进程调度实验报告
进程调度实验【实验报告】
实验一进程调度实验专业:信息管理与信息系统学号:2014******姓名:陈*实验日期:2016年11月11日一、实验目的通过本实验,采用动态优先权优先的调度算法编写和调试一个简单的进程调度程序,加深理解了有关进程控制块、进程队列的概念,并体会了优先权调度算法的具体实施办法。
二、实验要求用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.三、实验方法内容1.算法设计思路(流程图)开始输入所有进程到一个链表中是否所有进程都已完成结束Yi = 1,m = 0在就绪队列中找到优先级最高的进程,用P1表示,state 设为R用P2指向链表第一个节点P2所指进程state = F ?NP2所指进程state = R ?NPriority – 2,CPUTime + 1,AllTime –1,YAllTime = 0?YNState 设为F ,m = 1CPUTime % StartBlock = 0 ?state 设为B ,m = 1YNP2所指进程state = B ?BolckTime - 1BlockTime = 0?State 设为 W YYN P2所指进程state = W ?NPriority + 1YNP2指向下一个节点P2已指向链表末尾?NYM = 1 ?i <= 2 ?i + 1YNNYNY2.算法中用到的数据结构(1)首先定义一个结构体,用以保存一个进程的各种信息,最后一个指针便于将所有进程形成一个链表typedef struct pcb{int id;int arriveTime; //到达时间int priority;int cpuTime;int allTime;int startBlock;int blockTime;char state;struct pcb *next;}PCB;(2)接着建立一个链表存储所有进程,以结构体PCB为节点(头节点为空节点,从第二个节点开始存储数据)。
进程调度程序实验报告
一、实验目的通过本次实验,加深对进程调度原理和算法的理解,掌握进程调度程序的设计与实现方法。
实验要求我们使用高级编程语言编写一个简单的进程调度程序,实现不同调度算法的模拟,并通过实验验证算法的性能。
二、实验环境1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:IntelliJ IDEA三、实验内容本次实验主要实现以下调度算法:1. 先来先服务(FCFS)2. 最短作业优先(SJF)3. 时间片轮转(RR)四、实验步骤1. 定义进程类(Process):```javapublic class Process {private String processName; // 进程名称private int arrivalTime; // 到达时间private int burstTime; // 运行时间private int waitingTime; // 等待时间private int turnaroundTime; // 周转时间// 构造函数public Process(String processName, int arrivalTime, int burstTime) {this.processName = processName;this.arrivalTime = arrivalTime;this.burstTime = burstTime;}// 省略getter和setter方法}```2. 定义调度器类(Scheduler):```javapublic class Scheduler {private List<Process> processes; // 进程列表private int currentTime; // 当前时间// 构造函数public Scheduler(List<Process> processes) {this.processes = processes;this.currentTime = 0;}// FCFS调度算法public void fcfs() {for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// SJF调度算法public void sjf() {processes.sort((p1, p2) -> p1.getBurstTime() -p2.getBurstTime());for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// RR调度算法public void rr(int quantum) {List<Process> sortedProcesses = new ArrayList<>(processes);sortedProcesses.sort((p1, p2) -> p1.getArrivalTime() -p2.getArrivalTime());int timeSlice = quantum;for (Process process : sortedProcesses) {if (process.getBurstTime() > timeSlice) {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += timeSlice;process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(process.getBurstTime() - timeSlice);} else {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(0);}}}}```3. 测试调度程序:```javapublic class Main {public static void main(String[] args) {List<Process> processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));Scheduler scheduler = new Scheduler(processes); System.out.println("FCFS调度结果:");scheduler.fcfs();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));System.out.println("SJF调度结果:");scheduler.sjf();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));System.out.println("RR调度结果(时间片为2):");scheduler.rr(2);for (Process process : processes) {System.out.println(process);}}}```五、实验结果与分析通过实验,我们可以观察到以下结果:1. FCFS调度算法简单,但可能导致长作业等待时间过长。
实验一、进程调度实验报告
实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。
通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。
就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。
2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。
先来先服务算法按照进程到达的先后顺序进行调度。
短作业优先算法优先调度执行时间短的进程。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。
四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。
实现进程的创建、插入、删除等操作。
实现不同的调度算法。
2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。
分别采用先来先服务、短作业优先和时间片轮转算法进行调度。
记录每个算法下的平均周转时间、平均等待时间等性能指标。
五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。
进程调度实验报告
进程调度实验报告一、实验目的。
本实验旨在通过对进程调度算法的模拟和实验,加深学生对进程调度原理的理解,掌握各种进程调度算法的特点和应用场景,提高学生的实际操作能力和分析问题的能力。
二、实验环境。
本次实验使用了C语言编程语言,通过模拟实现了先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)和多级反馈队列(MFQ)四种进程调度算法。
三、实验过程。
1. 先来先服务(FCFS)调度算法。
先来先服务调度算法是一种非抢占式的调度算法,按照进程到达的先后顺序进行调度。
在本次实验中,我们通过模拟多个进程到达并排队等待CPU执行,观察其平均等待时间和平均周转时间。
实验结果表明,先来先服务调度算法适用于作业长度差异较大的情况,但容易产生“饥饿”现象。
2. 最短作业优先(SJF)调度算法。
最短作业优先调度算法是一种非抢占式的调度算法,按照作业执行时间的长短进行调度。
在本次实验中,我们通过模拟多个作业的执行时间,观察其平均等待时间和平均周转时间。
实验结果表明,最短作业优先调度算法能够最大程度地减少平均等待时间,但可能会导致长作业被“饿死”。
3. 时间片轮转(RR)调度算法。
时间片轮转调度算法是一种抢占式的调度算法,每个进程被分配一个时间片,当时间片用完后,该进程被放到队尾等待。
在本次实验中,我们通过模拟多个进程的执行和时间片的调度,观察其平均等待时间和平均周转时间。
实验结果表明,时间片轮转调度算法能够保证每个进程都能得到一定的执行时间,但可能会导致上下文切换频繁。
4. 多级反馈队列(MFQ)调度算法。
多级反馈队列调度算法是一种综合性的调度算法,根据进程的优先级和执行时间进行动态调整。
在本次实验中,我们通过模拟多个进程的执行和不同优先级队列的调度,观察其平均等待时间和平均周转时间。
实验结果表明,多级反馈队列调度算法能够兼顾短作业和长作业,提高了系统的整体性能。
四、实验总结。
通过本次实验,我们深入理解了不同进程调度算法的特点和适用场景。
进程调度操作系统实验报告
进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。
二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。
先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。
这种算法简单直观,但可能导致短作业等待时间过长。
短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。
如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。
优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。
四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。
2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。
从就绪队列中取出第一个进程进行调度执行,直到其完成。
3、实现短作业优先算法计算每个进程的剩余服务时间。
将进程按照剩余服务时间从小到大排序,放入就绪队列。
从就绪队列中取出剩余服务时间最短的进程进行调度执行。
4、实现时间片轮转算法设定时间片大小。
将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。
进程在时间片内未完成的,放回就绪队列末尾。
5、实现优先级调度算法为每个进程设置优先级。
将进程按照优先级从高到低排序,放入就绪队列。
从就绪队列中取出优先级最高的进程进行调度执行。
6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。
实验进程调度的实验报告
一、实验目的1. 加深对进程概念和进程调度算法的理解。
2. 掌握进程调度算法的基本原理和实现方法。
3. 培养编程能力和系统分析能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。
1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。
2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。
3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。
4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。
五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。
2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。
3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。
b. SJF算法:优先调度运行时间最短的进程。
c. 优先级调度算法:根据进程的优先级进行调度。
d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。
4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。
b. 循环执行调度算法,将CPU分配给就绪队列中的进程。
c. 更新进程状态,统计进程执行时间、等待时间等指标。
d. 当进程完成时,将其移至完成队列。
六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。
2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。
进程调度 实验报告
进程调度实验报告进程调度实验报告概述:进程调度是操作系统中一个重要的组成部分,它负责决定在多个进程同时运行时,每个进程分配到的CPU时间片以及切换进程的时机。
合理的进程调度算法能够提高系统的性能和资源利用率,因此对进程调度的研究和优化具有重要意义。
1. 背景介绍进程调度是操作系统中的一个关键任务,它负责管理和控制多个进程的执行顺序,以实现对CPU的合理分配。
在多道程序设计环境下,进程调度的作用尤为重要。
进程调度算法的好坏直接影响着系统的性能和响应速度。
2. 进程调度算法2.1 先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的先后顺序进行调度,即先到达的进程先执行,直到该进程执行完成或者发生I/O操作。
FCFS算法的优点是公平且易于实现,但是它无法适应不同进程的执行时间差异,可能导致长作业效应。
2.2 最短作业优先(SJF)最短作业优先调度算法是根据进程的执行时间长度来进行调度,执行时间越短的进程越优先执行。
SJF算法能够最大程度地减少平均等待时间,但是它需要预先知道进程的执行时间,这在实际应用中往往是不可行的。
2.3 时间片轮转(RR)时间片轮转是一种经典的调度算法,它将CPU的执行时间划分为若干个时间片,每个进程在一个时间片内执行,如果时间片用完还没有执行完,则将该进程放入就绪队列的末尾,继续执行下一个进程。
RR算法能够保证每个进程都能获得公平的CPU时间,但是对于长时间执行的进程,会导致较大的上下文切换开销。
3. 实验设计与结果分析为了评估不同进程调度算法的性能,我们设计了一系列实验。
首先,我们使用不同的进程到达时间和执行时间生成一组测试数据。
然后,分别使用FCFS、SJF和RR算法进行调度,并记录每个进程的等待时间和周转时间。
最后,我们对实验结果进行分析。
实验结果显示,FCFS算法对于执行时间较长的进程会出现较长的平均等待时间,而SJF算法能够有效减少平均等待时间。
进程的调度实验报告(3篇)
第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
模拟调度实验报告(3篇)
第1篇一、实验背景进程调度是操作系统核心功能之一,它负责在多道程序环境下,按照一定的策略对进程进行调度,以确保系统资源的合理分配和高效利用。
为了加深对进程调度算法的理解,本次实验采用模拟的方式,实现了先来先服务(FCFS)、时间片轮转(RR)和动态优先级调度(DP)三种算法,并对实验过程进行了详细记录和分析。
二、实验目的1. 理解进程调度的基本原理和不同调度算法的特点。
2. 掌握进程控制块(PCB)的设计与实现。
3. 通过模拟实验,验证三种调度算法的执行效果。
三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019四、实验内容1. 定义进程控制块(PCB)进程控制块是操作系统用于描述和管理进程的实体,它包含了进程的基本信息。
本实验中,PCB包含以下字段:- 进程ID:唯一标识一个进程。
- 到达时间:进程进入就绪队列的时间。
- 需要运行时间:进程完成所需的时间。
- 已运行时间:进程已运行的时间。
- 状态:进程当前的状态(就绪、运行、阻塞、完成)。
2. 实现三种调度算法(1)先来先服务(FCFS)算法FCFS算法按照进程到达就绪队列的顺序进行调度,先到先服务。
具体实现如下:- 将进程按照到达时间排序,形成就绪队列。
- 遍历就绪队列,依次执行进程,直到进程完成或被阻塞。
(2)时间片轮转(RR)算法RR算法将CPU时间划分为时间片,每个进程运行一个时间片后,让出CPU,等待下一个时间片。
具体实现如下:- 设置一个时间片大小。
- 将进程按照到达时间排序,形成就绪队列。
- 遍历就绪队列,每个进程执行一个时间片,如果进程未完成,则将其加入就绪队列队尾。
(3)动态优先级调度(DP)算法DP算法根据进程的优先级进行调度,优先级高的进程优先执行。
具体实现如下:- 设置一个优先级阈值,当进程的优先级高于阈值时,将其加入就绪队列。
- 遍历就绪队列,选择优先级最高的进程执行,直到进程完成或被阻塞。
进程调度实验报告答案(3篇)
第1篇一、实验目的通过本次实验,加深对操作系统进程调度过程的理解,掌握三种基本调度算法(先来先服务(FCFS)、时间片轮转、动态优先级调度)的原理和实现方法,并能够通过编程模拟进程调度过程,分析不同调度算法的性能特点。
二、实验环境1. 操作系统:Linux/Windows2. 编程语言:C/C++3. 开发环境:Visual Studio、Code::Blocks等三、实验内容1. 实现三种基本调度算法:FCFS、时间片轮转、动态优先级调度。
2. 编写代码模拟进程调度过程,包括进程创建、进程调度、进程运行、进程结束等环节。
3. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。
4. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。
四、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、已用时间、优先数、进程状态等信息。
2. 实现进程调度函数,根据所选调度算法进行进程调度。
3. 编写主函数,初始化进程信息,选择调度算法,并模拟进程调度过程。
4. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。
5. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。
五、实验结果与分析1. FCFS调度算法实验结果:按照进程到达时间依次调度,每个进程结束后,调度下一个进程。
分析:FCFS调度算法简单,易于实现,但可能会导致进程的响应时间较长,特别是当有大量进程到达时,后到达的进程可能会长时间等待。
2. 时间片轮转调度算法实验结果:每个进程完成一个时间片后,放弃处理机,转到就绪队列队尾。
分析:时间片轮转调度算法能够保证每个进程都能得到一定的运行时间,但可能会出现进程饥饿现象,即某些进程长时间得不到运行。
3. 动态优先级调度算法实验结果:每个进程完成一个时间片后,优先级减1,插入到就绪队列相关位置。
分析:动态优先级调度算法能够根据进程的运行情况动态调整优先级,使得优先级高的进程能够得到更多的运行时间,从而提高系统的响应速度。
进程调度模拟程序实验实验报告
进程调度模拟程序实验实验报告一、实验目的进程调度是操作系统的核心功能之一,它负责合理地分配 CPU 资源给各个进程,以提高系统的性能和效率。
本次实验的目的是通过编写和模拟进程调度程序,深入理解不同的进程调度算法的原理和特点,并比较它们在不同情况下的性能表现。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
操作系统为 Windows 10。
三、实验原理1、先来先服务(FCFS)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 资源。
2、短作业优先(SJF)调度算法短作业优先调度算法优先调度执行时间短的进程。
3、时间片轮转(RR)调度算法时间片轮转调度算法将 CPU 时间划分为固定大小的时间片,每个进程轮流获得一个时间片的 CPU 资源。
四、实验设计1、进程类的设计创建一个进程类,包含进程 ID、到达时间、服务时间、剩余服务时间等属性,以及用于更新剩余服务时间和判断进程是否完成的方法。
2、调度算法实现分别实现先来先服务、短作业优先和时间片轮转三种调度算法。
3、模拟流程(1)初始化进程列表。
(2)按照选定的调度算法进行进程调度。
(3)计算每个进程的等待时间、周转时间等性能指标。
五、实验步骤1、定义进程类```pythonclass Process:def __init__(self, pid, arrival_time, service_time):selfpid = pidselfarrival_time = arrival_timeselfservice_time = service_timeselfremaining_service_time = service_time```2、先来先服务调度算法实现```pythondef fcfs_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0for process in process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("先来先服务调度算法的平均等待时间:",average_waiting_time)print("先来先服务调度算法的平均周转时间:",average_turnaround_time)```3、短作业优先调度算法实现```pythondef sjf_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0sorted_process_list = sorted(process_list, key=lambda x: xservice_time) for process in sorted_process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("短作业优先调度算法的平均等待时间:",average_waiting_time)print("短作业优先调度算法的平均周转时间:",average_turnaround_time)```4、时间片轮转调度算法实现```pythondef rr_scheduling(process_list, time_slice):current_time = 0total_waiting_time = 0total_turnaround_time = 0ready_queue =while len(process_list) > 0 or len(ready_queue) > 0:for process in process_list:if processarrival_time <= current_time:ready_queueappend(process)process_listremove(process)if len(ready_queue) == 0:current_time += 1continueprocess = ready_queuepop(0)if processremaining_service_time <= time_slice: waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += processremaining_service_time turnaround_time = current_time processarrival_time total_turnaround_time += turnaround_time processremaining_service_time = 0else:waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += time_sliceprocessremaining_service_time = time_sliceready_queueappend(process)average_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均等待时间:", average_waiting_time)print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均周转时间:", average_turnaround_time)```5、主函数```pythonif __name__ =="__main__":process_list =Process(1, 0, 5),Process(2, 1, 3),Process(3, 2, 8),Process(4, 3, 6)print("先来先服务调度算法:")fcfs_scheduling(process_list)print("短作业优先调度算法:")sjf_scheduling(process_list)time_slice = 2print("时间片轮转调度算法(时间片大小为",time_slice, "):")rr_scheduling(process_list, time_slice)```六、实验结果与分析1、先来先服务调度算法平均等待时间为 575,平均周转时间为 1275。
实验报告二 进程调度算法
实验报告二——进程调度算法的设计姓名: xxxx 学号: xxxxx班级: xxxx一、实习内容•实现短进程优先调度算法(SPF)•实现时间片轮转调度算法(RR)二、实习目的•通过对进程调度算法的设计, 深入理解进程调度的原理。
进程是程序在一个数据集合上运行的过程, 它是系统进行资源分配和调度的一个独立单位。
进程调度分配处理机, 是控制协调进程对CPU的竞争, 即按一定的调度算法从就绪队列中选中一个进程, 把CPU的使用权交给被选中的进程。
三、实习题目• 1.先来先服务(FCFS)调度算法原理: 每次调度是从就绪队列中, 选择一个最先进入就绪队列的进程, 把处理器分配给该进程, 使之得到执行。
该进程一旦占有了处理器, 它就一直运行下去, 直到该进程完成或因发生事件而阻塞, 才退出处理器。
将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列, 并按照先来先服务的方式进行调度处理, 是一种最普遍和最简单的方法。
它优先考虑在系统中等待时间最长的作业, 而不管要求运行时间的长短。
按照就绪进程进入就绪队列的先后次序进行调度, 简单易实现, 利于长进程, CPU繁忙型作业, 不利于短进程, 排队时间相对过长。
• 2.时间片轮转调度算法RR原理: 时间片轮转法主要用于进程调度。
采用此算法的系统, 其程序就绪队列往往按进程到达的时间来排序。
进程调度按一定时间片(q)轮番运行各个进程.进程按到达时间在就绪队列中排队, 调度程序每次把CPU分配给就绪队列首进程使用一个时间片, 运行完一个时间片释放CPU, 排到就绪队列末尾参加下一轮调度, CPU分配给就绪队列的首进程。
固定时间片轮转法:1 所有就绪进程按FCFS 规则排队。
2 处理机总是分配给就绪队列的队首进程。
3 如果运行的进程用完时间片, 则系统就把该进程送回就绪队列的队尾, 重新排队。
4 因等待某事件而阻塞的进程送到阻塞队列。
5 系统把被唤醒的进程送到就绪队列的队尾。
进程调度算法实验报告
实验报告实验一:进程调度算法一、实验目的1.利用高级语言实现三种不同及进程调度算法:短作业优先算法、时间片轮转调度算法和优先级调度算法。
2.通过实验理解有关进程控制块,进程队列等的概念。
二、实验原理各调度算法思想:1.先来先服务算法(FCFS):按照进程进入就绪队列的先后次序来分配CPU,一旦一个进程占有CPU,就一直运行下去,知道该进程完成工作,才释放CPU。
2.时间片轮转算法:系统将所有就绪进程按到达时间的先后次序排成一个队列,进程调度程序总是选择队列中的第一个进程执行,且仅能执行一个时间片,在使用完一个时间片后,即使进程并未完成其运行,也必须将CPU交给下一个进程;如果一个时间片未使用完就完成了该进程,则剩下的时间分配给下一个进程。
3.优先权调度算法;在创建进程时就确定优先权,确定之后在整个程序运行期间不再改变,根据优先级排列,系统会把CPU分配给优先权最高的进程。
三、实验步骤、数据记录及处理1、算法流程抽象数据类型的定义:PCB块结构体类型struct PCB{int name;int arrivetime; //到达时间int servicetime; //服务时间//int starttime[max]; //开始时间int finishtime; //完成/结束时间int turntime; //周转时间int average_turntime; //带权周转时间int sign; //标志进程是否完成int remain_time; //剩余时间int priority; //优先级}pcb[max];主程序的流程以及各程序模块之间的层次(调用)关系:主程序中从键盘得到进程的数量,创建PCB,调用layout()函数显示选择界面。
Layout()函数中选择相应的算法并调用相关函数如:FCFS()、time_segment();、Priority(),这三个函数分别实现先来先服务算法,时间片轮转算法和优先级算法,最后分别打印。
进程调度 实验报告
一、实验目的 多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那
个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度 问题,加深对进程调度的理解。 二、实验内容 1.优先权法、轮转法
简化假设 1)进程为计算型的(无 I/O) 2)进程状态:ready、running、finish 3)进程需要的 CPU 时间以时间片为单位确定 2.算法描述 1) 优先权法——动态优先权
/*******************优先权调度算法所需函数 *****************************************************/ struct process1*creatlist1(int n) {
srand((int)time(0)); struct process1 *first =new process1; first ->next=NULL; for (int i=0;i<n;i++) {
struct process1 *s; s =new process1; s->pcb =i; s-> privilege=random(20)+5; s->cpu=random(20)+1; insert1(first,s ); } return first; } void insert1(struct process1 *first,struct process1 *s) //插入节点 { struct process1 *p=search(first,s); s->next=p->next; p->next=s; //return; }
调度算法实验报告总结(3篇)
第1篇一、实验目的本次实验旨在通过模拟操作系统中的进程调度过程,加深对进程调度算法的理解。
实验中,我们重点研究了先来先服务(FCFS)、时间片轮转(RR)和动态优先级调度(DP)三种常见的调度算法。
通过编写C语言程序模拟这些算法的运行,我们能够直观地观察到不同调度策略对进程调度效果的影响。
二、实验内容1. 数据结构设计在实验中,我们定义了进程控制块(PCB)作为进程的抽象表示。
PCB包含以下信息:- 进程编号- 到达时间- 运行时间- 优先级- 状态(就绪、运行、阻塞、完成)为了方便调度,我们使用链表来存储就绪队列,以便于按照不同的调度策略进行操作。
2. 算法实现与模拟(1)先来先服务(FCFS)调度算法FCFS算法按照进程到达就绪队列的顺序进行调度。
在模拟过程中,我们首先将所有进程按照到达时间排序,然后依次将它们从就绪队列中取出并分配CPU资源。
(2)时间片轮转(RR)调度算法RR算法将CPU时间划分为固定的时间片,并按照进程到达就绪队列的顺序轮流分配CPU资源。
当一个进程的时间片用完时,它将被放入就绪队列的末尾,等待下一次调度。
(3)动态优先级调度(DP)算法DP算法根据进程的优先级进行调度。
在模拟过程中,我们为每个进程分配一个优先级,并按照优先级从高到低的顺序进行调度。
3. 输出调度结果在模拟结束后,我们输出每个进程的调度结果,包括:- 进程编号- 到达时间- 运行时间- 等待时间- 周转时间同时,我们还计算了平均周转时间、平均等待时间和平均带权周转时间等性能指标。
三、实验结果与分析1. FCFS调度算法FCFS算法简单易实现,但可能会导致进程的响应时间较长,尤其是在存在大量短作业的情况下。
此外,FCFS算法可能导致某些进程长时间得不到调度,造成饥饿现象。
2. 时间片轮转(RR)调度算法RR算法能够有效地降低进程的响应时间,并提高系统的吞吐量。
然而,RR算法在进程数量较多时,可能会导致调度开销较大。
进程调度算法实验报告(总13页)
进程调度算法实验报告(总13页)本次实验是关于进程调度算法的实验,通过实验我们可以更深入地了解进程调度算法对操作系统的影响,选择合适的算法可以提高操作系统的性能。
在本次实验中,我们实现了三种常见的进程调度算法,分别是先来先服务(FCFS)、优先级调度(Priority Scheduling)和时间片轮转(Round-Robin)。
实验环境本次实验在Ubuntu 20.04 LTS操作系统下进行。
实验原理先来先服务(FCFS)调度算法,也称为先进先出(FIFO)算法。
其原理是按照作业提交的先后顺序进行处理,在操作系统中,每个进程都有一个到达时间和一个运行时间,按照到达时间的先后顺序进行处理。
优先级调度(Priority Scheduling)调度算法是根据进程优先级的高低来确定进程的执行顺序。
每个进程都有一个优先级,并且系统的调度程序会选择优先级最高的进程进行执行。
如果有多个进程的优先级相同,则按照先来先服务的原则进行调度。
时间片轮转(Round-Robin)调度算法是为了解决短进程被长进程“挤掉”的问题而提出的一种算法。
它将等待队列中的进程按照先来先服务的原则排序,并且每个进程被分配一个相同的时间片,当时间片用完后,该进程就被放到等待队列的末尾,等待下次调度。
如果当前运行进程在时间片用完之前就执行完毕了,则当前进程会被直接退出,CPU会在就绪队列中选择下一个进程运行。
实验内容本次实验中,我们实现了一个简单的进程调度器,通过实现不同的调度算法来比较它们的性能差异。
需要实现的函数如下:1. void fcfs(vector<process> processes):实现先来先服务(FCFS)调度算法的函数。
实验流程1. 定义进程结构体为了方便处理进程,我们定义了一个process结构体,包含进程的ID、到达时间、运行时间、优先级等信息。
定义如下:struct process {int id; // 进程IDint arrival_time; // 到达时间int burst_time; // 运行时间int priority; // 优先级}2. 实现进程生成函数为了测试不同调度算法的性能,我们需要生成一些具有不同特征的进程。
操作系统实验之进程调度报告
实验一:进程调度一、实习内容1.模拟批处理多道操作系统的进程调度;2.模拟实现同步机构避免并发进程执行时可能与时间相关的错误;二、实习目的进程调度时进程管理的主要内容之一,通过设计,编制,调试一个简单的进程调度模拟系统,对进程调度,进程运行状态变换及PV操作加深理解和掌握。
三、实习题目采用剥夺式优先算法,对三个进程进行模拟调度模拟PV操作同步机构,用PV操作解决进程进入临界区的问题。
【提示】(1)对三个进程进行模拟调度,对各进程的优先数静态设置,P1,P2,P3三个进程的优先数为1,2,3,并指定P1的优先数最高,P3的优先数最低,每个进程都处于执行态“e”,就绪态“r”,等待态“w”三种状态之一,并假定初始态为“r”。
(2)每一个进程用一个PCB表,PCB表的内容根据具体情况设置,该系统在运行过程中能显示或打印各进程和参数的变化情况,以便观察各进程的调度。
(3)在完成必要的初始化后,便进入进程调度程序,首先由P1进入执行,当执行进程因等待某各事件被阻塞或唤醒某个进程等待进程时,转进程调度。
(4)在进入临界区前后,调PV操作。
(5)如果被唤醒的进程优先数高于现有执行的进程,则剥夺现行进程的执行权。
(6)当三个进程都处于等待状态时,本模拟系统退出执行。
四、示例1.数据结构:(1)进程控制块PCBstruct{int id;char status;int priority;int waiter1;}(2)信号量struct{int value;int waiter2;}sem[2](3)现场保护栈stackchar stack[11][4]每个进程都有一个大小为10个字的现场保护栈,用来保护被中断时的断点地址等信息。
(4)全局变量int i;用以模拟一个通用寄存器char addr;用以模拟程序计数器int m1,m2;为系统设置的公用数据被三个进程共享使用。
五、程序框图:六、程序说明:本程序是用C语言编写,模拟三个进程的运行情况,过程在运行中要调用P操作申请信号量,如果该过程得到其申请的信号量,就继续运行,否则P操作阻塞该申请过程的运行,并将过程置为所申请信号量的等待者,如果已有其它过程在等待同一信号量则将该申请过程排在所有等待进程之后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进程调度实验报告
这篇文章将讨论进程调度的相关实验及其结果。
进程调度是指
计算机在多任务环境下对进程进行管理和调度,以便最大化系统
的效率和可靠性。
在进程调度实验中,我们使用了Linux操作系统,并编写了一
段程序来模拟具有多个进程的计算机系统。
我们首先定义了三个
不同类型的进程:I/O Bound进程、CPU Bound进程和Interactive
进程。
I/O Bound进程是一个需要从磁盘读取数据并进行处理的进程,CPU Bound进程则是一个需要使用CPU来完成复杂计算的进程,而Interactive进程是用户与系统交互的进程。
实验中,我们使用了三个不同的进程调度算法:Round Robin、先来先服务(FCFS)和最短作业优先(SJF)。
Round Robin是最
简单的进程调度算法,它会将CPU时间分配给每个进程一段时间,然后切换到下一个进程。
FCFS根据队列中进程的顺序分配CPU
时间。
SJF则是根据进程执行所需时间的长度进行调度的。
在我们的实验中,我们评估了每个算法的性能,并得出了以下
结论:
Round Robin算法的结果最好。
我们发现这种算法的表现非常良好,因为它能在繁忙的计算机系统中平均分配CPU时间,并避免长时间运行的进程占用计算机资源。
FCFS算法的性能很糟糕。
我们发现在FCFS算法中,长时间运行的进程会占用系统资源,而短时间运行的进程则需要等待很久才能获得CPU时间。
这样会导致整个计算机系统的效率下降。
SJF算法表现一般。
我们发现,在繁忙的系统中,SJF算法会基于当前进程的下一步行动来调度进程。
但是,如果多个进程具有相似的执行时间,并且它们需要同时运行,则存在一定的竞争和时间分配的缺陷。
总体来说,进程调度算法是计算机系统中非常重要的一部分,因为它会直接影响系统的效率和可靠性。
在我们的实验中,我们发现Round Robin算法是最好的选择,它能够抵消系统中不同进程需要不同时间的差异,确保每个进程都能获得相应的时间来完成任务。