表面的信息,可以把它看做某些内在特性的混合信息。 二维半简图清楚地表示物体表面方向的信息。物体表面法线从 物体内部穿出来,使物体好像穿刺满了针一样。有时,这种二维 半简图又称为指针图,或简称针图(needle diagram)。此外,二维 半简图还包含从观察者到图像各部分的距离。图9.3表示出二 维半简图的表面方向信息。图中,指针的箭头表示垂直于表面的 矢量,即为表面法线。
机器视觉包含众多的研究课题,如视觉可计算性原理、图像 的形成和获取、图像预处理、边缘检测与分割、特征抽取与匹 配、区域生成与分割、形状分析与识别、运动视觉、主动视觉、 三维视觉以及视觉知识的表示和视觉系统的控制策略等。机器 视觉已发展成为一门独立的学科。因此,对机器视觉的系统、全 面和深入的研究,已不是本书的任务。本章仅对机器视觉进行导 论性介绍,仅限于讨论一些比较基本的问题,这些问题可能与机 器人视觉有比较直接的关系。
联为-稻草人自动化
视觉是人类最重要的感觉能力之一。视觉数据是人的最复 杂和最有用的感觉输入信息。人眼能感觉颜色,因为它具有全色 能力。人眼能感觉运动,因为视网能提供所出现事物的实际响应。
当代科学技术能否用机器来完全解释、模拟、复现和处理 人的视觉呢?作为一种感觉输入数据,人们已能以有限的但是比 较重要的方法重现视觉信息。机器视觉涉及对相似视觉数据的 解释。接至计算机的视觉传感器感受到图像的明暗信号,并把这 些信号变换为可供处理的形式。把视觉传感器装在机器人的机 械手上,只要物体与其背景的对比度明显不同,而且不相互接触 或重叠,那么就能够让机器人通过图像轮廓来识别物体。这种视 觉系统已获得应用。
除了对各种单一的传感信息进行研究外,近年来又出现了 对多种传感信息的集成与融合(integration and fusion)研究; 它利用各种传感器性能上的差异性与互补性,融合不同传感器 的信息源并加以综合分析,以得到正确理解的、稳定可靠的周 围环境信息,使系统具有容错性,提高系统的信息处理速度,保 证决策的正确性和准确性。
联为-稻草人自动化
大多数工业装配任务,包括一些看起来很简单的任务(如把 车辆装在汽车上),一般都需要采用视觉技术。在恶劣环境下(例 如,在太空和水下)或在加工有害材料时,一般都需要机器视觉。 对于许多应用,视觉系统必须是自主的。
计算机视觉(即机器视觉)就是由图像数据来产生视野环境 内有用符号描述的过程。所开发的计算机视觉的特点与过程往 往与其应用场合有关。
人工智能及其应用
第九章 机器视觉
对人类感觉信息的理解与处理是人工智能研究和应用又 一重要领域。人类的这些感觉信息是多种多样的,包括视觉、 听觉、力觉、触觉、嗅觉、味觉、接近感和临场感 (telexistence或telepresence)以及情感等。其中,对视觉和力 觉的研究最为重要,且均已进入实用阶段。对触觉和听觉的研 究也已获得显著进展。不过,对嗅觉,尤其是味觉的研究尚未有 重大突破。至于对人工情感的研究,仍停留在科学幻想阶段。
由机器来感觉环境并执行要完成的任务具有明显的优点,并 获得多方面的应用。除了用于由机器人进行装配和检验作业外, 还可用于星际空间搜索、医用X-射线自动鉴别、地球资源遥感 监视和各种军事应用等。这种视觉机器有助于执行许多日常单 调的甚至对人危险的任务;如果没有某种感觉能力,那么这些任 务是很难甚至无法完成的。