《用列举法求概率》练习题
人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)
25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。
用列举法求概率 (2)
【小题快练】 1.判断对错: (1)“同时抛两枚骰子”与“把一枚骰子连续抛两次”所涉及的因素 不相同.( × ) (2)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都 相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是
1. 8
(√)
(3)投一枚均匀的小正方体,小正方体的每个面上分别标有数字1,2,
【思路点拨】(1)小明从袋中取出一支笔,所得的各种结果作为横行, 小军从袋中取出一支笔,所得的各种结果作为竖列,列表后得出事件的 各种结果.
(2)根据表格中的各种结果,分别求出小明、小军获胜的概率,根据小
明、小军获胜的概率是否相等来判断游戏规则是否公平 .
【自主解答】(1)列表得: 小明 红1 红2 红 1红 2 红 2红 1 红3 红 1红 3 红 2红 3 黑1 红 1黑 1 红 2黑 1 黑2 红 1黑 2 红 2黑 2
提示:相等.
【自主解答】(1)所有获奖情况的树状图如下:
共有24种可能的情况,其中甲、乙二人都得到计算器共有 4种情况,所 以,甲、乙二人都得到计算器的概率为 :P=
4 1 . 24 6
(2)这种说法是不正确的.由(1)中的树状图可知共有24种可能情况:
6 1 ; 乙得到篮球有六种可能 24 4 情况:P(乙)= 6 1 ; 丙得到篮球有六种可能情况:P(丙)= 6 1 ; 24 4 24 4
8
(7,2)
(8,2)
(7,3)
(8,3)
(7,5)
(8,5)
(7,9)
(8,9)
∴所有可能出现的结果共有16个,这些结果出现的可能性相同,而和为 偶数的结果共有6个,所以小敏观看比赛的概率为P(和为偶数)= 6 = 3 .
人教版 九年级数学 25.2 用列举法求概率 培优训练(含答案)
人教版 九年级数学 25.2 用列举法求概率 培优训练一、选择题(本大题共8道小题) 1. 2019·大连 不透明袋子中装有红、绿小球各一个,这些小球除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A.23B.12C.13D.142. 小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么小李获胜的概率为( )A.1325B.1225C.425D.123. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.234. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π45. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.346. 从长度分别为2,3,4,5的4条线段中任取三条,能构成直角三角形的概率为( ) A.34B.12C.13D.147. 从如图所示图形中任取一个,是中心对称图形的概率是()A.14B.12C.34D .18. 从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax2+4x +c =0有实数解的概率为( ) A.14B.13C.12D.23二、填空题(本大题共8道小题)9. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________.10. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是________.11.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.12. (2019·浙江台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________.13. 一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子一次,向上一面的点数是4的概率是________.14. 如图,在3×3的方格中,点A,B,C,D,E,F均位于格点上,从C,D,E,F四点中任取一点,与点A,B一起作为顶点构造三角形,则所构造的三角形为等腰三角形的概率是________.15. 如图所示,一只蚂蚁从点A出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么蚂蚁从点A 出发到达E处的概率是________.16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.三、解答题(本大题共4道小题)17. 在甲、乙两个不透明的口袋中装有大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,2,3,4,乙袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中任意摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)的可能的结果;(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,他们两人谁获胜的概率大?18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况; (2)小美玩一次游戏,得到小兔玩具的机会有多大? (3)假设有125人玩此游戏,估计游戏设计者可赚多少元.人教版 九年级数学 25.2 用列举法求概率 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】D2. 【答案】A[解析] 画树状图如下:共有25种等可能的结果,两人出拳的手指数之和为偶数的结果有13种,所以小李获胜的概率为1325.故选A.3. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.4. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.5. 【答案】A6. 【答案】D[解析] 一共有四种可能,分别是2,3,4;2,3,5;2,4,5;3,4,5.其中只有长度分别是3,4,5的三条线段能构成直角三角形,所以能构成直角三角形的概率为14.7. 【答案】C[解析] 因为共有4种等可能的结果,任取一个,是中心对称图形的有3种结果,所以任取一个,是中心对称图形的概率是34.故选C.8. 【答案】C[解析] 列表如下:共有12种等可能的结果,其中关于x 的一元二次方程ax2+4x +c =0有实数解的结果有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P =612=12.故选C.二、填空题(本大题共8道小题)9. 【答案】1210. 【答案】13 [解析] 若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M 在第二象限的概率是13.11.【答案】13【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有下列两种情况:乙、丙、甲;丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率=26=13.12. 【答案】【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ∴两次摸出的小球颜色不同的概率为;故答案为:.13. 【答案】16 [解析] 抛掷骰子一次,向上一面的点数可能是1,2,3,4,5,6,一共有6种等可能的结果,其中向上一面的点数是4的结果有1种,所以P(向上一面的点数是4)=16.14. 【答案】34 [解析] 从C ,D ,E ,F 四个点中任意取一点,一共有4种可能,当选取点D ,C ,F 时,所构造的三角形是等腰三角形,故P(所构造的三角形是等腰三角形)=34.15. 【答案】12 [解析] 画树状图如图所示:由树状图知,共有4种等可能的结果,蚂蚁从点A 出发到达E 处的结果有2种, 所以蚂蚁从点A 出发到达E 处的概率是24=12.16. 【答案】47 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.三、解答题(本大题共4道小题)17. 【答案】解:(1)画树状图如图所示:(2)因为解方程x2-5x +6=0,得x =2或x =3.由树状图得共有12种等可能的结果,其中m ,n 都是方程x2-5x +6=0的解的结果有4种,m ,n 都不是方程x2-5x +6=0的解的结果有2种, 所以小明获胜的概率为412=13,小利获胜的概率为212=16, 所以小明获胜的概率大.18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B 手中的结果只有1种, ∴两次传球后,球恰好在B 手中的概率为14. (2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A 手中的结果有2种, ∴三次传球后,球恰好在A 手中的概率为28=14.20. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15. (3)125×(3×45-4×15)=200(元). 答:估计游戏设计者可赚200元.。
人教版数学九年级上册:25.2 用列举法求概率 同步练习(附答案)
25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。
用列举法求概率专题训练
奖 1 , 等奖 1 个 一 O个 , 等 奖 10个 . 某 二 0 若 人购 物 刚好 满 1 0元 ,那 么他 中一 等 奖 的 0 概率 是 ( ) .
c三 .
4
D1
.
2 设有 1 型号相 同 的杯 子 ,其 中一 等 品 7 . 2只 只 , 等 品 3只 , 等 品 2只 , 二 三 则从 中任 意
概率是 (
A. 2 C.
4
) .
B. — — 1
—
个 黄球 。 们 除颜 色 不 同外 , 余 均 相 同. 它 其
若从 中随机 摸 出一个 球 . 到 黄球 的 概率 摸
是 . 凡 则 :
5
3 D. 5
参考警
’
一
-
' 。
’
4 百 一 ‘
5
2
( 2— ) . ,2
7
( ) 76
( -) 7,2
C 7 7,)
(( ).2两和于 ). 两 嗣= (( 大 l吾 )数 ÷ )数 o P P =
利用频率估计概 率专题调练( 题在第 4 7页)
用到举法求概率专题溯练
1 随机 掷一 枚均 匀 的硬 币两 次 . 两 次正 面都 . 朝上 的概率 是 (
A. 4
5 某商 店举 办 有 奖销 售活 动 , 物满 1 . 购 0元者
发对 奖 券 一 张. 10 0张奖 券 中 。 特等 在 00 设
) .
B. 2
字. 同时 自由转 动两 个 转 盘 . 盘 停 止 后 , 转
色不 同 的乒乓球 , 匀 后 , 得从 袋 中任 意 搅 使 摸 出一个 乒 乓 球是 黄 色 的概 率 是 , 以 可 怎 样放 球 — — ( 只写 一种) .
用列举法求概率
B
正
正正 反正
正
反
正反 ቤተ መጻሕፍቲ ባይዱ反
正 反
第一枚
还能用其它方法列举 所有结果吗?
反
第二枚
正
反
正
反
共4种可能的结果 此图类似于树的形状,所以称为 “树形图”。
例2:如图,甲转盘的三个等分区域分别写有数字1、2、 3,乙转盘的四个等分区域分别写有数字4、5、6、7。 现分别转动两个转盘,求指针所指数字之和为偶数的 概率。
6
1×6=6
2×6=12
3×6=18
4×6=24
5×6=30
6×6=36
2
3 4 5
1×2=2
1×3=3 1×4=4 1×5=5
2×2=4
2×3=6 2×4=8 2×5=10
3×2=6
3×3=9 3×4=12 3×5=15
4×2=8
4×3=12 4×4=16 4×5=20
5×2=10
5×3=15 5×4=20 5×5=25
6×2=12
6×3=18 6×4=24 6×5=30
1 3
.
A
2、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。 连续投10次,谁得分高,谁就获胜。 (1)请你想一想,谁获胜的机会大?并说明理由; (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。
列出所有可能的结果:
1 1 1×1=1 2 2×1=2 3 3×1=3 4 4×1=4 5 5×1=5 6 6×1=6
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
用列举法求概率练习题
用列举法求概率练习题
1、把一副普通扑克牌中的13张黑桃牌洗匀后正面向下放
在桌子上,从中随机抽取一张,求下列事件的概率:
(1)抽出的牌是黑桃6;
(2)抽出的牌是黑桃10;
(3)抽出的牌带有人像;
(4)抽出的牌.上的数小于5;
(5)抽出的牌的花色是黑桃.
2.有一个质地均匀的正十二面体,十二个面上分别写有1~12
这
十二个整数。
投掷这个正十二面体一次,求下列事件的概率:
(1) 向上一面的数字是2或3;
(2) 向上一面的数字是2的倍数或3的倍数.
3、不透明袋子中装有红、绿小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随机摸出一个.求下列事件的概率:
(1) 第一次摸到红球,第二次摸到绿球;
(2) 两次都摸到相同颜色的小球;
(3) 两次摸到的球中一个绿球、一个红球.
4、有6张看上去无差别的卡片,上面分别写着1, 2, 3, 4, 5, 6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
5.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球。
求下列事件的概率:
(1) 两次取出的小球的标号相同;
(2) 两次取出的小球标号的和等于4.
6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号
为1,2,3,4.随机摸取一个小球不放回,再随机摸出一个小球。
求下列事件的概率:
(1) 两次取出的小球的标号相同;
(2) 两次取出的小球标号的和等于4.。
初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率
初中数学人教版九年级上学期第二十五章25.2用列举法求概率一、单选题(共4题;共8分)1.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.2.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.3.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是4.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.二、填空题(共3题;共8分)5.两个人做游戏:每个人都从-1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为________.6.在如图所示的电路图中,当随机闭合开关, , 中的两个时,能够让灯泡发光的概率为________.7.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是________;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.三、解答题(共2题;共10分)8.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.9.现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为、,图案为“保卫和平”的卡片记为B)四、综合题(共4题;共41分)10.小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;解:树状图为:(2)求出一个回合能确定两人下棋的概率.11.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.12.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).13.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.答案解析部分一、单选题1.【答案】A【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为.故答案为:A.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.2.【答案】C【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.3.【答案】A【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;D、第一次摸出的球是红球的概率是;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故符合题意;故答案为:A.【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.4.【答案】B【解析】【解答】解:根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故答案为:B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.二、填空题5.【答案】【解析】【解答】由题可得到树状图如下图所示:∴.故答案为.【分析】画出树状图进行求解即可;6.【答案】【解析】【解答】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足:一共有:, ,、, 、, 三种情况,满足条件的有, 、, 两种,∴能够让灯泡发光的概率为:故答案为:.【分析】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足条件,从而求算概率.7.【答案】(1)(2)解:根据题意可列表格如下:总共有9种结果,每种结果出现的可能性相同,其中两张卡片数字之和大于7的有三种:,(两张卡片数字之和大于7).【解析】【解答】解:(1)A盒里有三张卡片上,有两张是奇数,∴抽到的卡片上标有数字为奇数的概率是,故答案为:;【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.三、解答题8.【答案】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P (小吉抽到两张卡片中有A卡片)= .解法二:用列表法,根据题意,列表结果如下:结果为:(第一次抽取情况,第二次抽取情况)由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.9.【答案】解:树状图如下:P(两次抽取的卡片上图案都是“保卫和平”).列表法如下表:第B一张结果第二张P(两次抽取的卡片上图案都是“保卫和平”).【解析】【分析】根据题意,采用树状图或利用列表法,表示出符合题意的所有可能,根据概率公式进行计算得到答案即可。
25.2用列举法求概率-使用(共38张)
第9页,共38页。
复习
例题5
用列举法求概率
思考一 例题6
思考二 课堂小结 中考点击
甲口袋中装有2个相同的小球,它们分别写有字母(zìmǔ)A和B; 乙 口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋 中装有2个相同的小球,它们分别写有字母H和I。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) P(A)= 14= 7
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
36 18
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9
(3)至少有一个骰子的点数为2
第6页,共38页。
用列举法求概率
复 习 例题5
思考一 例题6 思考二 课堂小结 中考点击
同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9 (3)至少(zhìshǎo)有一个骰子的点数为2
果较多时,为不重复不遗漏地列出所有可能的
当一次试验涉及3个因素或3个以上的 因素时,列表法就不方便了,为不重复不遗
结果,通常用列表法
漏地列出所有可能的结果,通常用树形图
第12页,共38页。
复习
例题5
用列举法求概率
思考一 例题6 思考二
课堂小结 中考点击
巩固练习:在一个盒子中有质地均匀的3个小球,其中两个小球 都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选 用哪种方法更方便?
3用列举法求概率(1)
7 10-3 = P(在B区域踩中地雷)= 9×9-9 72
3 7 > ∵ 8 72
∴第二步应踩在B区域
例2、 抛两枚硬币
思考
① 正 正 反 反 ② 正 反 正 反
“同时掷两枚硬 币”,与“先后两次 掷一枚硬币”,这两 种试验的所有可能结 果一样吗?
一样
(1)思考:共有几种可能的结果? 共有4种可能的结果 (2)求下列事件发生的概率:
1 ①P(两枚硬币全部正面向上)=____ 4 1 ②P(两枚硬币全部反面向上)=____ 4
1 ③P(一枚硬币正面向上,一枚硬币反面向上)=____ 2
5 例3、如图,A、B、C、D四张卡片上分别写有-2, 3 , ,π四 7 个实数,从中任取两张卡片.
-2
A
3
B
5 7
C
π
D
(1)请列举出所有可能的结果(用字母A、B、C、D表示); BC BD CD AB AC AD (2)求取到的两个数都是无理数的概率. 1 P(取到的两个数都是无理数)= 6 像这样,把所有可能的结果都列出来,通过分析进 而得出相应事件发生的概率的方法,叫做列举法.
第一轮
(书本 P134 练习:1、2)
第二轮
1、甲、乙、丙三人随意地排成一排,甲排在乙后面的概率
1 为_____. 2
2、从1、2、3、4、5的5个数中任取2个,它们的和是偶数的
2 概率为_____. 5
3、有5件衬衫,其中两件是次品,从中任取两件,求下列
事件发生的概率:
3 ①P(都是正品)=____ 10
3、书本:P137—138 习题:1、2、4 (5分钟)
1、会用列举的方法计算一些简单事件发生的概率. 2、体会在生活实际中概率的应用. 3、提高自己分析问题的能力,激发学习数学的兴趣.
(完整版)初三数学用列举法求概率综合练习试题
初三数学用列举法求概率综合练习题一、课前预习(5分钟训练)1•在一个不透明的袋子里放入除颜色外完全相同的2个红球和2个黄球,摇匀后摸出一个记下颜色,放回后摇匀,再摸出一个,则两次摸出的球均是红球的概率为()111 3A. B. C. D.—4 3 2 42填空:(1) 现有六条线段,长度分别为1,3,5,7,9,10,从中任取三条,能构成三角形的概率是⑵一副扑克牌抽出大小王后,只剩下红桃、黑桃、方块、梅花四种花色52张,则任取一张是红桃的概率是_________ ;(3)抛掷两枚普通的骰子,出现数字之积为奇数的概率是_____________ ,出现数字之积为偶数的概率是________ .3.抛掷两枚硬币观察出现两个正面的试验中,随着试验次数的增加,出现两个正面的频率将趋于稳定在__r _____ 左右.4•冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()5 3 15 17A. B. — C. D.-32 8 32 321. 判断题1(1) 某彩票的中奖概率是,那么某人买了22张彩票,肯定有一张中奖.( )22⑵抛掷一枚质量均匀的硬币,出现正面”和反面”的概率相等,因此抛 1 000次的话,一定有500次正” 500次反”.()(3)世界乒乓球冠军王楠,预定在亚运会上夺冠的概率为100 % .( )2. —个均匀的立方体六个面上分别标有数1,2,3,4,5,6.图25-2-1是这个立方体表面的展开图1抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()24•四张大小、质地均相同的卡片上分别标有数字 1,2,3,4,现将标有数字的一面朝下扣在桌子上 从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张•⑴用画树状图的方法,列出前后两次抽得的卡片上所标有数字的所有可能情况 ;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?1•随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 ()113A.—B.C, 一D.14 2 42•—个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为 ( )1111A.—B.-C. _D.-2 3 4 63•—张圆桌旁有四个坐位, A 先坐在如图25-2-2所示的坐位上,B 、C 、D 三人随机坐到其 他三个坐位上•则A 与B 不相邻而坐的概率是 ______________1 A.-61 B.-31 C.—22 D.-33•两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中 摸出一个球,请用列表法表示出可能出现的情况, 并求出摸出的球颜色相同的概率•图25-2-24•袋子中装有白球3个和红球2个共5个球,每个除颜色外都相同,从袋子中任意摸出一个球.(1) __________________ P(摸到白球)= ________ ,P(摸到红球)= ,P(摸到绿球)= _______ ,P(摸到白球或红球)= ________ ;(2) __________________ P(摸到白球)P(摸到红球)(“〉”或<”=”).5. —副扑克牌,任意从中抽一张.(1)抽到大王的概率;(2)抽到A的概率;(3)抽到红桃的概率;(4)抽到红牌的概率;⑸抽到红牌或黑牌的概率.6. 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?7. 小明和小刚用如图25-2-3的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?图25-2-38•如图25-2-4是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树状图加以分析说明图25-2-4初三数学用列举法求概率综合练习试题38 32 32参考答案一、课前预习(5分钟训练)1•在一个不透明的袋子里放入除颜色外完全相同的2个红球和2个黄球,摇匀后摸出一个记下颜色,放回后摇匀,再摸出一个,则两次摸出的球均是红球的概率为 ( ) 111 3 A.B. —C. —D.-4324思路解析:可以通过列举,知所有可能有4种,分别是红黄、红红、黄红、黄黄,而发生两1次都是红球的可能只有一种,所以所求概率为 .4答案:A 2填空:(1) 现有六条线段,长度分别为 1,3,5,7,9,10,从中任取三条,能构成三角形的概 率是 ________ .(2) 一副扑克牌抽出大小王后,只剩下红桃、黑桃、方块、梅花四种花色 52张,则任取一张是红桃的概率是 __________ ;(3) _____________________________________________________ 抛掷两枚普通的骰子,出现数字之积为奇数的概率是 ________________________________________ ,出现数字之积为偶数的概率是 ________ .思路解析:(1)六条线段中任取三条共有 20种取法,其中能构成三角形的有 7种;(2) — 副扑克牌抽出大小王后,剩下的 52张牌中,红桃、黑桃、方块、梅花四种花色的数量 相同都是13张;(3)抛掷两枚普通的骰子,所有可能性共有36种,其中数字之积为奇数的有9个,数字之积为偶数的有 27个.趋于稳定在__r ______ 左右.思路解析:通过试验可得出出现两个正面的频率将趋于稳定在 25%左右.答案:25%左右4•冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐答案:⑴7201 1 ⑵ 1 (3)13•抛掷两枚硬币观察出现两个正面的试验中, 随着试验次数的增加,出现两个正面的频率将和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料 ,该饮料含有咖啡因的概率是()5 A.-325 12 17思路解析:随机取一瓶饮料,都均有可能,•••+ — =.32 32 32答案:D二、课中强化(10分钟训练)1•判断题1(1)某彩票的中奖概率是,那么某人买了22张彩票,肯定有一张中奖.( )22⑵抛掷一枚质量均匀的硬币,出现正面”和反面”的概率相等,因此抛 1 000次的话,一定有500次正”,500次反”.()(3) 世界乒乓球冠军王楠,预定在亚运会上夺冠的概率为100 % .( )1思路解析:(1)虽然某彩票的中奖机会是—,但是每次都是一个随机事件,即使买了2222张彩票,也不一定中奖;(2)虽然抛掷一枚质量均匀的硬币,出现正面”和反面”的概率相等,抛1 000次的话,不一定有500次正”,500次反” ;(3王楠是世界乒乓球冠军,她在亚运会上夺冠是一个随机事件,不一定夺冠,只是夺冠的可能性较大答案:(1) )(2) )(3) X2•—个均匀的立方体六个面上分别标有数1,2,3,4,5,6.图25-2-1是这个立方体表面的展开图抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的D.21 1 1A. —B. —C.-6 3 2思路解析:此题综合考查了概率的求法及立体几何知识•首先要清楚立方体哪些面是对立面•可以动手操作一下,知1与4、6与3、5与2是对立面,所有可能情况有6种,其中符合1的只有当3在上时,所以所求概率为1 .6答案:A3•两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率•思路分析:由题意可列下表:袋1袋2白白黑八、、白(白,白)(白,白)(白,黑)白(白,白)(白,白)(黑黑)\ 八、、j 里八、、(黑,白)(黑,白)(黑黑)\ 八、、j)解:P(同)=6 =2 .9 3 4•四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张•⑴用画树状图的方法,列出前后两次抽得的卡片上所标有数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?112 1思路解析:(1)画树状图;(2)可得奇数积是1X3和3X1所以 +丄= =丄.12 12 12 6答案:(1)木/R木木2 3 41 3 41 3 4 12 3(2)P(数字之积为奇数)=1 .6三、课后巩固(30分钟训练)1•随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()1 1 3A. B. C. 一 D.14 2 4思路解析:我们把掷一枚均匀的硬币两次所能产生的结果全部列举出来,它们是:正正,反反,反正,正反,所有的可能结果共有4个,并且这四个结果出现的可能性相等•其中两次正面都朝上的结1果只有一个,所以其概率为丄.4答案:A2•—个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为()1 1 1 1A. B. C. D. 一2 3 4 6思路解析:可设两红色珠子分别为a i、生,两蓝色珠子分别为b i、b2,由题意可画出下面的树形图:第一次%a2b、b,/|\ /l\ /1\ /|\彌二杵:殆血b. fl, b\ bw a. hg a2 b、从上面的树形图可以看出,所有可能性的结果共有12个,2 1其中都是蓝色珠子的有2个结果,所以其概率为—=-.12 6答案:A3•—张圆桌旁有四个坐位,A先坐在如图25-2-2所示的坐位上,B、C、D三人随机坐到其他三个坐位上•则A与B不相邻而坐的概率是 _______________________ .思路解析:由题意可画出下列树形图:A A A/\/\/\H C B I) C H\/\/\/不相邻[)C DA A A/\/\/\相邻 C D D a D C\/\/\/C B从上面的树形图可以看出,所有可能性的结果共有6个,其中A与B不相邻而坐的有21个结果,所以其概率为丄.31答案:丄34•袋子中装有白球3个和红球2个共5个球,每个除颜色外都相同,从袋子中任意摸出一个球•(1)_________________ P(摸到白球)= _________ ,P(摸到红球)= ,P(摸到绿球)= _______ ,P(摸到白球或红球)= _________ ;(2)_________________ P(摸到白球) P(摸到红球)(“〉”或<”=”).思路解析:所有可能出现的结果:1号球、2号球、3号球、4号球、5号球,5种可能;摸到白球可能出现的结果:1号球、2号球、3号球,三种可能;摸到红球可能出现的结果:4号球、5号球两种可能.3 2答案:(1)0 1 (2)>5 55•—副扑克牌,任意从中抽一张.(1)抽到大王的概率;(2)抽到A的概率;(3)抽到红桃的概率;(4)抽到红牌的概率;⑸抽到红牌或黑牌的概率•思路分析:一副牌只有54张,大、小王各一张,红桃、方块、梅花、黑桃各13张,红牌即红桃和方块,黑牌即黑桃和梅花,除大、小王外,一张牌有4种花色•1 4 13解:P(抽大王)= ,P(抽A)= ,P(抽红桃)=54 54 54P(抽红牌)=13 13 = 26,P(抽红牌或黑牌)=52 .54 54 546•某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛•八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?思路分析:由题意可列下表:由表可看出能够组成小娟与小强、小敏与小强、小华与小强、小娟与小明、小敏与小明、1 小华与小明,共6对;恰好选出小敏和小强参赛的结果共一个,其概率为-•67•小明和小刚用如图25-2-3的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分•这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?思路分析:P(积为奇数)=1, P(积为偶数)=2.3 3123112322461 2 、、、X2=1 X—这个游戏对双方公平.3 38.如图25-2-4是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树状图加以分析说明图25-2-4C2解:列表如下:234(2,2)(2,3)(2,4)23(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)2所以,摸出的两张牌的牌面数字之和等于5的概率是2 .9。
列举法求概率(3个因素)
用列举法求概率
第 第 一个 二个
想一想,什么时候用“列表法”方便,什么时候用“树形图”方便?
1
2
3
4
5
6
C H I H
A D I H E I H C I H
B D I H E I
1 2 3 4 5 6
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) A A A A A A B B B B B B (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) C C D D E E C C D D E E H I H I H I H I H I H I (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为不 重复不遗漏地列出所有可能的结果, 通常用树形图
(1)这个家庭的3个孩子都是男孩的概率为 解: 1/8; (2)这个家庭有2个男孩和1个女孩的概率 为3/8; (3)这个家庭至少有一个男孩的概率为7/8.
例2.甲、乙、丙三人打乒乓球.由哪两人先打呢? 他们决定用 “石头、剪刀、布”的游戏来决定,游戏时 三人每次做“石头” “剪刀”“布”三种手势中的一 种,规定“石头” 胜“剪刀”, “剪刀”胜“布”, “布” 胜“石头”. 问一次比赛能淘汰一人的概率是多少? 游戏开始 解: 甲 石 剪 布
25.2. 用列举法求概率 (2)
复习练习
某人有红、白、蓝三件衬衫和红、白、蓝三条 长裤,该人任意拿一件衬衫和一条长裤,求正好 1 。 是一套白色的概率_________
人教版数学九年级上册 第25章 25.2---25.3基础练习题带答案
25.2用列举法求概率一.选择题1.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两人可任选一辆车乘坐,则两人同坐一辆车的概率为()A.B.C.D.2.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号都不大于3的概率是()A.B.C.D.3.甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()A.B.C.D.4.小张抛掷两枚质地均匀的硬币,出现两枚硬币全部正面朝上的概率是()A.B.C.D.15.假设可以随机在如图中取点,那么这个点落在黑色部分的概率为()A.B.C.D.6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()7.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.0.25 B.0.5 C.0.125 D.0.18.如图,转盘的白色扇形和红色扇形的圆心角分别为90°和270°,让转盘自由转动2次,指针第一次落在红色区域,第二次落在白色区域的概率()A.B.C.D.9.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在偶数上的概率是()A.B.C.D.10.已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n ﹣1)×…×(n﹣m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行).若老师站在中间,则不同的站位方法有()A.6种B.20种C.24种D.120种11.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是()二.填空题12.若从﹣2,0,1这三个数中任取两个数,其中一个记为a,另一个记为b,则点A(a,b)恰好落在x轴上的概率是.13.从﹣1,π,,1.6中随机取两个数,取到的两个数都是无理数的概率是.14.小白有两张卡片,分别标有数字1,2;小黄有三张卡片,分别标有数字3,4,5.两人各自随机地取出一张卡片,取出的两张卡片上数字之积为奇数的概率是.15.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是.三.解答题16.现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.17.一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3.小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球,记下标号.若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;(2)请判断这个游戏是否公平,并说明理由.18.某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团,小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.19.央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表)求所选取的这两名学生恰好是一男一女的概率.参考答案与试题解析一.选择题1.【解答】解:画树状图得:∵共有9种等可能的结果,李军和赵娟同乘一辆车的有3种情况,∴李军和赵娟同乘一辆车的概率==,故选:C.2.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号都不大于3的有6种情况,∴两次摸出的小球标号都不大于3的概率是=,故选:D.3.【解答】解:画树状图得:∵共有4种等可能的结果,从两个袋子中各随机摸出1个小球,两球颜色恰好相同的只有1种情况,∴从两个袋子中各随机摸出1个小球,两球颜色恰好相同的概率为:.故选:C.4.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故选:A.5.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选:B.6.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=.故选:B.7.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为=0.25;故选:A.8.【解答】解:由图得:白色扇形的圆心角为90°,红色扇形的圆心角是270°,∴白色扇形的面积:红色扇形的面积=,如图,故让转盘自由转动两次.第一次落在红色区域,第二次落在白色区域的概率是:,故选:B.9.【解答】解:列表可得3489 12√√34√√5共20种可能的结果,它们出现的可能性相同,其中都是偶数有4种情况,所以指针都落在偶数上的概率==,故选:C.10.【解答】解:老师在中间,故第一位同学有4种选择方法,第二名同学有3种选法,第三名同学有2种选法,第四名同学有1中选法,故共有4×3×2×1=24种.故选:C.11.【解答】解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值==,∴它停在黑色区域的概率是;故选:B.二.填空题(共4小题)12.【解答】解:画树状图如下由树状图知,共有6种等可能结果,其中使点A在x轴上的有2种结果,故点A(a,b)恰好落在x轴上的概率是=.故答案为:.13.【解答】解:根据题意画图如下:共有12种等可能的情况数,其中取到的两个数都是无理数的有2种,则取到的两个数都是无理数的概率是=.故答案为:.14.【解答】解:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的情况,其中数字之积为奇数的有2种,所以,取出的两张卡片上数字之积为奇数的概率为=,故答案为:.15.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是=.故答案为:.三.解答题(共4小题)16.【解答】解:(1)甲第一个演讲的概率为;(2)画树状图如图:共有6个等可能的结果,丙比甲先演讲的结果有3个,∴丙比甲先演讲的概率==.17.【解答】解:(1)由题意画出树状图如下:所有可能情况如下:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3).(2)由(1)可得:标号之和分别为2,3,4,3,4,5,4,5,6,标号之和为奇数的概率是:,标号之和为偶数的概率是:,因为≠,所以不公平.18.【解答】解:(1)小亮选择“机器人”社团的概率为,故答案为:;(2)画树状图如下:由树状图知,一共有16种等可能结果,其中两人至少有一人参加“航模”社团的有7种结果,∴两人至少有一人参加“航模”社团的概率为.19.【解答】解:(1)本次被调查对象共有:16÷32%=50(人),被调查者“比较喜欢”有:50﹣16﹣4﹣50×20%=20(人);∴扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为360°×=144°故答案为:50,144°;(2)∵等级B与C的人数分别为20和10,∴将条形统计图补充完整如图所示;(3)画树状图如图所示,∵所有等可能的情况有12种,其中所选2位同学恰好一男一女的情况有8种,∴两名学生恰好是一男一女的概率为:=.25.3用频率估计概率一、填空题1、黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是________ kg.2、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________3、一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球____个.4、为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.5、.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.6、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.7、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为个.8、在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.9、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球有4个,黑、白色小球的数目相同,小明从布袋右随机摸出一球,记下颜色放回布袋中,搅匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小明发现其中摸出红球频率稳定于20%,由此可以估计布袋中的黑色小球有________个.10、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.11、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是12、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.二、选择题13、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?()A、8只B、12只C、18只D、30只14、在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:100 150 200 500 800 1000摸球的次数n58 96 116 295 484 601摸到白球的次数m0.58 0.64 0.58 0.59 0.605 0.601摸到白球的频率请估算口袋中白球约是( )只.A.8 B.9 C.12 D.1315、在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.2116、在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是( )A.10个B.15个 C.20个D.25个17、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条18、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.619、2015年4月30日,苏州吴江蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为()累计蚕种孵化总数200 400 600 800 1000 1200 1400/粒孵化成功数/粒181 362 541 718 905 1077 1263A.0.95 B.0.9 C.0.85 D.0.820、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条21、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.6 22、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个 B.20个 C.30个 D.35个参考答案一、填空题1、5602、103、84、800 条.5、15 个.6、12 个.7、15 个.8、109、810、2 100个11、10.12、0.600 .二、选择题13、B14、C15、B16、B17、C18、C19、B20、C21、B22、D。
苏版数学初三上册三年中考真题同步练习:用列举法求概率(有解析)
苏版数学初三上册三年中考真题同步练习:2525.2 用列举法求概率一.选择题(共16小题)1.(2021•广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.2.(2021•临沂)2021年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.3.(2021•聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.4.(2021•山西)在一个不透亮的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.5.(2021•无锡)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点动身,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条6.(2021•威海)一个不透亮的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.7.(2021•攀枝花)布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.B.C.D.8.(2021•淄博)在一个不透亮的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜那个小球上的数字,记为n.假如m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.9.(2021•永州)已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n﹣1)×…×(n﹣m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行).若老师站在中间,则不同的站位方法有()A.6种B.20种C.24种D.120种10.(2021•贵港)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.111.(2021•嘉兴)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜确实是输,因此红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样12.(2021•济南)如图,五一旅行黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.B.C.D.13.(2021•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透亮的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌平均,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.14.(2021•赤峰)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.15.(2021•巴中)下列说法正确的是()A.掷一枚质地平均的正方体骰子,骰子停止转动后,5点朝上是必定事件B.审查书稿中有哪些学科性错误适合用抽样调查法C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳固D.掷两枚质地平均的硬币,“两枚硬币差不多上正面朝上”这一事件发生的概率为16.(2021•牡丹江)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.二.填空题(共10小题)17.(2021•扬州)有4根细木棒,长度分别为2cm,3cm,4cm,5c m,从中任选3根,恰好能搭成一个三角形的概率是.18.(2021•新疆)一天晚上,小伟关心妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.19.(2021•包头)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.20.(2021•咸宁)一个不透亮的口袋中有三个完全相同的小球,它们的标号分别为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.21.(2021•滨州)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.22.(2021•绵阳)现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是.23.(2021•襄阳)同时抛掷三枚质地平均的硬币,显现两枚正面向上,一枚正面向下的概率是.24.(2021•雅安)分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为.25.(2021•绥化)在一个不透亮的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.26.(2021•黔东南州)在一个不透亮的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的差不多上合格品的概率是.三.解答题(共8小题)27.(2021•吉林)一个不透亮的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.28.(2021•泸州)为了解某中学学生课余生活情形,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采纳问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并依照调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估量该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.29.(2021•南充)“每天锤炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行竞赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是,中位数是.(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校预备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.30.(2021•苏州)如图,在一个能够自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).31.(2021•江西)今年某市为创评“全国文明都市”称号,周末团市委组织理想者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必定”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.32.(2021•资阳)当前,“精准扶贫”工作已进入攻坚时期,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情形,并求出恰好选出一名男生和一名女生的概率.33.(2021•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直截了当写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.34.(2021•葫芦岛)随着通讯技术的迅猛进展,人与人之间的沟通方式更多样、便利.某校数学爱好小组设计了“你最喜爱的沟通方式”调查问卷(每人必选且只选一种),在全校范畴内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估量该校最喜爱用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.参考答案一.选择题(共16小题)1.C.2.D.3.B.4.A.5.B.6.B.7.A.8.B.9.C.10.B.11.A.12.B.13.B.14.A.15.C.16.C.二.填空题(共10小题)17..18..19..20..21..22..23..24..25.26..三.解答题(共8小题)27.解:列表得:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知可能显现的结果共9种,其中两次摸出的小球所标字母相同的情形数有3种,因此该同学两次摸出的小球所标字母相同的概率==.28.解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,因此估量该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,因此恰好抽到2名男生的概率==.29.解:(1)由于8分显现次数最多,因此众数为8,中位数为第8个数,即中位数为9,故答案为:8、9;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,因此恰好抽到八年级两名领操员的概率为=.30.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情形数为9种,其中这两个数字之和是3的倍数的有3种,因此这两个数字之和是3的倍数的概率为=.31.解:(1)该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、C、D,列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中小惠被抽中的有6种结果,因此小惠被抽中的概率为=.32.解:(1)总数人数为:6÷40%=15人(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示A1所在圆心角度数为:×360°=48°(3)画出树状图如下:故所求概率为:P==33.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,因此,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.34.解:(1)喜爱用沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人喜爱用QQ沟通所占比例为:=,∴QQ”的扇形圆心角的度数为:360°×=108°(2)喜爱用短信的人数为:100×5%=5人喜爱用微信的人数为:100﹣20﹣5﹣30﹣5=40补充图形,如图所示:(3)喜爱用微信沟通所占百分比为:×100%=40%∴该校共有1500名学生,请估量该校最喜爱用“微信”进行沟通的学生有:1500×40%=600人(4)列出树状图,如图所示所有情形共有9种情形,其中两人恰好选中同一种沟通方式共有3种情形,甲、乙两名同学恰好选中同一种沟通方式的概率为:=故答案为:(1)100;108°。
用列表法求概率
的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)
这9种情况,所以
P(A)=
总结经验:
9 36
1 4
当一次试的列
出所有可能的结果,通常采用列表的办法
随堂练习
P154 1
1 .在6张卡片上分别写有1~6的整数, 随机的抽取一张后放回,再随机的抽取 一张,那么,第一次取出的数字能够整除 第2次取出的数字的概率是多少?
“把一个骰子掷两次”,所得的结果有变化
吗? 没有变化
思考1:小明和小亮做扑克游戏,桌面上放有两
堆牌,分别是红桃和黑桃的1,2,3,4,5,6, 小明建议:”我从红桃中抽取一张牌,你从 黑桃中取一张,当两张牌数字之积为奇 数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿 意接受这个游戏的规则吗?
(2)满足两个骰子点数和为9的结果有4个, 即(3, 6), (4, 5), (5, 4), (6, 3), 所以
P(两个骰子点数的和是9) 4 1 36 6
(3)满足至少有一个骰子的点数为2的结果有11个,所以 P(至少有一个骰子的点数为2) 11 36
如果把例5中的“同时掷两个骰子”改为
红白
蓝 黄
绿
(2)游戏者获胜的概
A盘
B盘
率是多少?
想一想 4
真知灼见源于实践
“配紫色”游戏
表格可以是:
第二个
转盘
黄
第一个
转盘
红
(红,黄)
蓝 (红,蓝)
白
(白,黄) (白,蓝)
游戏者获胜的概率是1/6.
绿
(红,绿) (白,绿)
驶向胜 利的彼
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2 用列举法求概率
5分钟训练(预习类训练,可用于课前)
1.(山东青岛模拟)在一个不透明的袋子里放入除颜色外完全相同的2个红球和2个黄球,摇匀后摸出一个记下颜色,放回后摇匀,再摸出一个,则两次摸出的球均是红球的概率为( ) A.
41 B.31
C.21
D.4
3 思路解析:可以通过列举,知所有可能有4种,分别是红黄、红红、黄红、黄黄,而发生两次都是红球的可能只有一种,所以所求概率为
4
1
. 答案:A 2.填空:
(1)现有六条线段,长度分别为1,3,5,7,9,10,从中任取三条,能构成三角形的概率是________.
(2)一副扑克牌抽出大小王后,只剩下红桃、黑桃、方块、梅花四种花色52张,则任取一张是红桃的概率是________;
(3)抛掷两枚普通的骰子,出现数字之积为奇数的概率是________,出现数字之积为偶数的概率是________.
思路解析:(1)六条线段中任取三条共有20种取法,其中能构成三角形的有7种;(2)一副扑克牌抽出大小王后,剩下的52张牌中,红桃、黑桃、方块、梅花四种花色的数量相同都是13张;(3)抛掷两枚普通的骰子,所有可能性共有36种,其中数字之积为奇数的有9个,数字之积为偶数的有27个. 答案:(1)
20
7 (2)41 (3)41 43
3.抛掷两枚硬币观察出现两个正面的试验中,随着试验次数的增加,出现两个正面的频率将
趋于稳定在________左右.
思路解析:通过试验可得出出现两个正面的频率将趋于稳定在25%左右. 答案:25%左右
4.(2010东北师大附中月考)冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是( )
A.
325 B.83 C.3215 D.32
17
思路解析:随机取一瓶饮料,都均有可能,∴325+3212=32
17
.
答案:D
10分钟训练(强化类训练,可用于课中) 1.判断题
(1)某彩票的中奖概率是
22
1
,那么某人买了22张彩票,肯定有一张中奖.( ) (2)抛掷一枚质量均匀的硬币,出现“正面”和“反面”的概率相等,因此抛1 000次的话,一定有500次“正”,500次“反”.( )
(3)世界乒乓球冠军王楠,预定在亚运会上夺冠的概率为100%.( ) 思路解析:(1)虽然某彩票的中奖机会是
22
1
,但是每次都是一个随机事件,即使买了22张
彩票,也不一定中奖;(2)虽然抛掷一枚质量均匀的硬币,出现“正面”和“反面”的概率相等,抛1 000次的话,不一定有500次“正”,500次“反”;(3)王楠是世界乒乓球冠军,她在亚运会上夺冠是一个随机事件,不一定夺冠,只是夺冠的可能性较大. 答案:(1)×(2)×(3)×
2.(浙江模拟)一个均匀的立方体六个面上分别标有数1,2,3,4,5,6. 图25-2-1是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的
2
1
的概率是( )
图25-2-1
A.
61 B.31
C.21
D.3
2 思路解析:此题综合考查了概率的求法及立体几何知识.首先要清楚立方体哪些面是对立面.可以动手操作一下,知1与4、6与3、5与2是对立面,所有可能情况有6种,其中符合的只有当3在上时,所以所求概率为
6
1. 答案:A
3.两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率.
解:P(同)=
9=3
. 4.(2010东北师大附中月考)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.
(1)用画树状图的方法,列出前后两次抽得的卡片上所标有数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少? 思路解析:(1)画树状图;(2)可得奇数积是1×3和3×1,所以121+121=122=6
1. 答案:(1)
(2)P(数字之积为奇数)=6
1. 快乐时光
地球仪
局长到某校视察,看见教室里有个地球仪,便问学生甲:“你说说看,这地球仪为何倾斜二十三度半?”学生甲非常惊恐,答道:“不是我弄的.”此时,教室走进另一名学生乙.局长再问,学生乙答道:“你知道的,我也是刚进来,什么也不知道.”局长疑惑地问教师这是怎么一回事.教师满怀歉意地说:“这不能怪他们,地球仪买来时,就已经是这样子了.”校长见局长脸色越来越难看,连忙趋前解释:“说来惭愧,”校长陪笑道,“因为学校经费有限,我们买的是地摊货.” 30分钟训练(巩固类训练,可用于课后)
1.(江苏南京模拟)随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ) A.
41
B.21
C.4
3 D.1 思路解析:我们把掷一枚均匀的硬币两次所能产生的结果全部列举出来,它们是:正正,反反,反正,正反,
所有的可能结果共有4个,并且这四个结果出现的可能性相等.其中两次正面都朝上的结果只有一个,所以其概率为
4
1. 答案:A
2.(浙江宁波模拟)一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为( )
A.
2
1 B.31
C.41
D.6
1 思路解析:可设两红色珠子分别为a 1、a 2,两蓝色珠子分别为b 1、b 2,由题意可画出下面的树形图:
从上面的树形图可以看出,所有可能性的结果共有12个, 其中都是蓝色珠子的有2个结果,所以其概率为
122=6
1. 答案:A
3.(浙江宁波模拟)一张圆桌旁有四个坐位,A 先坐在如图25-2-2所示的坐位上,B 、C 、D 三人随机坐到其他三个坐位上.则A 与B 不相邻而坐的概率是__________.
图25-2-2
思路解析:由题意可画出下列树形图:
从上面的树形图可以看出,所有可能性的结果共有6个,其中A 与B 不相邻而坐的有2个结果,所以其概率为3
1. 答案:
3
1 4.袋子中装有白球3个和红球2个共5个球,每个除颜色外都相同,从袋子中任意摸出一个球.
(1)P(摸到白球)=__________,P(摸到红球)=__________, P(摸到绿球)=__________,P(摸到白球或红球)=__________; (2)P(摸到白球)__________P(摸到红球)(“>”“<”或“=”).
思路解析:所有可能出现的结果:1号球、2号球、3号球、4号球、5号球,5种可能; 摸到白球可能出现的结果:1号球、2号球、3号球,三种可能; 摸到红球可能出现的结果:4号球、5号球两种可能. 答案:(1)
53 5
2
0 1 (2)> 5.一副扑克牌,任意从中抽一张.
(1)抽到大王的概率;(2)抽到A 的概率;(3)抽到红桃的概率;(4)抽到红牌的概率;(5)抽到红牌或黑牌的概率.
思路分析:一副牌只有54张,大、小王各一张,红桃、方块、梅花、黑桃各13张,红牌即红桃和方块,黑牌即黑桃和梅花,除大、小王外,一张牌有4种花色.
解:P(抽大王)=
54
1,P(抽A)=544,P(抽红桃)=5413,
P(抽红牌)=541313 =5426,P(抽红牌或黑牌)=54
52
.
6.(四川模拟)某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选
手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少? 思路分析:由题意可列下表:
由表可看出能够组成小娟与小强、小敏与小强、小华与小强、小娟与小明、小敏与小明、小华与小明,共6对;恰好选出小敏和小强参赛的结果共一个,其概率为
6
1.
7.小明和小刚用如图25-2-3的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?
图25-2-3
思路分析:P(积为奇数)=
1
,P(积为偶数)=2.
3×2=1×3
.∴这个游戏对双方公平. 8.(2010南京建邺一模)如图25-2-4是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树状图加以分析说明.
图25-2-4
所以,摸出的两张牌的牌面数字之和等于5的概率是9
.。