光电信号处理- 微弱信号检测的原理和方法共74页文档

合集下载

光电信号处理- 微弱信号检测的原理和方法

光电信号处理- 微弱信号检测的原理和方法

窄带通滤波器的实现方式很多:
常见的有双T选频,LC调谐,晶体窄带滤波器等, 其中双T选频可以做到相对带宽等于千分之几左 右(f0为带通滤波器的中心频率) 晶体窄带滤波器可以做到万分之几左右。
即使是这样,这些滤波器的带宽还嫌太宽,
因为这种方法不能检测深埋在噪声中的信号,通常 它只用在对噪声特性要求不很高的场合。 更好的方法是用锁定放大器和取样积分器,这在后 面再作讨论。
2
微弱信号检测的途径
微弱信号检测的途径: ●一是降低传感器与放大器的固有噪声,尽 量提高其信噪比; ●二是研制适合弱信号检测的原理,并能满 足特殊需要的器件, ●三是研究并采用各种弱信号检测技术,通 过各种手段提取信号, 这三者缺一不可。
3 信噪比改善(SNIR)
在介绍微弱信号检测的一般方法之前, 先介绍信噪比改善(SNIR)的定义; ●信噪比改善( SNIR )是衡量弱信号检测 仪器的一项重要性能指标。 ●信噪比改善的定义为:
信号主峰下的面积 输出信噪比= > 1 划斜线的矩形面积
如果B选得很窄,则输出信噪比还能更大
一些, 带通滤波器在白噪声条件下的信噪比改善:
SNIR Pso / Pno Psi / Pni
输出端信号功率 Pso:Pso Psi Kv2
输出端噪声功率 Pno:

Pno
Pni K v2 B f in
V1 (t ) V2 (t ) Vs1V2 sin(t 1 ) sin( t 2 )
Vs1V2 [cos( 1 2 ) cos(2 t 1 2 )] 2
两信号相乘后,通过积分器进行积分,
假定积分器的积分时间常数为T,而且积分时间 也取t=T, T= 2 则:

《微弱信号检测》课件

《微弱信号检测》课件

实验结果的评估与验证
评估指标
根据实验目的确定评估指标,如信噪比 、检测限等。
VS
验证方法
采用对比实验、重复实验等方法对实验结 果进行验证,确保结果的可靠性和准确性 。
CHAPTER 05
微弱信号检测的未来发展
新技术的应用与探索
人工智能与机器学习
01
利用人工智能和机器学习技术,对微弱信号进行自动识别、分
微弱信号的特点包括幅度小、信噪比 低、不易被察觉等。由于其容易被噪 声淹没,因此需要采用特殊的检测技 术才能提取出有用的信息。
微弱信号检测的重要性
总结词
微弱信号检测在科学研究、工程应用和日常生活中具有重要意义。
详细描述
在科学研究领域,微弱信号检测是研究物质性质、揭示自然规律的重要手段。在工程应用中,微弱信号检测可用 于故障诊断、产品质量控制等方面。在日常生活中,微弱信号检测的应用也非常广泛,如医疗诊断、环境保护等 。
智能制造
将微弱信号检测技术应用于智能 制造领域,实现设备故障预警、 产品质量控制等。
THANKS
[ 感谢观看 ]
研究新的信号处理算法,提高微弱信号的提取、处理 和辨识能力。
集成化与微型化
实现微弱信号检测设备的集成化和微型化,便于携带 和应用。
微弱信号检测与其他领域的交叉融合
生物医学工程
将微弱信号检测技术应用于生物 医学工程领域,如生理信号监测 、医学影像处理等。
环境监测
将微弱信号检测技术应用于环境 监测领域,实现对噪声、振动、 磁场等的微弱变化进行检测和分 析。
小波变换法
总结词
多尺度分析、自适应能力强
详细描述
小波变换法是一种时频分析方法,能够将信号在不同尺度上进行分解,从而在不同尺度 上检测微弱信号的存在和特性。这种方法自适应能力强,能够适应不同特性的微弱信号

微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术微弱信号检测的基本理论和技术微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性,检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术,从而将其应用于各个学科领域当中。

在微弱信号检测中,总是伴随着噪声,噪声属于电路中的随机扰动,它可能来自电路中元器件中的电子热运动,或者是半导体器件中载流子的不规则运动。

噪声是限制信号检测系统性能的决定性因素,因此它是信号检测中的不利因素。

对于微弱信号检测来说,如能有效克服噪声,就可以提高信号检测的灵敏度。

电路中噪声是一种连续型随机变量,即它在某一时刻可能出现各种可能数值。

电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,这时噪声电压称为广义平稳随机过程。

若噪声的概率分布密度不随时间变化,则称为狭义平稳随机过程(或严格平稳随机过程)。

显然,一个严格平稳随机过程一定为广义平稳随机过程,反之则不然。

1.滤波器被噪声污染的信号波形恢复称为滤波。

这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值。

现在,在各种信号检测仪器中均离不开各种滤波器,它起到了排除干扰,分出信号的功能。

常用的滤波器是采用电感、电容等分立元件构成(例如,RC低通滤波器、LC谐振回路等),它对于滤去某些干扰谱线(例如,电源50Mz滤波,收音机、电视机中干扰的滤波),有较好的效果。

对于混在随机信号中的噪声滤波,这种简单的滤波器就不是最佳的滤波电路。

这是因为信号与噪声均可能具有连续的功率谱。

因此需要寻找一种使误差最小的最佳滤波方法,有称为最小最佳滤波准则。

维纳线性滤波理论就是一种在最小均方误差准则下的最佳线性滤波方法。

出于维纳滤波器电路实现上的困难,在维纳滤波基础上发展了一种基于状态空间方法的最佳线性递推滤波方法,称为卡尔曼滤波。

微弱信号检测技术讲课文档

微弱信号检测技术讲课文档
微弱信号检测技术
第一页,共76页。
微弱信号检测技术
第二页,共76页。
第六章 微弱信号检测技术
§6.1 随机信号分析主要概念回顾 §6.2 噪声的基本知识 §6.3 窄带滤波法(了解)
§6.4 同步累积法(了解) §6.5 同步相干检测(重点内容)
§6.6 取样积分(重点内容) §6.7 屏蔽与接地技术(自学)
电阻中的热噪声
例如:R=1k Ω, Δf =105Hz,T=300K,则 Et=1.12μV
在微弱信号检测中,需要考虑热噪声
噪声功率(有效值的平方-均方值)P正比于△f, 则功率谱密度为常数,所以热噪声是一种白噪 声。
降低措施:
可以通过减小T、 Δf 降低热噪声电压
第十九页,共76页。
电阻热噪声等效电路
功率密度函数。
第十三页,共76页。
六、放大器及线性网络的带宽
使矩形面积等于频谱函数下面积的频率值
f 1 Gf df
G0 0
式中:
G(f)——功率增益的频谱函数 G0——最大功率增益 f——系统带宽
第十四页,共76页。
§6.2 噪声基本知识
一、干扰和噪声
干扰:可以消除或减小的外部扰动。
如50HZ工频干扰、 电台广播、电视信号、宇宙 射线等,可以通过采取适当的屏蔽、滤波或元件 合理配置等措施,来减小和消除干扰。
功率有限信号的自相关函数
R ()R x(x)T l i T 1 m T 2 T 2x(t)x(t)dt
两个能量有限信号的互相关函数
R x(y) x ( t)y ( t)d t y ( t)x ( t)dt R y(x) y (t)x (t)d t x (t)y (t)dt
特性:S (f)与R ()是一对傅立叶变换对,满足

微弱信号检测

微弱信号检测

微弱信号检测
在现代通信和电子系统中,微弱信号的检测是一项至关重要的任务。

微弱信号
可能受到噪声、干扰和衰减的影响,因此准确地检测和提取信号是挑战性的。

本文将探讨微弱信号的检测方法和相关技术。

背景介绍
微弱信号通常指的是信号强度较低,难以被准确检测和提取的信号。

在信号处
理领域,微弱信号的检测是一项关键技术,涉及到信噪比的提升、信号增强和干扰抑制等方面。

微弱信号检测在无线通信、雷达系统、生物医学等领域具有广泛的应用。

微弱信号检测方法
统计信号处理方法
统计信号处理方法是一种常用的微弱信号检测技术。

通过对信号的统计特性进
行分析,可以提高信噪比,减小信号的波动性,从而更容易地检测到微弱信号。

频谱分析方法
频谱分析是另一种常用的微弱信号检测技术。

通过对信号的频谱特性进行分析,可以准确地提取信号频率和幅度信息,帮助识别微弱信号并抑制干扰。

小波变换方法
小波变换是一种多尺度的信号分析方法,可以有效地处理信号的非平稳性特点。

在微弱信号检测中,小波变换可以提高信噪比,减小信号与干扰的混叠程度,从而更好地检测微弱信号。

微弱信号检测技术发展趋势
随着通信技术的不断发展和智能化水平的提高,微弱信号检测技术也在不断创
新和改进。

未来,人工智能、机器学习等技术将进一步应用于微弱信号检测领域,提高检测的准确性和灵敏度。

结语
微弱信号的检测是一项重要而复杂的技术,需要综合运用信号处理、数字处理
和通信技术等知识。

通过不断的研究和创新,我们可以更好地应对微弱信号检测的挑战,为通信和电子系统的发展提供更好的支持。

微弱信号检测教学

微弱信号检测教学
微弱信号检测教学
目录
• 微弱信号检测概述 • 微弱信号检测的基本原理 • 微弱信号检测的常用方法 • 微弱信号检测的实验操作
目录
• 微弱信号检测的案例分析 • 微弱信号检测的未来发展与挑战
01
微弱信号检测概述
定义与特点
定义
微弱信号检测是指对幅度较低、容易 被噪声淹没的信号进行提取、测量和 分析的过程。
信号放大
信号放大
通过放大器将微弱信号放大,使其更容易被检测和处理。常用的放大器类型包括电压放大器和电流放大器。
放大器选择
选择合适的放大器是关键,需要考虑放大倍数、带宽、输入噪声、线性范围等因素。
噪声抑制
噪声来源
噪声是影响微弱信号检测的重要因素 ,主要来源于环境、电路和器件本身 。
噪声抑制方法
采用滤波器、消噪电路、数字信号处 理等技术抑制噪声,提高信噪比。
ABCD
数据特征提取
从处理后的数据中提取有用的特征,如幅度、频 率等。
结果评估与优化
根据分析结果,评估微弱信号检测的效果,优化 实验参数和方法,提高检测精度和可靠性。
05
微弱信号检测的案例分析
案例一:生物电信号的检测
总结词
生物电信号是生物体内产生的微弱电流信号,检测这些 信号对于了解生物生理状态和疾病诊断具有重要意义。
信号滤波
滤波器类型
根据信号特性和需求选择合适的滤波器,如低通滤波器、高通滤波器、带通滤波器和陷波滤波器等。
滤波器设计
根据信号频谱和噪声频谱设计滤波器,以保留有用信号并抑制噪声。
相关检测
相关检测原理
相关检测是一种利用信号自相关或互相关特性进行检测的方法,可以有效抑制噪声和干 扰。
相关检测应用

微弱信号检测技术

微弱信号检测技术
详细描述
同步检测法通过将输入信号与参考信号进行相关运算,提取 出目标信号。该方法能够有效地抑制噪声干扰,提高信噪比 。在实际应用中,同步检测法常用于雷达、通信等领域。
滤波器法
总结词
一种利用滤波器对信号进行筛选和处理的微弱信号检测方法。
详细描述
滤波器法通过设计合适的滤波器对输入信号进行筛选和处理,提取出目标信号。该方法具有简单易实 现的特点,适用于多种类型的微弱信号检测。在实际应用中,滤波器法常用于音频、图像等领域。
射级跟踪放大器法
总结词
一种通过调整放大器的增益来跟踪输入信号幅度的微弱信号检测方法。
详细描述
射级跟踪放大器法利用射级反馈电路来调整放大器的增益,使得放大器的输出信 号幅度与输入信号幅度保持一致。该方法能够有效地提高信噪比,降低噪声干扰 。
同步检测法
总结词
一种利用相关技术对信号进行同步检测的微弱信号检测方法 。
环境监测领域
噪声污染检测
在噪声污染控制和环境保护方面,微弱的噪声信号往往代表着环境质量的恶化,微弱信号检测技术能够对这些信 号进行准确的监测和分析,为环境治理提供科学依据。
放射性检测
在核能和核工业领域,放射性物质释放的微弱信号对人类健康和环境安全具有重要影响,微弱信号检测技术能够 实时监测和评估放射性水平,保障公共安全。
微弱信号检测技术的发展历程
基础理论建立
早期的研究主要集中在噪声抑制和放大技术上,为微弱信号检测奠 定了基础。
技术突破
随着电子技术和数字化技术的发展,如放大器技术、数字滤波技术、 相关检测技术等,微弱信号检测的灵敏度和分辨率得到显著提高。
应用拓展
随着微弱信号检测技术的不断发展,其应用领域也在不断扩大,涉及 到众多领域和行业。

微弱信号检测

微弱信号检测
微弱信号检测 10
4.3.1 信噪比改善(SNIR)
微弱信号检测 11
一、有关带宽的一些定义 1. 等效噪声带宽(ENBW)
定义:设系统的功率增益为AV2(f),且f = f 0时AV2(f) 取得最大值AV2(f0),那么,系统的等效噪声带宽为
fn
AV 2( f )df
0
AV 2( f0)
带阻滤 波器 (f0)
+
比 较
计 数

-噪声
双路消噪原理框图
微弱信号检测
只能用来检测微弱的正弦波信号是否存在,并不能复现波形。 9
四 .常用弱检仪器
可供选用的弱检仪器,目前有如下几种: 低噪声前放; 各种锁定放大器(LIA); 各种取样积分器(Boxcar); 多点信号平均器; 光子计数器; 光多通道分析仪(OMA)
T 0
2(t)dt
n
表示噪声电压(电流)消耗在1Ω电阻上的 平均功率微(弱信噪号检声测 功率)
16
2) 噪声功率谱密度
Sn(f) lfi m 0in 2(f, fff)
利用时域中周期信号的相关性而噪声的随机、不相关性(或弱 相关性),通过求取信号的自相关函数或互相关函数,在强噪声背 景下提取周期信号的“相关检测”。这相当于在频率中窄带化滤除 干扰和噪声。特别适用窄带信号。例如锁定放大器。
2.平均积累处理
对于一些宽带周期信号应用上述方法处理效果不佳,一种根据 时域特征用取样平均来改善信噪比并能恢复波形的取样积分器可获 得良好探测效果。其基本原理是对于任何重复的(周期性)信号波 形,每周期如在固定的取样间隔内取样m次积累则信噪比改善。因 为“信号电压幅值为线性叠加”(有规律的周期信号)而“噪声功 率为矢量相加”(无规律的随机信号)。

微弱信号检测技术的原理及应用(含卡尔曼滤波与维纳滤波)

微弱信号检测技术的原理及应用(含卡尔曼滤波与维纳滤波)

微弱信号检测技术的原理及应用2018年1月一、微弱信号检测的基本原理、方法及技术在自然现象和规律的科学研究和工程实践中,经常会遇到需要检测诸如地震的波形和波速、材料分析时测定荧光光强、卫星信号的接收、红外探测以及生物电信号测量等。

这些测量量被强背景噪声或检测电路的噪声所淹没,无法用传统的测量方法检测出来。

微弱信号,为了检测被背景噪声淹没的微弱信号,人们进行了长期的研究工作,分析背景噪声产生的原因和规律,研究被测信号的特点、相关性以及噪声的统计特性,以寻找出从背景噪声中检测出目标信号的方法。

微弱信号检测技术的首要任务是提高信噪比,这就需要采用电子学、信息论和物理学的方法,以便从强噪声中检测出有用的微弱信号。

微弱信号检测技术不同于一般的检测技术,主要是考虑如何抑制噪声和提高信嗓比,因此可以说,微弱信号检测是一门专门抑制噪声的技术。

抑制噪声的现代信号处理手段的理论基础是概率论、数理统计和非线性科学。

1、经典检测与估计理论时期这一时期检测理论主要是建立在统计学家工作的基础上的。

美国科学家WienerN .将随机过程和数理统计的观点引入到通信和控制系统中,提出了信息传输和处理过程的统计本质,建立了最佳线性滤波理论,即维纳滤波理论。

NorthD.O.于1943年提出以输出最大信噪比为准则的匹配滤波器理论;1946年卡切尼科夫(BA.K)提出了错误判决概率为最小的理想接收机理论,证明了理想接收机应在其输出端重现出后验概率为最大的信号,即是将最大后验概率准则作为一个最佳准则。

1950年在仙农信息理论的基础上,WoodwardP.M.把信息量的概念用于雷达信号的检测中,提出了理想接收机应能从接收到的信号加噪声的混合波形中提取尽可能多的有用信息。

但要知道后验概率分布。

所以,理想接收机应该是一个计算后验概率分布的装里。

1953年以后,人们直接利用统计推断中的判决和统计理论来研究雷达信号检测和参盘估计。

密德尔顿(Middleton D)等用贝叶斯准则(最小风险准则)来处理最佳接收问题,并使各种最佳准则统一于风险理论。

微弱信号检测的原理和方法

微弱信号检测的原理和方法

窄带通滤波器的实现方式很多:
常见的有双T选频,LC调谐,晶体窄带滤波器等, 其中双T选频可以做到相对带宽等于千分之几左 右(f0为带通滤波器的中心频率)
晶体窄带滤波器可以做到万分之几左右。
即使是这样,这些滤波器的带宽还嫌太宽,
因为这种方法不能检测深埋在噪声中的信号,通常 它只用在对噪声特性要求不很高的场合。
2 )]
两信号相乘后,通过积分器进行积分,
假定积分器的积分时间常数为T,而且积分时间
也取t=T, T= 2
V (t) 则: s0
1
T
T 0
Kv
Vs1V2 2
[cos(1
2 )
cos(2
t
1
2 )]dt
Kv 2
Vs1V2
cos(1
2)
由上式可见,锁定接收法最后得到的是直流输
出信号,而且这个直流信号的大小和两信号的
白噪声:当其通过一个电压传输系数为Kv,
带宽为B=
f
-
2
f
的系统后,
1
则输出噪声为 :
En20
f2 f`1
df
( K v2为常数)
K
2 v
En2i f in
( f2
f1 )
K
2 v
En2i f in
B
●由上式可以看出:
噪声输出总功率与系统的带宽成正比,
通过减小系统带宽来减小输出的白噪声功率。
之间满足下述关系:
f t 1
为了检测单次信号,要求滤波器的带宽B大于单
次信号的频宽,即 : B f
因为: ∴
SNIR fin B
fin 1 SNIR t
B 1 t
即: B fin SNIR

高等光学实验微弱信号检测综合实验讲解

高等光学实验微弱信号检测综合实验讲解
微弱信号检测综合实验
LOGO 微弱信号检测综合实验
主要内容
1 微弱信号检测的原理
2 微弱信号检测的主要方式
3
实验设计原理
4
实验过程以及结果
5 实验过程中问题分析
微弱信号检测综合实验
微弱信号检测原理
概念解释
微弱信号
噪声
干扰
信号检测
两层含义:
信号本身非 常微弱
信号相对于 强背景噪声 而言微弱
材料,器件 的内部物理 原因所产生

自动跟踪滤波器
自动跟踪滤波器实验设计
多功能信号发生器 输出 噪声输出
宽带选相器 同相
信号输入
输出 正交
精密衰减器 A输入
一次输出 B输入
相位测量仪 信号输入 参考输入
自动跟踪数字滤波器 交流输出
信号输入 直流输出
参考输入
频率测量仪
电压测量仪 信号输入
示波器
X输入

实验设计原理
自动跟踪滤波器
自动跟踪滤波器是一种中心频率可跟随信号频率变化的带通滤波器。 其核心是开关电容滤波器。 一般有源滤波器由运放、电阻、电容组成,滤波器的中心频率与RC有 关。 开关电容滤波器是以开关电容代替滤波器中的电阻实现的。开关电容 的等效模拟电阻值受外部时钟频率控制,改变外部时钟频率就可改时间 常数,从而达到改变滤波器截止频率的目的。
参数运算及波形显示器

实验设计原理
同步积累原理
基于噪声的随机性和信号的稳定性
信号具有周 期的重复性
噪声是随机的
多次重复发 送接收
接收端接收 到不同的畸 变信号
在接收端将 重复信号叠 加
噪声相互抵 消,信号得 到提取

光电信号处理- 微弱信号检测的原理和方法共74页

光电信号处理- 微弱信号检测的原理和方法共74页
光电信号处理- 微弱信号检测的原理 和方法
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、真正 勇敢的 人才能 所向披 靡。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!

微弱信号检测

微弱信号检测

微弱信号检测引言微弱信号检测是一种在噪声背景下探测和提取微弱信号的技术,广泛应用于无线通信、地质勘探、生物医学等领域。

由于噪声的存在,使得微弱信号很难被准确地捕获和识别。

本文将介绍常见的微弱信号检测方法以及在实际应用中的一些注意事项。

常见的微弱信号检测方法统计方法统计方法是最常用的微弱信号检测方法之一。

基于统计学的原理,通过对观测数据进行统计分析,计算信号的统计特性,从而达到检测信号的目的。

常用的统计方法包括最小二乘法、方差分析和卡尔曼滤波等。

时频分析方法时频分析方法是一种将信号在时域和频域进行联合分析的方法,可以捕捉信号在不同时间和频率上的变化。

通过时频分析,可以提高对微弱信号的检测能力。

常见的时频分析方法包括小波变换、短时傅里叶变换和Wigner-Ville分析等。

自适应滤波方法自适应滤波方法是一种通过对信号进行滤波来提高微弱信号检测的方法。

该方法通过对滤波器的参数进行自适应调整,以适应不同噪声环境下的信号特性。

常见的自适应滤波方法包括最小均方差滤波和递归自适应滤波等。

特征提取方法特征提取方法是一种通过对信号的特征进行提取来实现微弱信号检测的方法。

该方法通过提取信号的频率、幅值、相位等特征,从而分离出微弱信号。

常见的特征提取方法包括功率谱密度分析、相关分析和熵分析等。

微弱信号检测的注意事项噪声抑制在进行微弱信号检测之前,首先需要进行噪声抑制。

由于噪声的存在,会干扰和掩盖微弱信号,因此必须采取适当的方法对噪声进行抑制。

常见的噪声抑制方法包括滤波、降噪算法和信号增强等。

多样性处理由于微弱信号往往具有多样性,不同的信号可能有不同的统计特性和时频特性。

因此,在进行微弱信号检测时,需要采用多样性处理方法,以适应不同信号的特点。

常见的多样性处理方法包括特征级联、多传感器融合和多分类器组合等。

实时性要求在某些应用场景中,微弱信号的检测需要具备实时性要求。

这就要求微弱信号检测算法具备较高的计算速度和低延迟。

微弱信号检测原理

微弱信号检测原理
狭义噪声是指来自于被测对象、传感器、比较测定系统内 部的广义噪声。其特点 :不可能彻底排除,只能设法减少, 这些噪声是随机的。如果最终测量是电信息,自然,主要噪声 也是电噪声,常称这类噪声为电子噪声(如常见的:热噪声、 暗电流噪声、散粒噪声和低频噪声)。
(2)电子噪声
由前面所知,电子噪声主要有热噪声、暗电流噪声、散粒噪声
最常见的是市电的干扰和附近的有强电的外部器件。从理 论上讲,干扰是属于理想上可排除的噪声。值得注意是:在弱 信号检测时,电源干扰必须引起足够的重视。常见的电源干扰 有:①供电线路中的严重超载引起的电压降低,②大负载切断 时造成的超压,③非线性功率因子负载,引起的正弦波失真, ④电源频率与相位漂移,⑤配电盘后的其它用电设备引入的共 模干扰,⑥配电盘前的输电线受外界的影响带入的常模噪声, ⑦瞬变尖峰干扰。
1)有效噪声水平
对于一个稳定的信号,噪声使测量值在信号值上、下起伏,
即噪声有正、有负。并且大量的起伏值集中在一定的范围内。为
此,通常噪声用其均方值来度量,此值称为有效噪声水平。对于
一电压测量系统,其有效噪声电压是:
V~N
VNi 2
12
m
12
VNi2 / m
i1
(5.7)
式中
V
i N
——表示第
第5章 微弱信号检测原理
▪5.1 微弱信号检测的基本概念 ▪5.2 频域的窄带化检测原理 ▪5.3 时频的取样平均检测原理——取样积分器 ▪5.4 微弱信号检测仪器——低噪声放大器
第5章 微弱信号检测原理
5.1 微弱信号检测的基本概念
5.1.1 何谓微弱信号检测 目前,除少数基本“量”的测量方法(如时间、长度、质量),
可以用“原器”或“准原器”与被测对象作比较而得到。大量的 物理、化学、工程技术参量的测量,是利用相关的物理现象做成 的传感器,来进行测量的。如温度的测量,可用最简单的热胀冷 缩现象作的温度计,将温度的变化转换成长度变化进行。由于当 前电学及电子学技术的发展,大量的参数测量被转换成电信号的 测量。 无论是电传感器或者是其它传感器,在作信息转换时或转换后作 信息测量时,都不可避免的会带进些“噪声”。这些噪声包括: 传感器本身的噪声、测量仪表系统的噪声以及其它随机偶然误差。 此外,被测对象本身,在测量时间内的起伏也应作测量中的噪声。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
Hale Waihona Puke 21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
光电信号处理- 微弱信号检测 的原理和方法
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
相关文档
最新文档