实验6-离散时间系统的z域分析

合集下载

第6章离散时间体统z域分析ppt课件

第6章离散时间体统z域分析ppt课件

a n
a
n
令 f (n) an x(n) ,则它的Z变换
F(z)
f (n)zn
a n x(n) z n
n
n
所以 an x(n) X ( z )
a
《信号与线性系统》
第6章 离散时间体统z域分析
6.2.5 z域微分特性
若x(n)←——→X(z),收敛域为R,则nx(n)←→
z
dX (z) dz
《信号与线性系统》
第6章 离散时间体统z域分析
u(n) U(z)
1 1 z1
,
z
1
u(n 1)
z1U (z)
z 1 1 z1 ,
z
1
(n)
u(n)
u(n
1)
1 1 z1
z 1 1 z1
1
《信号与线性系统》
第6章 离散时间体统z域分析
6.2.2 移序特性
若 x(n)←——→X(z) 的 收 敛 域 为 A , 则 x(n-n0)←—— →z-n0 X(z)的收敛域也为A,但在零点和无穷远点可能 发生变化。
z re j eT e jT
(6―11)
《信号与线性系统》
第6章 离散时间体统z域分析
6.2 Z变换的性质
6.2.1 线性特性 设x1(n)X1(z)其收敛域为A,x2(n)X2(z),其收敛域为
B , 则 有 ax1(n)+bx2(n)aX1(z)+bX2(z) 其 收 敛 域 为 A∩B (这里a,b为常数)。这一关系显然是和拉普拉斯变换 的同一特性相对应,为了避免不必要的重复,它的证 明从略。
(3)n1>0,n2>0时,有
n2
X (z) x(n)zn

第6章离散时间信号与系统的z域分析

第6章离散时间信号与系统的z域分析

6.4.2 LTI离散时间系统零状态响应的 zT分析法 p188
若已知LTI离散时间系统的单位冲激序列响应
h[n]和输入信号f[n] 。计算
h[n]H(z),| z|:(ah,bh) f[n]F(z),| z|:(af,bf ) y[z]F(z)H(z),| z|:公共部分
则:yf [n]Z1[Y(z),]| z|:公共部分 当因果信号通过散 因LT果系 I 离统时, 由于公共收敛域在 一, 定因 存此可 不再讨再讨论收敛
区外极点是反因果分量 的贡献。
收敛边界a
pk
,b
max
pk'

min
j Im[ z ]
0a
b
Re[ z ]
图6-1 (a)
2、因果序列的ZT的收敛域是Z平面上某园的
园外部分 z:(a,) ,全部极点为区内极点 pk
,收敛边界 a pk max
如图6-1(b)所示。
j Im[ z ]
0a
Re[ z ]
若f: [n]F(z),z:(a,)
则n: [fn]zF/(z),z:(a,)
证明:
F ( z ) f [ k ] z k , | z |: ( a . ) k0
上式两端对 z求导,得:
F ' ( z ) f [ n ]( n ) z n 1 n0
z 1 nf [ n ] z n n0
M
bM (z i )

H(z)
i1 N
(z pj )
j1
j Im[z]
1
0
1
Re[ z]
图6-5 H(z)极点分布与h[k]的关系
2.离散时间系统的因果性 3.因果LTI离散时间系统的稳定性p196

第6章 离散系统的Z域分析

第6章 离散系统的Z域分析
k→∞ Z→1
6、初值定理和终值定理
例子
例6.3 求kU(k)的Z变换。 kU(k)的 变换。
F ( Z ) = ∑ kZ k = Z 1 + 2 Z 2 + 3Z 3 +
k =0 ∞
Z 1 F ( Z ) = Z 2 + 2 Z 3 + 3Z 4 + (1 Z 1 ) F ( Z ) = Z 1 + Z 2 + Z 3 + = 1 + Z 1 + Z 2 + Z 3 + 1 1 Z ∞ = 1 1 1 Z
§6.2 Z变换的性质 Z变换的性质
1、线性特性
f1(k)←→F1(Z), f2(k)←→F2(Z) )←→F )←→F )+bf )←→aF 则af1(k)+bf2(k)←→aF1(Z)+ bF2(Z)
2、尺度变换
f(k)←→F(Z) )←→F )←→F Z/a) 则akf(k)←→F(Z/a)
5、F(z)微分特性 F(z)微分特性
f(k)←→F(Z) )←→F d d kf(k)←→-Z──F(Z), kf(k)←→(-Z─)nF(Z) kf( )←→- ──F kf( )←→(- dZ dZ 若f(k)为因果序列,即k<0时f(k)=0,则 为因果序列, <0时 )=0, f(0)=lim F(Z) Z→∞ (Z及lim f(k)=lim (Z-1)F(Z)
3、移序性质
f(k)←→F(Z) )←→F f(k+1)←→Z[F(Z)-f(0)] +1)←→Z n-1 f(k+n)←→ZnF(Z)-Zn∑f(k)Z-k )←→Z
k=0
4、卷积定理

数字信号处理实验离散系统的Z域分析

数字信号处理实验离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。

∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。

3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

第6章 离散时间系统的z域分析

第6章 离散时间系统的z域分析

1 | z | 1 2 | z | 2
例 求序列f (k ) cosh (2k ) (k )的z变换。
1 2k 由于 cosh ( k ) (e e 2 k ) 2 2 在单边指数序列a k ( k )的z变换中令a e 2 , 可得 z e (k ) , | z || e 2 | z e2 根据z变换的线性性质可得
f (k )
3
f ( k ) ( k ) 3
2
2
1
1 o 1 2
f ( k 1) 3 2
k
1 o 1 2
f ( k 1) ( k ) 3 2
1
k
1
1 o 1 2
f ( k 1)
k
1 o 1 2
f ( k 1) ( k )
3
k
3
2 1
1 o 1 2
k
1 o 1 2
k
(1)双边Z变换的移位 若 f (k ) F ( z )
k 0
该式称为单边Z变换。
将f ( k )的Z变换简记为Z [ f ( k )] ,象函数F ( z )的逆z变换 简记为Z
1
[ F ( z )] f ( k )与F ( z )两者间的关系简记为 ,
f (k ) F ( z )


在拉普拉斯变换分析中重点讨论了单边拉普拉斯 变换,这是由于在连续时间系统中,非因果信号 的应用较少。 对于离散系统,非因果信号也有一定的应用范围, 因此对单、双边z变换都进行讨论。
a
b
O
Re(z )
6.1.3 常见序列的Z变换
(k )
1
O
k
(k ) 1

第六章离散时间信号与系统的z域分析

第六章离散时间信号与系统的z域分析

例6.1 求双边序列 f k a
k
a 1
的Z变换,并确定它的收敛域。
解:双边指数序列可写为右边序列和左边序列之和,即 a k a k k a k k 1
右边序列
a k k 的Z变换 Fa z
k
z Fa z , z a za
以后我们的讨论将限于单边z变换,记做F ( z ) Z f (k )
k 0
2、s平面和z平面间的对应关系 z e sT e ( j )T eT e jT z e j z eT
Im[ z ] j
s平面 z平面 Re[z ]
T

二、z变换的收敛域 z变换是z的幂级数,F ( z ) z变换存在的充要条件是

Z [ f (k-m) (k m)] z m F ( z ) Z [ f (k m) ( k m)] z m F ( z )
例如:
Z [ f ( k 1) ( k )] zF ( z ) zf (0) Z [ f ( k 2) ( k )] z 2 F ( z ) z 2 f (0) zf (1)
则左移后 f (k m) (k ) z m [ F ( z ) f (k ) z k ]
k 0 m 1
右移后 f (k m) (k ) z [ F ( z )
m
k m

1
f (k ) z k ]
(3) 若f (k )是因果序列,其单边 变换为 f ( k ) (k ) F ( z ) z Z [ f (k-m) (k )] z m F ( z ) m 1 常用 Z [ f (k m) (k )] z m F ( z ) z m f (k ) z k k 0

第六章 离散系统的z域分析

第六章 离散系统的z域分析
3z 例: 2δ(k)+ 3ε(k) ←→ 2 + δ ε z −1
第1-12页 12页
z > 1
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
二、移位特性
双边z 双边z变换
若: f (k) ←→F (z) , α<z<β,且有整数 β 且有整数m>0, , 则: f(k±m) ←→ z±mF(z), α<z<β ± , β
2 2
z > a
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
四、卷积定理
若: f1 (k) ←→F1(z) , α1<z<β1 β f2 (k) ←→F2(z) , α2<z<β2 β 则: f1(k) * f2(k) ←→ F1(z)F2(z), , 例 收敛域至少为 相交部分 求单边序列 (k+1)akε(k)的z变换,(0<a<1)。 的 变换, 。 变换
三、z域尺度变换(序列乘ak) 域尺度变换(序列乘a
若: f (k) ←→F (z) , α<z<β,且对整数m>0, β 且对整数 , 则: ak f(k) ←→ F(z/a), αa<z<βa , β 变换。 例:求指数衰减正弦序列 aksin(βk)ε(k) 的z变换。 β 解:
6.1 z 变 换
b k , k < 0 f 2 (k ) = b k ε (−k − 1) = 0, k ≥ 0
解: 反因果序列的 变换为: 反因果序列的z变换为 变换为:

实验6-离散时间系统的z域分析

实验6-离散时间系统的z域分析

一,实验目的理解关于z变换及其反变换的定义和MATLAB实现,理解系统零极点分布与系统特性的关系。

二,实验原理1.z变换z变换调用函数Z=ztrans(F)z反变换调用函数F=ilaplace(Z)2.离散时间系统的系统函数3.离散时间系统的零极点分析可以通过调用函数zplane:zplane(b,a):b、a为系统函数的分子、分母多项式的系数向量。

zplane(z,p):z、p为零极点序列。

三,实验内容(1)已知因果离散时间能系统的系统函数分别为:①②试采用MATLAB画出其零极点分布图,求解系统的冲击响应h(n)和频率响应H(),并判断系统是否稳定。

①MATLAB程序如下:b=[1 2 1]a=[1 -0.5 -0.005 0.3]subplot(131)zplane(b,a)subplot(132)impz(b,a,0:10)subplot(133)[H,w]=freqz(b,a)plot(w/pi,H)程序执行结果如下:由程序执行结果,当t趋于无穷,响应趋于0,所以该系统是稳定系统。

②MATLAB程序如下:b=[1]a=[1 -1.2*2^(1/2) 1.44]subplot(131)zplane(b,a)subplot(132)impz(b,a,0:10)subplot(133)[H,w]=freqz(b,a)plot(w/pi,H)程序执行结果如下:由程序执行结果,t趋于无穷,系统响应发散,故该系统是不稳定系统。

(2)已知离散时间系统系统函数的零点z和极点p分别为:试用MATLAB绘制下述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。

①z=0,p=0.25MATLAB程序如下:b=[1 0]a=[1 -0.25]sys=tf(b,a)subplot(211)zplane(b,a)subplot(212)impz(b,a)程序执行结果如下:②z=0,p=1 MATLAB程序如下: b=[1 0]a=[1 -1]sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:③z=0,p=-1.25 MATLAB程序如下: b=[1 0]a=[1 1.25]sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:④z=0,p1=0.8,p2=MATLAB程序如下:b=[1 0]a=[1 -1.6*cos(pi/6) 0.64] sys=tf(b,a)subplot(211)zplane(b,a)subplot(212)impz(b,a)程序执行结果如下:⑤z=0,p1=,MATLAB程序如下:b=[1 0]a=[1 -cos(pi/4) 1] sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:⑥z=0,p1=1.2,p2=1.2MATLAB程序如下:z=0p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)] subplot(211)zplane(z,p)subplot(212)b=[1 0]a=[1 -2.4*cos(3*pi/4) 1.44]impz(b,a,0:30)程序执行结果如下:答:由执行结果知,当极点p在单位圆内时,系统响应收敛,该系统为稳定系统;当极点p 在单位圆上时,系统响应保持不变;当极点p在单位圆外时,系统响应发散,该系统为非稳定系统。

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。

Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。

当然, Z 变换与拉氏变换也存在着一些重要的差异。

6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。

当 z= e j时, Z 变换就转变为傅立叶变换。

因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。

而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。

那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。

只有当式 (6.3) 的级数收敛,X (z) 才存在。

X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。

在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。

6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。

在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。

6 离散时间信号与系统的Z域分析

6 离散时间信号与系统的Z域分析

f[n] z
n
h[n]
y[n] H(z)z
n
即复指数序列是离散时间LTI系统的特征函数, 系统的特征函数, 即复指数序列是离散时间 系统的特征函数
H ( z) =
k = ∞


h[k ]z k
为特征函数所对应的特征值 .
定义Z变换 变换: 定义 变换: F ( Z ) =
n = ∞


f [ n] z n
离散时间信号与系统的Z域分析 第六章 离散时间信号与系统的 域分析
第四章的拉氏变换为傅立叶变换对于连续情况的一种推广, 第四章的拉氏变换为傅立叶变换对于连续情况的一种推广, 相应地这一章所讲Z变换就是对于离散傅立叶变换的一种 相应地这一章所讲 变换就是对于离散傅立叶变换的一种 推广. 推广.
6.1 Z变换 变换 特征函数特征值的概念: 特征函数特征值的概念:
那么,与连续情况类似, 那么,与连续情况类似,在某些情况下不满足绝对可加条 件的信号,乘以收敛因子之后就可能满足条件,即若: 件的信号,乘以收敛因子之后就可能满足条件,即若:
n = ∞


| f [ n ]r n |< ∞
变换就存在. ,则Z变换就存在.因此,对于 变换就存在 因此,对于Z
变换来讲,也存在一个收敛域的问题, 变换来讲,也存在一个收敛域的问题,
1.对于一阶极点 ,可以展开为: 对于一阶极点 可以展开为:
AN A1 A2 F ( z) = + + z z z1 z z 2 z zN
其中: 其中:
( z zi )F ( z) Ai = | z = zi z
对于含有二阶或二阶以上极点的z变换, 对于含有二阶或二阶以上极点的 变换, 其逆变换的求法如 变换 下:

离散时间系统的z域分析

离散时间系统的z域分析

第七章 离散时间系统的z 域分析1.z 变换是如何提出的?它的作用是什么?z 变换是为分析离散时间系统而提出的一种工程分析方法,它在离散时间系统分析中的地位和作用等价于连续时间系统分析中的拉氏变换。

它可以看作为拉氏变换的推广。

z 变换定义为:()[]nn X z x n z∞-=-∞=∑ ---- 双边z 变换 (1)()[]nn X z x n z ∞-==∑---- 单边z 变换 (2) 其中z 是复变量,Re Im j z z j z re Ω=+=。

而对于取样信号的拉氏变换为()()()() ()() ()stst s s n st n snTn X s x t e dt x nT t nT e dtx nT e t nT dt x nT e δδ∞∞∞---∞-∞=-∞∞∞--∞=-∞∞-=-∞⎡⎤==-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=∑⎰⎰∑⎰∑(3)如果 [](),x n x nT =令sT z e =,可以发现式(1)和式(3)相同。

2.双边z 变换和单边z 变换时如何定义的?它们的定义域是如何确定的?收敛域的意义是什么?z 变换定义为:()[]nn X z x n z∞-=-∞=∑ ---- 双边z 变换 (1)()[]nn X z x n z ∞-==∑---- 单边z 变换 (2) z 变换收敛域就是使上述级数收敛的所有z 的取值的集合。

根据级数收敛理论,一般我们用根值判别法或比值判别法来确定z 变换收敛域, 其作用是建立序列和z 变换之间的一一对应关系。

根据序列的不同性质,序列z 变换的收敛域各不相同,具体参阅教材Page 297-298 表7-1。

3.z 变换和拉氏变换之间有什么样的关系?具体分析见问题1中的式(1)和(3),根据两式,可以建立分析连续时间系统的拉氏变换的变量s 和分析离散时间系统的z 变换的变量z 之间的映射关系:sT z e =令, j z re s j σωΩ==+, 则有, Tr eT σω=Ω=, 具体见教材Page 300 表7-2 。

Matlab讲义-离散时间系统的Z域分析

Matlab讲义-离散时间系统的Z域分析

atlab讲义-离散时间系统的Z 域分析离散时间系统的Z 域分析一、实验目的1. 加深理解和掌握离散时间序列信号求Z 变换和逆Z 变换的方法。

2. 加深理解和掌握离散时间系统的零极点分布于时域特征关系。

二、实验内容1. 离散时间信号的Z 变换()()n n F z f n z +∞-=-∞=∑(1)双边Z 变换,单边Z 变换MATLAB 实现 F=ztrans(f)//Z 变换 f=iztrans(F)//逆Z 变换7-1 已知序列1()()n f n a u n =,序列2()f n 的Z 变换为22()/(1/2)F z z z =-,求序列1()f n 的z 变换,2()F z 的逆z 变换。

f1=sym('a^n'); F1=ztrans(f1) F2=sym('z/(z-1/2)^2'); f2=iztrans(F2) F1 =z/a/(z/a-1) f2 =2*(1/2)^n*n由此可知 11zza F z z a a ==--,21()2()()2n f n nu n =2. 系统函数1201212012()()()mm nn b b z b z b z B z H z A z a a z a z a z------++++==++++ (2) 1111(1)(2)()()(1)(2)1(1)1(2)1()r r r n H z k k z p z p zp n z----=++++++--- MATLAB 实现 residuez()函数。

7-2 已知因果系统的传递函数2()(1/2)(1/4)z H z z z =--。

利用MATLAB 计算()H z 的部分分式展开,求单位冲激响应画出图形。

B=1;A=[1 -0.75 0.125]; [r p k]=residuez(B,A) r =2 -1 p =0.5000 0.2500 k =[]1121()10.510.25H z z z--=---。

信号与系统 第六章离散系统的Z域分析

信号与系统  第六章离散系统的Z域分析
j
Z平面

k 1 k (1 z ) ( 3z ) 3 k 1 k 0


0
|z|<3时,第一项收敛于
z ,对应于左边序列。 z 3 z |z|>1/3时,第二项收敛于 ,对应于右边序列。 1 收敛域 z3
1 3
3
1 当 | z | 3 时, 3
8 z z 3 z F ( z) 1 z 3 z 3 ( z 3)( z 1 3)
应用尺度变换:
k

sin k (k )
z a
z sin z 2 2 z cos 1
0< a <1
sin a z sin a sin k (k ) z 2 z ( a ) 2( a ) cos 1 z 2 2 a z cos a 2
§6.2
Z变换的性质
| k-3|(k)
解:(1) F z
k k k z 1
k 1
(2) 双边z变换: F z
k
f k z


k
2 1 z 2z 3 2 z z
2
0 z
单边z变换: F z f k z
k 0
长春理工大学
零点:0 极点:3,1/3
§6.1
Z 变换
Z变换的收敛域
收敛域内不包含任何极点,在极点处,F(z)为无穷大, Z变换不收敛。 有限长序列的收敛域为整个Z平面, 可能不含z=0, z=。 因果有限长序列: F(z)=f (1)z -1+ f (2)z -2+· · · · |z|>0 反因果有限长序列: F(z)=f (-1)z 1+ f (-2)z2+· · · · |z|< 如果是因果序列,收敛域为|z|>0圆的外部。 如果是左边序列,收敛域为|z|<0 。 如果是双边序列,收敛域由圆环组成。

离散时间系统的z域分析

离散时间系统的z域分析

第7章离散时间系统的z 域分析1. z 变换是如何提出的?它的作用是什么?z 变换是为分析离散时间系统而提出的一种工程分析方法, 统分析中的地位和作用等价于连续时间系统分析中的拉氏变换。

氏变换的推广。

Re z j Im z 而对于取样信号的拉氏变换为x( nT)e snT2. 双边z 变换和单边z 变换时如何定义的?它们的定义域是如何确定的?收敛 域的意义是什么?z 变换定义为:X (z ) x[n]z n ----双边z 变换(1)nX(z) x[n]z n----单边 z 变换(2)n 0z 变换收敛域就是使上述级数收敛的所有 z 的取值的集合。

根据级数收敛理 论,一般我们用根值判别法或比值判别法来确定 z 变换收敛域, 其作用是建立序列和z 变换之间的一一一对应关系。

根据序列的不同性质,序列 z 变换的收敛域各不相同,具体参阅教材 Page297-298 表 7-1 oz 变换定义为:X (z )x[n]z nn----双边z 变换(1)X(z)x[n]z nn 0单边z 变换 (2)X s (s)X s (t)estdt x(nT) (t nT) e stdtx(nT) e st(tnT)dt (3)它在离散时间系 它可以看作为拉re J o其中z 是复变量,z如果 x[n] x(nT),令 ze sT ,可以发现式(1)和式(3)相同3.z变换和拉氏变换之间有什么样的关系?具体分析见问题1中的式(1)和(3),根据两式,可以建立分析连续时间系统的拉氏变换的变量s和分析离散时间系统的z变换的变量z之间的映射关系:sT令z re j, s j ,则有r e T, T,具体见教材Page 300表7-2 。

4.z逆变换的求解方法有几种?在应用部分分式求解z逆变换时,应注意什么问题?z逆变换的求解方法主要有三种:围线积分法(复变函数理论),幕级数展开法和部分分式展开法。

其中幕级数展开法只适用于单纯的左边序列或右边序列,而且不易得到序列的解析式,因而实际中使用不多;而围线积分法(复变函数理论)和部分分式展开法因其方法的逻辑性较强,适用于各种序列,而且便于得到序列的解析式,所以,最为我们所采纳。

第6章z变换离散时间系统的z域分析

第6章z变换离散时间系统的z域分析


Res[F(z),zk]=(z-zk)F(z)|z=zk

• 如果极点zk是N阶极点,根据留数定理,极点留数 用下式求解:
• 根据留数辅助定理下式成立:
• 根据留数辅助定理下式成立: •
• 但是上式成立需要一个条件,条件是: 假设X(z) 用有理式X(z)=P(z)/Q(z)表示,P(z)和Q(z)分别是M 与N 阶多项式,要求下式成立:
•二.收敛域
• • 我们知道,一个序列的Z变换有无意义, 首先要看它是否收敛,而收敛与否的判断又取
决于该变换收敛域的具体界定, 所以,讨论Z变 换,就必然要考虑其收敛域的确切情形。

• 1.定义:


使序列x(n)的z变换X(z)收敛的所有z
值的集合称作X(z)的收敛域.
•2.收敛条件:
• • X(z)收敛的充要条件是绝对可和。
• 因为n≥0

x(n)=(an-a-n)u(n)
• 当然也可以用留数定理求n<0时的x(n),它一定是x(n)=0。该
例题说明记住序列特点和收敛域的一些结论可以简化解题过程。
• 例 3 假设x(n)的Z变换用下式表示: •

•收敛域取|z|<|a|,试求其原序列x(n) • 解 由于收敛域是在以|a|为半径的圆内,可以推论这是一个左 序列,又由于收敛域包含z=0点, x(n)的n值全部取负整数,或者 说当n≥0时,x(n)=0,因此只需要求解n<0时的x(n)。
•表 常见序列的Z变换及其收敛域
§6-3 Z逆变换
一.定义:
已知X(z)及其收敛域,反过来求序列
x(n)的变换称作Z反变换。
•z变换公式:
• 逆z变换是一个

第六章离散系统的Z域分析

第六章离散系统的Z域分析

z z F (z) ( a z b ) za zb
a z 当 1且 1即a z b 收敛 z b
j Im [z ]
b
0
a
Re [ z ]
5
由上可知 (1) z变换的收敛域与f(k) 与z值的范围有关,两 个不同的序列由于收敛域不同可能对应于同一个z 变换,为了单值的确定z变换对应的序列,在给出 序列的z变换式的同时,必须明确其收敛域。
m
n m
f (n)z
1
n m
f (n)z
n
1
n
]
]
14
z f ( k m ) ( k ) f ( k m )z
k 0

k
z
m
f (k m )z
k 0

( k m )
z
m
z [ f ( n)z
n 0
m m 1 n 0
据定义
zkf ( k )
k 1
z ( kz
k
d k d z z f (k ) z F ( z ) dz k dz
时域序列线性加权的z变换为原序列象函数微 20 分后乘以(z)
kf (k )z dz ) f ( k ) z [ dz
k k
k

k
] f (k )
推广:
m
d m k f ( k ) ( z ) F ( z ) ( 1 z 2 ) dz
d m ( z ) F ( z )表示对F ( z )求导并乘以 ( z )共m次 dz
z 例4、 若 已 知 z[ ( k )] ,求 斜 变 序 列 k ( k )的z变 换 z 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一,实验目的
理解关于z变换及其反变换的定义和MATLAB实现,理解系统零极点分布与系统特性的关系。

二,实验原理
1.z变换
z变换调用函数Z=ztrans(F)
z反变换调用函数F=ilaplace(Z)
2.离散时间系统的系统函数
3.离散时间系统的零极点分析
可以通过调用函数zplane:
zplane(b,a):b、a为系统函数的分子、分母多项式的系数向量。

zplane(z,p):z、p为零极点序列。

三,实验内容
(1)已知因果离散时间能系统的系统函数分别为:
①H z=z 2+2z+1
z−0.5z−0.005z+0.3
②H z=z 2+2z+1
3z+3z−z+3z−1
试采用MATLAB画出其零极点分布图,求解系统的冲击响应h(n)和频率响应H(e jΩ),并判断系统是否稳定。

①H z=z 2+2z+1
z3−0.5z2−0.005z+0.3 MATLAB程序如下:
b=[1 2 1]
a=[1 -0.5 -0.005 0.3] subplot(131)
zplane(b,a)
subplot(132)
impz(b,a,0:10)
subplot(133)
[H,w]=freqz(b,a)
plot(w/pi,H)
程序执行结果如下:
由程序执行结果,当t趋于无穷,响应趋于0,所以该系统是稳定系统。

②H z=z 2+2z+1
3z4+3z3−z3+3z−1 MATLAB程序如下:
b=[1]
a=[1 -1.2*2^(1/2) 1.44] subplot(131)
zplane(b,a)
subplot(132)
impz(b,a,0:10)
subplot(133)
[H,w]=freqz(b,a)
plot(w/pi,H)
程序执行结果如下:
由程序执行结果,t趋于无穷,系统响应发散,故该系统是不稳定系统。

(2)已知离散时间系统系统函数的零点z和极点p分别为:
试用MATLAB绘制下述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。

①z=0,p=0.25
MATLAB程序如下:
b=[1 0]
a=[1 -0.25]
sys=tf(b,a)
subplot(211)
zplane(b,a)
subplot(212)
impz(b,a)
程序执行结果如下:
②z=0,p=1 MATLAB程序如下: b=[1 0]
a=[1 -1]
sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)
impz(b,a)
程序执行结果如下:
③z=0,p=-1.25 MATLAB程序如下: b=[1 0]
a=[1 1.25]
sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)
impz(b,a)
程序执行结果如下:
④z=0,p1=0.8e j π
6,p2=0.8e
−jπ
6
MATLAB程序如下:
b=[1 0]
a=[1-1.6*cos(pi/6)0.64] sys=tf(b,a)
subplot(211)
zplane(b,a)
subplot(212)
impz(b,a)
程序执行结果如下:
⑤z=0,p1=e j π
,e−j
π
MATLAB程序如下:
b=[1 0]
a=[1 -cos(pi/4) 1] sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)
impz(b,a)
程序执行结果如下:
⑥z=0,p1=1.2e j 3π
,p2=1.2e−j

MATLAB程序如下:
z=0
p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)] subplot(211)
zplane(z,p)
subplot(212)
b=[1 0]
a=[1 -2.4*cos(3*pi/4) 1.44]
impz(b,a,0:30)
程序执行结果如下:
答:由执行结果知,当极点p 在单位圆内时,系统响应收敛,该系统为稳定系统;当极点p 在单位圆上时,系统响应保持不变;当极点p 在单位圆外时,系统响应发散,该系统为非稳定系统。

(3)已知离散时间系统的系统函数分别为:
①H z =
z (z +2)(z−0.8e j π6)(z−0.8e −j π6) ②H z =z (z−2)
(z−0.8e j π6)(z−0.8e −j π6) 上述两个系统具有相同的极点,只是零点不同,试用MATLAB 分别绘制上述两个系统的零极点分布图及相应单位抽样响应的时域波形,观察并分析系统函数零点位置对单位抽样响应时域特性的影响。

①H z =z (z +2)(z−0.8e j π6)(z−0.8e −j π6)
MATLAB 程序如下:
b=[1 2 0]
a=[1 -0.8*3^(1/2) 0.64]
subplot(121)
zplane(b,a)
subplot(122) impz(b,a,0:20)
程序执行结果如下:
②H z =z (z−2)
(z−0.8e j π6)(z−0.8e −j π6)
MATLAB 程序如下: b=[1 -2 0]
a=[1 -0.8*3^(1/2) 0.64] subplot(121)
zplane(b,a)
subplot(122)
impz(b,a,0:20) 程序执行结果如下:
答:由题目可知,极点相同,所以,响应的波形都是收敛的;且两个系统的零点正好为相反数,其波形在形状上是上下相反的。

因此,零点不影响系统响应函数波形的收敛情况,只影响其波形的起伏状况。

四,心得体会
在最后一次实验中,MATLAB使我巩固了对系统零极点部分知识的掌握和理解。

相关文档
最新文档