牛顿运动定律(习题)
牛顿运动定律练习题-选择(附答案)
牛顿运动定律专题训练一、选择题1、如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。
每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放(初速为0),用t 1、t2、t 3依次表示滑环到达d 所用的时间,则( )A .t 1 < t 2 < t 3B .t 1 > t 2 > t 3C .t 3 > t 1 > t 2D .t 1 = t 2 = t 32、光滑斜轨道P A 、PB 、PC 的端点都在竖直平面内的同一圆周上,物体从P 点由静止开始沿不同轨道下滑,如图,下列说法中正确的是( ) A .物体沿P A 下滑时间最短; B .物体沿PB 下滑时间最短; C .物体沿PC 下滑时间最短;D .物体沿不同轨道下滑所用时间相同。
3、有三个光滑斜轨道1、2、3,它们的倾角依次是600,450和300,这些轨道交于O 点.现有位于同一竖直线上的3个小物体甲、乙、丙,分别沿这3个轨道同时从静止自由下滑,如图,物体滑到O 点的先后顺序是( )A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后4、一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图中所示四种情况中符合要求的是( )5、一质量为m 的人站在电梯中,电梯加速上升,加速度大小为g/3,g 为重力加速度。
则人对电梯底部的压力为( )A .mg 31B .2mgC .mgD .mg 346、下列哪个说法是正确的?( )A .体操运动员双手握住单杠吊在空中不动时处于失重状态;B .蹦床运动员在空中上升和下落过程中都处于失重状态;C .举重运动员在举起杠铃后不动的那段时间内处于超重状态;D .游泳运动员仰卧在水面静止不动时处于失重状态。
【物理】物理牛顿运动定律练习题及答案及解析
(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
(1)小环的质量 m;
(2)细杆与地面间的倾角 a. 【答案】(1)m=1kg,(2)a=30°. 【解析】 【详解】
由图得:0-2s 内环的加速度 a= v =0.5m/s2 t
前 2s,环受到重力、支持力和拉力,根据牛顿第二定律,有: F1 mg sin ma 2s 后物体做匀速运动,根据共点力平衡条件,有: F2 mg sin
=4m/s2
解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1s
(2)由静止到动摩擦因素发生变化的位移:x1= a1t2=2m
动摩擦因数变化后,由牛顿第二定律得加速度:a2=
=5m/s2
由 vB2-v2=2a2(L-x1) 解得滑雪者到达 B 处时的速度:vB=16m/s (3)设滑雪者速度由 vB=16m/s 减速到 v1=4m/s 期间运动的位移为 x3,则由动能定理有:
;解得 x3=96m
速度由 v1=4m/s 减速到零期间运动的位移为 x4,则由动能定理有:
;解得 x4=3.2m
所以滑雪者在水平雪地上运动的最大距离为 x=x3+x4=96+ 3.2=99.2m
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:
牛顿运动定律练习题
牛顿运动定律练习题一、选择题1.关于伽利略的理想实验,以下说法中正确的是( )A .伽利略的实验是假想实验,事实上无法完成,从而得出的结论不可靠B .是以可靠事实为基础,经科学抽象出来的C .伽利略通过斜面实验得到结论:一切运动着的物体在没有受到阻力作用的时候,它的速度不变,并且一直运动下去D .伽利略利用自己设计的理想实验,观察到小球不受阻力时以恒定速度运动,从而推翻了亚里士多德的结论2.一个物体在水平恒力F 的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t ,速度变为v ,如果要使物体的速度变为2v ,下列方法正确的是( )A .将水平恒力增加到2F ,其他条件不变B .将物体质量减小一半,其他条件不变C .物体质量不变,水平恒力和作用时间都增为原来的两倍D .将时间增加到原来的2倍,其他条件不变 3.关于物体的惯性,下列说法中正确的是( )A .把手中的球由静止释放后,球能加速下落,说明力是改变物体惯性的原因B .我国优秀田径运动员刘翔在进行110 m 栏比赛中做最后冲刺时,速度很大,很难停下来,说明速度越大,物体的惯性也越大C .战斗机在空战时,甩掉副油箱是为了减小惯性,提高飞行的灵活性D .公交汽车在起动时,乘客都要向前倾,这是乘客具有惯性的缘故 4.如图所示,物块A 和B 的质量均为m ,吊篮C 的质量为2m ,物块A 、B 之间用轻弹簧连接.重力加速度为g ,将悬挂吊篮的轻绳烧断的瞬间,A 、B 、C 的加速度分别为( )A .a A =0B . a B =g3C .a C =gD .a B =2g5.如图甲所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆间的动摩擦因数为μ.现给环一个向右的初速度v 0,同时对环加一个竖直向上的作用力F ,并使F 的大小随v 的大小变化,两者的关系为F =kv ,其中k 为常数,则环在运动过程中的速度图象可能是图乙中的( )6.如图所示,一水平方向足够长的传送带以恒定的速率v 1沿顺时针转动,传送带右侧有一与传送带等高的光滑水平面,一物块以初速度v 2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为v 3.则下列说法正确的是( )A .只有v 1=v 2时,才有v 3=v 1B .若v 1 >v 2,则v 3=v 2C .若v 1 <v 2,则v 3=v 1D .不管v 2多大,总有v 3=v 17.(2011·四川卷,19)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则A .火箭开始喷气瞬间伞绳对返回舱的拉力变小B .返回舱在喷气过程中减速的主要原因是空气阻力C .返回舱在喷气过程中所受合外力可能做正功D .返回舱在喷气过程中处于失重状态 8.(2011·福建卷,16)如图3-3-21甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图3-3-21乙所示.已知v 2>v 1,则A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用9.某研究性学习小组用实验装置模拟火箭发射卫星.火箭点燃后从地面竖直升空,燃料燃尽后火箭的第一级和第二级相继脱落,实验中测得卫星竖直方向的速度—时间图象如图所示,设运动中不计空气阻力,燃料燃烧时产生的推力大小恒定.下列判断正确的是( )A .t 2时刻卫星到达最高点,t 3时刻卫星落回地面B .卫星在0~t 1时间内的加速度大于t 1~t 2时间内的加速度C .t 1~t 2时间内卫星处于超重状态D .t 2~t 3时间内卫星处于超重状态10.身高和质量完全相同的两人穿同样的鞋在同一水平面上通过一轻杆进行顶牛比赛.企图迫使对方后退.设甲、乙两人对杆的推力分别是F1、F 2,甲、乙两人身体因前倾而偏离竖直方向的夹角分别为α1、α2,倾角α越大,此刻人手和杆的端点位置就越低,如图所示,若甲获胜,则( )A .F 1=F 2,α1>α2B .F 1>F 2,α1=α2C .F 1=F 2,α1<α2D .F 1>F 2,α1>α211. (2011·高考北京理综卷)“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处, 从几十米高处跳下的一种极限运动. 某人做蹦极运动, 所受绳子拉力F 的大小随时间t 变化的情况如图所示. 将蹦极过程近似为在竖直方向的运动, 重力加速度为g .据图3-1-12可知, 此人在蹦极过程中最大加速度约为 A. g B. 2g C. 3g D. 4g12. 如图所示, 两个质量分别为m 1=1 kg 、m 2=4 kg 的物体置于光滑的水平面上, 中间用轻质弹簧秤连接. 两个大小分别为T 1=30 N 、T 2=20 N 的水平拉力分别作用在m 1、m 2上, 则达到稳定状态后, 下列说法正确的是( )A. 弹簧秤的示数是25 NB. 弹簧秤的示数是50 NC. 在突然撤去T2的瞬间, m2的加速度大小为7 m/s2D. 在突然撤去T1的瞬间, m1的加速度大小为28 m/s213.(2011·高考新课标全国卷)如图所示, 在光滑水平面上有一质量为m1的足够长的木板, 其上叠放一质量为m2的木块. 假定木块和木板之间的最大静摩擦力和滑动摩擦力相等. 现给木块施加一随时间t增大的水平力F=kt(k是常数), 木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是( )14. (2012·安徽省城名校高三第三次联考)如图所示, 在光滑的水平面上叠放A、B两滑块(B 足够长), 其中A的质量为1 kg, B的质量为2 kg, 现有一水平作用力F作用于B上, A、B间的摩擦因数为0.2, 当F取不同值时, (g=10 m/s2)关于A的加速度说法正确的是( )A. 当F=2 N, A的加加速度为2 m/s2B. 当F=4 N, A的加加速度为2 m/s2C. 当F=5 N, A的加加速度为2 m/s2D. 当F=7 N, A的加加速度为2 m/s215.如图①所示,一根轻弹簧竖直立在水平地面上,下端固定.一物块从高处自由落下,落到弹簧上端,将弹簧压缩至最低点.在上述过程中,物块加速度的大小随下降位移x变化关系的图像可能是图②中的()16.如下图所示,水平力F把一个物体紧压在竖直的墙壁上静止不动,下列说法中正确的是()A.作用力F跟墙壁对物体的压力是一对作用力与反作用力B.作用力F与物体对墙壁的压力是一对平衡力C.物体的重力跟墙壁对物体的静摩擦力是一对平衡力D.物体对墙壁的压力与墙壁对物体的压力是一对作用力与反作用力17.(2013·安徽“江南十校”联考)如图a所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图b所示(取g=10 m/s2),则正确的结论是()A.物体与弹簧分离时,弹簧处于压缩状态B.弹簧的劲度系数为7.5 N/cmC.物体的质量为3 kgD.物体的加速度大小为5 m/s218.如下图所示,竖直放置在水平面上的轻弹簧上放着质量为2 kg 的物体A ,处于静止状态.若将一个质量为3 kg 的物体B 轻放在A 上的一瞬间,则B 对A 的压力大小为(g 取10 m/s 2)( )A .30 NB .0C .15 ND .12 N 19. (2010·高考山东理综卷)如图所示, 物体沿斜面由静止滑下, 在水平面上滑行一段距离停止, 物体与斜面和水平面间的动摩擦因数相同, 斜面与水平面平滑连接. 图中v 、a 、f 和s 分别表示物体速度大小、加速度大小、摩擦力大小和路程. 图中正确的是( )二、填空题20.如图所示, 两个质量相同的小球A 和B , 甲图中两球用不可伸长的细绳连接, 乙图中两球用轻弹簧相连, 然后用细绳悬挂起来. 对于甲图, 在剪断悬挂线OA 的瞬间, A 球的加速度大小是 ,B 球的加速度大小 对于乙图, 在剪断细绳的瞬间, A 球的加速度大小 ,B 球的加速度大小 21. (2012·南京模拟)某同学设计了一个探究加速度a 与物体所受合力F 及质量m 关系的实验, 图中(a)所示为实验装置简图. (交流电的频率为50 Hz)(1)图(b)所示为某次实验得到的纸带, 根据纸带可求出小车的加速度大小为________m/s 2.(保留两位有效数字)(2)保持砂和砂桶质量不变, 改变小车质量m , 分别得到小车加速度a 与质量m 及对应的1m数据请在如图所示的坐标纸中画出a-1m图线, 并由图线求出小车加速度a与质量倒数1m之间的关系式是________.22.(1)如图为某同学所安装的“探究加速度与力、质量的关系”的实验装置, 在图示状态下开始做实验. 该同学在装置和操作中的主要错误有: ______________ ________________________________________________________________________________________.(至少写出两处)(2)在“探究加速度与力、质量的关系”的实验中, 为了使小车受到合外力等于砂和砂桶的总重力, 通常采用如下两个措施:a. 平衡摩擦力: 将长木板无滑轮的一端下面垫一小木块, 反复移动木块的位置, 直到小车在砂桶的拉动下带动纸带与小车一起做匀速直线运动.B. 调整砂的多少, 使砂和砂桶的总质量m远小于小车和砝码的总质量M.①以上哪一个措施中有错误?有何重大错误?答: ________________________________________________________________________.②在改正了上述错误之后, 保持小车及砝码的总质量M不变, 反复改变砂的质量, 并测得一系列数据, 结果发现小车受到的合外力(砂桶及砂的总重量)与加速度的比值略大于小车及砝码的总质量M.经检查发现滑轮非常光滑, 打点计时器工作正常, 且事先基本上平衡了摩擦力. 那么出现这种情况的主要原因是什么?答: ________________________________________________________________________.三、计算题23.航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F =28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g 取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m.求飞行器所受阻力Ff的大小;(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.24.如下图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.重力加速度为g.25.在2008年北京残奥会开幕式上运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚韧不拔的意志和自强不息的精神.为了探求上升过程中运动员与绳索和吊椅间的作用,可将过程简化.一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如下图所示.设运动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳子间的摩擦,重力加速度取g=10 m/s2.当运动员与吊椅一起正以加速度a=1 m/s2上升时,试求(1)运动员竖直向下拉绳的力;(2)运动员对吊椅的压力.26.如图3-2-26所示, 木板静止于水平地面上, 在其最右端放一可视为质点的木块. 已知木块的质量m=1 kg, 木板的质量M=4 kg, 长L=2.5 m, 上表面光滑, 下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力T=20 N拉木板, g取10 m/s2, 求:(1)木板加速度的大小;(2)要使木块能滑离木板, 水平恒力T作用的最短时间;(3)如果其他条件不变, 假设木板的上表面也粗糙, 其上表面与木块之间的动摩擦因数为μ1=0.3, 欲使木板能从木块的下方抽出, 需对木板施加的最小水平拉力;(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变, 只将水平恒力增加为30 N, 则木块滑离木板需要多长时间?牛顿运动定律练习题答案:1.BC 2. D 3. C4. 【解析】将悬挂吊篮的轻绳烧断的瞬间,弹簧的弹力不能突变,所以a A =0,B 和C 的加速度相同,为a B =a C =43g ,所以只有A 选项正确.5. 【解析】当v 0较大时,F >mg ,物体做加速度减小的减速运动,最后趋于匀速直线运动;当kv 0=mg 时,物体做匀速直线运动;当v 0较小时,F <mg ,物体做加速度增大的减速运动,所以A 、B 、D 正确. 【答案】ABD6. 【解析】注意传送带对物块的摩擦力方向的判断.物块向左减速运动:位移L =v 222μg ;物块减速到零后向右做加速运动:若v 1 >v 2,物块一直匀加速到返回水平面,则v 3=v 2;若v 1 <v 2,物块加速到速度等于v 1后,匀速运动到水平面,则v 3=v 1.此题也可用v -t 图象求解.【答案】BC7. 解析 火箭开始喷气瞬间,返回舱受到向上的反作用力,所受合外力向上,故伞绳的拉力变小,所以选项A 正确;返回舱与降落伞组成的系统在火箭喷气前受力平衡,喷气后减速的主要原因是受到喷出气体的反作用力,故选项B 错误;返回舱在喷气过程中做减速直线运动,故合外力一定做负功,选项C 错误;返回舱喷气过程中产生竖直向上的加速度,故应处于超重状态,选项D 错误. 答案 A8. 解析 相对地面而言,小物块在0~t 1时间内,向左做匀减速运动,t 1~t 2时间内,又反向向右做匀加速运动,当其速度与传送带速度相同时(即t 2时刻),小物块向右做匀速运动.故小物块在t 1时刻离A 处距离最大,A 错误.相对传送带而言,在0~t 2时间内,小物块一直相对传送带向左运动,故一直受向右的滑动摩擦力,在t 2~t 3时间内,小物块相对于传送带静止,小物块不受摩擦力作用,因此t 2时刻小物块相对传送带滑动的距离达到最大值,B 正确,C 、D 均错误.(传送带模型) 答案 B9. 解析:卫星在0~t 3时间内速度方向不变,一直升高,在t 3时刻到达最高点,A 错误;v -t 图象的斜率表示卫星的加速度;由图可知,t 1~t 2时间内卫星的加速度大,B 错误;t 1~t 2时间内,卫星的加速度竖直向上,处于超重状态,t 2~t 3时间内,卫星的加速度竖直向下,处于失重状态,故C 正确、D 错误. 答案:C10. 解析:由于杆是轻杆,把杆当做甲或乙的一部分,由牛顿第三定律,F 1=F 2,故B 、D 错误.甲获胜是由于甲所受地面的最大静摩擦力大于乙,故甲端杆的端点的位置较低,由受力分析和力的平衡可知,α1>α2,故A 对. 答案:A11. 解析: 选 B.“蹦极”运动的最终结果是运动员悬在空中处于静止状态, 此时绳的拉力等于运动员的重力, 由图可知, 绳子拉力最终趋于恒定时等于重力且等于35T 0即mg =35T 0.即T 0=53mg .当绳子拉力最大时, 运动员处于最低点且合力最大, 故加速度也最大, 此时T 最大=95T 0=3mg , 方向竖直向上, 由ma =T 最大-mg =3mg -mg =2mg 得最大加速度为2g , 故B 正确.12.以m 1、m 2以及弹簧为研究对象, 则整体向右的加速度a =T 1-T 2m 1+m 2=2 m/s 2; 再以m 1为研究对象, 设弹簧的弹力为F , 则T 1-F =m 1a , 则F =28 N, A 、B 错误; 突然撤去T 2的瞬间, 弹簧的弹力不变, 此时m 2的加速度大小a =Fm 2=7 m/s 2, C 正确; 突然撤去T 1的瞬间, 弹簧的弹力也不变, 此时m 1的加速度大小a =Tm 1=28 m/s 2, D 正确.13. 解析: 选A.在m 2与m 1相对滑动前, F =kt =(m 1+m 2)·a , a 与t 成正比关系, a 1-t 关系图线的斜率为k m 1+m 2, 当m 1与m 2相对滑动后, m 1受的是f 21=μm 2g =m 1a 1, a 1=μm 2gm 1为一恒量, 对m 2有F -μm 2g =m 2a 2, 得a 2=kt m 2-μg , 斜率为km 2, 此斜率大于滑动前图线的斜率, 可知A 正确,B 、C 、D 错误.14. 解析: 选 D.当F 取某一值时, A 、B 将发生相对滑动, 对A 、B 有: a A =μg , a B =F -μm A gm B, 发生滑动时, a B ≥a A , 所以当F ≥6 N 时, A 、B 将发生相对滑动, A 的加速度为2 m/s 2, 选项D 正确.15. 解析 由牛顿第二定律mg -kx =ma 可知,接触弹簧后加速度随位移线性变化.当弹簧的弹力等于重力时,此时的加速度为零,物体的速度达到最大,在平衡位置上方和平衡位置下方对称的位置,物体加速运动的加速度和减速运动的加速度的大小相等,故当减速运动的加速度大小等于重力加速度时,物体的速度等于刚接触弹簧时的速度,物体要继续向下运动至速度减为零,所以最低点的加速度一定大于g ,正确选项为A. 答案 A16. 解析:作用力F 跟墙壁对物体的压力作用在同一物体上,大小相等、方向相反、在一条直线上,是一对平衡力,因此选项A 错误;作用力F 作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不能成为平衡力,选项B 错误;在竖直方向上物体受重力,方向竖直向下,还受墙壁对物体的静摩擦力,方向竖直向上.由于物体处于平衡状态,因此这两个力是一对平衡力,选项C 正确;物体对墙壁的压力与墙壁对物体的压力是两个物体间的相互作用力,因此是一对作用力与反作用力,选项D 正确. 答案:CD17. 解析:物体与弹簧分离时,弹簧恰好恢复到自然长度,选项A 错;设物体的质量为m ,加速度为a ,初始时弹簧的压缩量为x 0,kx 0=mg ;当物体位移大小为x 时:F +k (x 0-x )-mg =ma ,解得:F =kx +ma ;由F -x 图象的斜率知,弹簧的劲度系数为k =5 N/cm ,选项B 错;又当x =0时:10 N =ma ;x =4 cm 时,30 N -mg =ma ,可得:m =2 kg ,a =5 m/s 2,故选项C 错,D 对. 答案:D18. 解析:在B 轻放在A 上瞬间时,对整体用牛顿第二定律得m B g =(m A +m B )a 再对B 用牛顿第二定律得m B g -F N =m B a 解得F N =12 N .据牛顿第三定律可知B 对A 的压力大小12 N .故选D. 答案:D19. 解析: 选C.物体先做匀加速运动后做匀减速运动, 其v -t 图像应为倾斜直线, a -t 图像为平行于横轴的直线, s -t 图像应为抛物线, 选项A 、B 、D 错误; 根据滑动摩擦力f =μN 可知, f -t 图像应为平行于横轴的直线, 由于物体对水平面的压力比对斜面的压力大, 所以物体对水平面的摩擦力较大, 选项C 正确.20. 解析: (1)不可伸长的细绳的张力变化时间可以忽略不计, 因此可称之为“突变弹力”. 甲图中剪断OA 后, A 、B 间的细绳张力立即变为零, 故有a A =a B =g . (2)当A 、B 间是用轻弹簧相连时, 剪断OA 后, 弹簧形变量尚未改变, 其弹力将逐渐减小, 可称之为“渐变弹力”. 因此, 这时B 球加速度仍为零, 即a B =0, A 球加速度为a A =2g . 答案: (1)g g (2)2g 021. (1)由逐差法得a =a -=s 3+s 4-s 1+s 24T 2=7.72+7.21-+4×0.042×10-2 m/s 2≈3.2 m/s 2.(2)如图所示由图知斜率k =0.5, 即保持合外力F =0.5 N, 所以a =0.5m =12m.22. (1)主要错误有: ①长木板右端未垫高以平衡摩擦力; ②打点计时器用的是直流电源; ③牵引小车的细线没有与木板平行; ④开始实验时, 小车离打点计时器太远.(2)①a 中平衡摩擦力时, 不应用小桶拉动小车做匀速运动, 应让小车自身的重力沿斜面方向的分力来平衡摩擦力. ②由于砂桶及砂向下加速, 处于失重状态, 拉小车的合外力F <mg , 而处理数据时又将F 按等于mg 处理. 因此, M =F a <mga. 23. 解析:(1)由H =12at2得a =2 m/s2 由F -Ff -mg =ma 得Ff =4 N(2)前6 s 向上做匀加速运动最大速度:v =at =12 m/s上升的高度:h1=12at2=36 m然后向上做匀减速运动加速度a2=Ff +mgm =12 m/s2上升的高度h2=v22a2=6 m所以上升的最大高度:h =h1+h2=42 m 答案:(1)4 N (2)42 m 24. 解析:令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知kx 1=m A g sin θ① 令x 2表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,由胡克定律和牛顿定律可知kx 2=m B g sin θ② F -m A g sin θ-kx 2=m A a ③由②③式可得a =F -m A +m B g sin θm A④由题意 d =x 1+x 2⑤由①②⑤式可得d =m A +m B g sin θk .答案:a =F -m A +m B g sin θm A d =m A +m B g sin θk25. 解析:解法1:(1)设运动员和吊椅的质量分别为M 和m ,绳拉运动员的力为F .以运动员和吊椅整体为研究对象,受到重力的大小为(M +m )g ,向上的拉力为2F ,根据牛顿第二定律2F -(M +m )g =(M +m )a F =440 N根据牛顿第三定律,运动员拉绳的力大小为440 N ,方向竖直向下.(2)以运动员为研究对象,运动员受到三个力的作用,重力大小Mg ,绳的拉力F ,吊椅对运动员的支持力F N .根据牛顿第二定律:F +F N -Mg =MaF N =275 N根据牛顿第三定律,运动员对吊椅的压力大小为275 N ,方向竖直向下.解法2:设运动员和吊椅的质量分别为M 和m ;运动员竖直向下的拉力大小为F ,对吊椅的压力大小为F N .根据牛顿第三定律,绳对运动员的拉力大小为F ,吊椅对运动员的支持力大小为F N .分别以运动员和吊椅为研究对象,根据牛顿第二定律:F +F N -Mg =Ma ① F -F N -mg =ma ②由①②解得F =440 N ,F N =275 N. 答案:(1)440 N (2)275 N11 26.解析: (1)木板受到的摩擦力f =μ(M +m )g =10 N木板的加速度a =T -f M =2.5 m/s 2.(2)设拉力T 作用t 时间后撤去,木板的加速度为a ′=-f M =-2.5 m/s 2木板先做匀加速运动, 后做匀减速运动, 且a =-a ′, 故at 2=L解得t =1 s, 即T 作用的最短时间为1 s.(3)设木块的最大加速度为a 木块, 木板的最大加速度为a 木板, 则μ1mg =ma 木块 得: a 木块=μ1g =3 m/s 2对木板: T 1-μ1mg -μ(M +m )g =Ma 木板木板能从木块的下方抽出的条件: a 木板>a 木块 解得: T 1>25 N.(4)木块的加速度a 木块=μ1g =3 m/s 2木板的加速度a 木板=T 2-μ1mg -μM +m g M =4.25 m/s 2木块滑离木板时, 两者的位移关系为s 木板-s 木块=L , 即12a 木板t 2-12a 木块t 2=L代入数据解得: t =2 s. 答案: (1)2.5 m/s 2 (2)1 s (3)25 N (4)2 s。
牛顿运动定律(习题课)
班级_____________学号____________姓名____________ 牛顿运动定律(习题课)1、一细绳跨过一定滑轮,绳的一边悬有一质量为m 1的物体,另一边穿在质量为m 2的圆柱体的竖直细孔中,圆柱体可沿绳滑动,今看到绳子从圆柱细孔中加速上升,圆柱体相对于绳子以匀加速度a ′下滑,求m 1、m 2相对地面的加速度、绳子的张力以及柱体与绳子的摩擦力,(绳的质量,滑轮的质量以及滑轮转动摩擦都不计)2Ta ' 绳地ao1m 1a 2a1T ' 2' g m2 x1111a m T g m =- ;2222a m T g m=- ;2211T T T T '==='由相对运动可知:12a a a a a -'=-'=绳地解得:21212211211122212211)2(;)(;)(m m a g m m T T T T m m a m g m m a m m a m g m m a +'-='=='=+'+-=+'+-=2、在倾角为30°的固定光滑斜面上放一质量为M 的楔形滑块,其上表面与水平面平行,在其上放一质量为m 的小球(如图),M 与m 间无摩擦,且M=2m ,试求小球的加速度及楔形滑块对斜面的作用力。
y0 xy a a x a y a ay ma N mg -=+-1 (1);y Ma N N Mg -=+'--θcos 1(2);x Ma N =θsin (3); θcos a a x = (4);θsin a a y = (5);11N N =' (6); N N '= (7) 解得:θθ2sin sin )(m M g M m a ++= ;θθ22sin sin )(m M g M m a y ++=;θθ2sin cos )(m M g M m N N ++='= 将M =2m ;︒=30θ代入得:N N s m a y 3.11;27.32='⋅=-3、光滑水平面上平放着半径为R 的固定环,环内的一物体以速率V O 开始沿环内侧逆时针方向运动,物体与环内侧的摩擦系数为μ,求:(1)物体任一时刻t 的速率V ;(2)物体从开始运动经t 秒经历的路程S 。
必修1 牛顿运动定律(含答案)全部题型
高中物理必修1牛顿运动定律经典练习题 (含答案)1、牛顿第一定律是()A. 由科学家的经验得出的B. 通过物理实验直接得到的C. 斜面小车实验做成功后就能够得出的结论D. 在实验基础上经过分析、推理得出的结论2、根据牛顿第一定律可知()A. 物体若不受外力的作用,一定处于静止状态B. 物体的运动是依靠力来维持的C. 运动的物体若去掉外力作用,物体一定慢慢停下来D. 物体运动状态改变时,一定受到外力的作用3、关于牛顿第一定律,下列说法中正确的是()A. 牛顿第一定律揭示了“物体的运动不需要力来维持”,所以又称为惯性定律B. 地球上没有不受力的物体,但受平衡力的物体合力为0,可以参照牛顿第一定律进行分析C. 牛顿第一定律是在实验中直接得出的结论D. 牛顿第一定律告诉我们:做匀速直线运动的物体一定不受力4、科学家建立牛顿第一定律的科学方法是()A. 经验总结B. 凭空猜想C. 观察和实验D. 在大量经验事实基础上的科学推理5、一个做匀加速直线运动的物体,在运动过程中,若所受的一切外力都突然消失,则由牛顿第一定律可知,该物体将()A. 立即静止B. 改做匀速直线运动C. 继续做匀加速直线运动D. 改做变加速直线运动6、下面惯性最大的是()A. 冲刺的运动员B. 静止在站台上的火车C. 飞奔的兔子D. 徐徐升空的氢气球7、物体保持匀速直线运动或静止状态的性质叫惯性,一切物体都具有惯性,下列关于惯性的说法正确的是()A. 运动越快的物体,惯性越大B. 受合力越大的物体,惯性越大C. 质量越大的物体,惯性越大D. 静止的物体运动时惯性大8、关于惯性,下列说法正确的是()A. 物体在阻力相同的情况下,速度大的不容易停下来,所以速度大的物体惯性大B. 推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大C. 在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小D. 物体的惯性与物体运动速度的大小、物体运动状态的改变、物体所处的位置无关9、关于惯性与牛顿第一定律定律,下列说法正确的是()A. 只有物体在匀速直线运动或静止时才表现出惯性的性质B. 惯性的大小由物体的质量决定,与受力及运动状态无关C. 牛顿第一定律既提出了物体不受力作用时的运动规律,又提出了力是改变物体运动状态的原因D. 牛顿第一定律就是惯性10、关于牛顿第三定律,下列说法正确的是()A. 作用力大时,反作用力小B. 作用力和反作用力的方向总是相反的C. 作用力和反作用力是作用在同一个物体上的D. 牛顿第三定律在物体处于非平衡状态时也适用11、用牛顿第三定律判断,下列说法正确的是()A. 人走路时,地对脚的力大于脚蹬地的力,所以人才能往前奏B. 不论站着不动,还是走动过程,人对地面的压力和地面对人的支持力,总是大小相等方向相反的C. 物体A静止在物体B上,A的质量是B质量的100倍,所以A作用于B的力大于B作用于A的力D. 以卵击石,石头没事而鸡蛋碎了,这是因为石头对鸡蛋的作用力大于鸡蛋对石头的作用力12、跳高运动员在竖直向上跳起的瞬间,地面对他的弹力的大小为N,他对地面的压力的大小为N′,根据牛顿第三定律,比较N和N′的大小()A.N=N′B.N<N′C.N>N′D. 不能确定N、N′那个力较大13、甲、乙两人发生口角,甲打了乙的胸口一拳致使乙手上,法院判决甲应支付乙的医药费。
第二章 牛顿运动定律习题
第二章 牛顿运动定律班级______________学号____________姓名________________一、选择题1、一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为1m 和2m ,且21m m > (滑轮质量及一切摩擦均不计),此时系统的加速度大小为a ,今用一竖直向下的恒力g m F 1=代替1m ,系统的加速度大小为a ',则有 ( )(A) a a ='; (B) a a >'; (C) a a <'; (D) 条件不足,无法确定。
2、如图所示,系统置于以g/2加速度上升的升降机内,A 、B 两物块质量均为m ,A 所处桌面是水平的,绳子和定滑轮质量忽略不计。
(1) 若忽略一切摩擦,则绳中张力为 ( )(A) mg ;(B) mg /2;(C) 2mg ;(D) 3mg /4。
(2) 若A 与桌面间的摩擦系数为μ (系统仍加速滑动),则绳中张力为 ( )(A )mg μ; (B) 4/3mg μ;(C) 4/)1(3mg μ+;(D) 4/)1(3mg μ-。
3、一质点沿x 轴运动,加速度与位置的关系为32x a =,且0=t 时,m 1-=x ,m /s 1=v ,则质点的运动方程为( )(A))1/(1+=t x ; (B))1/(1+-=t x ;(C)2)1/(1+=t x ; (D)2)1/(1+-=t x 。
4、三个质量相等的物体A 、B 、C 紧靠在一起,置于光滑2F ϖ水平面上,若A 、C 分别受到水平力1F ϖ、2F ϖ( F 1 > F 2 )的作用,则A 对B 的作用力大小为( )(A)F 1; (B) F 1-F 2 (C) 213132F F + (D) 213132F F -2F ϖ 5、如图所示两个质量分别为A m 和B m 的物体A 和B ,一起在水平面上沿x 轴正向作匀减速直线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力的大小和方向分别是:( )(A)B m g μ与x 轴正方向相反;(B )B m g μ与x 轴正方向相同; (C )B m a 与x 轴正方向相同;(D )B m a 与x 轴正方向相反。
物理牛顿运动定律的应用练习题20篇及解析
对
B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos
(完整版)牛顿定律练习题及答案
牛顿运动定律—练习题一、不定项选择题1.下列关于力和运动关系的说法中,正确的是()A.没有外力作用时,物体不会运动,这是牛顿第一定律的体现B.物体受力越大,运动的越快,这是符合牛顿第二定律的C.物体所受合外力为零,则速度一定为零;物体所受合外力不为零,则其速度也一定不为零D.物体所受的合外力最大时,而速度却可以为零;物体所受的合外力最小时,而速度却可以最大2.在国际单位制中,功率的单位“瓦”是导出单位,用基本单位表示,下列正确的是()A、焦/秒B、牛·米/秒C、千克·米2/秒2D、千克·米2/秒33.关于牛顿第三定律,下列说法正确的是( )A.作用力先于反作用力产生,反作用力是由于作用力引起的B.作用力变化,反作用力也必然同时发生变化C.任何一个力的产生必涉及两个物体,它总有反作用力D.一对作用力和反作用力的合力一定为零4.两物体A、B静止于同一水平面上,与水平面间的动摩擦因数分别为μA、μB,它们的质量分别为m A、m B,用平行于水平面的力F拉动物体A、B,所得加速度a与拉力F的关系如图中的A、B直线所示,则()A、μA=μB,m A>m BB、μA>μB,m A<m BC、μA=μB,m A=m BD、μA<μB,m A>m B5.如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的阻力恒定,则()A.物体从A到O点先加速后减速A OB B.物体运动到O点时所受的合外力为零,速度最大C.物体从A到O加速运动,从O到B减速运动D.物体从A到O的过程加速度逐渐减小6.在以加速度a匀加速上升的电梯中,有一个质量为m的人,下述说法正确的是 ( )A.此人对地球的吸引力为m(g+a) B.此人对电梯的压力为m(g-a)C.此人受的重力为m(g+a) D.此人的视重为m(g+a)7.如图所示,n个质量为m的相同木块并列放在水平面上,木块跟水平面间的动摩擦因数为μ,当对1木块施加一个水平向右的推力F时,木块4对木块3的压力大小为( )A .FB .3F /nC .F /(n -3)D .(n -3)F /n8.如图所示,吊篮A 、物体B 、物体C 的质量相等,弹簧质量不计,B 和C 分别固定在弹簧两端,放在吊篮的水平底板上静止不动。
牛顿运动定律-经典习题汇总
牛顿运动定律经典练习题一、选择题1.下列关于力和运动关系的说法中,正确的是 ( )A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现B .物体受力越大,运动得越快,这是符合牛顿第二定律的C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动C .竖直向上做减速运动D .竖直向下做减速运动3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( )A .速度方向、加速度方向、合力方向三者总是相同的B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( )A .等于人的推力B .等于摩擦力C .等于零D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反B .F 1、F 2、F 3大小相等,方向相同C .F 1、F 2是正的,F 3是负的D .F 1是正的,F 1、F 3是零6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。
现对M 施加一个水平力F ,则以下说法中不正确的是( )A .若两物体一起向右匀速运动,则M 受到的摩擦力等于FB .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmgC .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M aD .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。
牛顿运动定律
练习1-5 牛顿运动定律一、填空题1.一切物体总保持静止或匀速直线运动状态,直到力迫使它改变这种状态为止。
这是牛顿第一定律。
2. 力是改变物体运动状态的原因。
3.物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
这就是牛顿第二定律。
4. 质量是物体惯性大小的量度。
5.两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
这是牛顿第三定律。
6.作用力和反作用力总是成对出现,同时产生,同时消失。
7.作用力和反作用力总是分别作用在两个物体上,各自产生各自的作用效果,不能平衡,不能抵消。
8.在力学的国际单位制中,长度、时间和质量的单位叫作基本单位,其他物理量的单位叫作导出单位。
9. 从牛顿运动定律可知:在不受外力作用或合外力为零时,物体将保持静止或匀速直线运动状态。
力是使物体产生加速度的原因。
10.质量为0.3kg的物体在0.6N的拉力作用下,产生的加速度为2m/s2。
11.一个物体受到4N的力,产生2m/s2的加速度。
要使它产生3m/s2的加速度,需要对它施加 6N 的力。
12.甲、乙两辆实验小车,在相同的力作用下,甲车产生的加速度为2m/s2,乙车产生的加速度为8m/s2,甲车的质量是乙车的 4 倍。
13.用弹簧秤在水平桌面上匀速拉动一物体,弹簧秤的读数是 2.94N;当以0.98m/s2的加速度使物体做匀加速直线运动时,弹簧秤的示数是 4.90N,则物体的质量是 2 kg。
14.在平直公路上行驶的卡车上放有一个木箱,当卡车做匀加速直线运动时,木箱可能向后滑动;当卡车做匀减速直线运动时,木箱可能向前滑动。
(填“匀加速”或“匀减速”)二、判断题1. 只有运动的物体才具有惯性,静止的物体没有惯性。
(× )2.受到外力作用的物体没有惯性,不受外力作用的物体才有惯性。
(×)3.物体的运动需要力来维持。
(× )4.力是改变物体运动速度的原因。
物理牛顿运动定律的应用练习题20篇及解析
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;
物理牛顿运动定律专项习题及答案解析及解析
物理牛顿运动定律专项习题及答案解析及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2(1)求木块和木板保持相对静止的时间t 1; (2)t =10s 时,两物体的加速度各为多大;(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF 的方向为正方向,只要求画图,不要求写出理由及演算过程)【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;(3)【解析】【详解】(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t 得:t=4s(2)t=10s时,两物体已相对运动,则有:对m1:μ1m2g﹣μ2(m1+m2)g=m1a1解得:a1=3m/s2对m2:F﹣μ1m2g=m2a2 F=3t=30N解得:a2=12m/s2(3)图象过(1、0),(4.3),(10、12)图象如图所示.3.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB相切于A点,B为圆弧轨道的最高点,圆弧轨道半径R=1m,细杆与水平面之间的夹角θ=37°.一个m=2kg的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.4.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
(物理)物理牛顿运动定律的应用练习题20篇
(物理)物理牛顿运动定律的应用练习题20篇一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1竖直方向有 Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0对整体有 F 2=(M +m )a 2代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N .【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度.(2)A 、B 两球落地时的动能.(3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -=对B :B B B B m g f m a -=A B f f =0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+--代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到.(2)根据运动性质和动能定理可得到.(3)由能量守恒定律可求出.3.如图,一块长度为9L m =、质量为1M kg =的长木板静止放置在粗糙水平地面上.另有质量为1m kg =的小铅块(可看做质点),以012/v m s =的水平初速度向右冲上木板.已知铅块与木板间的动摩擦因数为10.4μ=,木板与地面间的动摩擦因数为20.1μ=,重力加速度取210/g m s =,求:()1铅块刚冲上木板时,铅块与木板的加速度1a 、2a 的大小;()2铅块从木板上滑落所需时间;()3为了使铅块不从木板上滑落,在铅块冲上木板的瞬间,对长木板施加一水平向右的恒定拉力F ,求恒力F 的范围.【答案】(1)4m/s 2;2m/s 2(2)1s (3)2N≤F≤10N【解析】【分析】(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和木板的位移之差等于L ,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不能从左侧滑下求解力F 的范围;【详解】(1)铅块:11mg ma μ=解得a 1=4m/s 2;对木板:122()mg M m g Ma μμ-+=解得a 2=2m/s 2(2)从开始到滑落过程:2201112111()22v t a t a t L +-= 解得t 1=1s 10118/v v a t m s =-=2212/v a t m s ==(3)到右端恰好共速:2202122211()22v t a t a t L '+-= '01222v a t a t -= 解得a ′2=4m/s 2木板:'122()F mg M m g Ma μμ+-+= 解得F ≥2N ;共速后不能从左侧滑下:2-()()F M m g M m a μ+=+共,1a g μ≤共 解得F ≤10N , 则F 的范围:2N ≤F ≤10N【点睛】本题主要是考查牛顿第二定律的综合应用,对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.4.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。
牛顿运动定律习题精选
牛顿运动定律习题精选1、如图所示,质量为10kg的物体,在水平地面上向左运动。
物体与水平面间的动摩擦因数为0.1.与此同时,物体受到一个水平向右的推力F=30N的作用,则物体的加速度为()(g取10 m/s2)A. 4 m/s2,水平向左B.4 m/s2,水平向右C.2 m/s2,水平向左D.2 m/s2,水平向右2.把物体竖直地挂在劲度系数为1000N/m的弹簧下端,弹簧伸长2cm。
如果把物体放在动摩擦因数为0.30的水平地面上,用同一根弹簧沿水平方向拉物体。
当物体产生2m/s2的加速度时,弹簧伸长 cm。
3.重G=15N的物体由OP、OM两条绳拉住,OP与竖直方向成θ=30°角,求绳子OP、OM的拉力大小?4.如图所示,用细绳将重量为G的重球挂在墙上,绳与竖直墙壁间的夹角为θ,不考虑墙的F2的大小分别为多少?摩擦。
则绳对球的拉力F5.用细绳拉着物体竖直向上做匀加速直线运动,当拉力为140N时,物体向上的加速度是 4m /s2,不考虑空气阻力等的影响,求:(1)物体的质量多大?(2)物体从静止开始前2s的位移及2s末的速度各是多大?6.质量为2kg的物体,在水平拉力F=5N的作用下,由静止开始在水平面上运动,物体与水平面间的动摩擦因素为0.1,求:(1)该物体在水平面上运动的加速度大小。
(2)2s末时,物体的速度大小。
7.如图所示,质量为m = 5kg的物体在水平恒力F=15N的作用下从静止开始运动,4s后撤去F,若物体与地面间的动摩擦因数μ=0.1,求:(1)撤去F时物体的速度大小;(2)物体从开始运动到停下来的位移大小。
8. 如图所示,水平面上有一个质量m=2kg 的物体,物体与水平面的动摩擦因数为μ=0.2,在F=14N 的水平力作用下,由静止开始沿水平面做匀加速直线运动。
求:(1)物体运动的加速度是多大?(2)6s 内通过的距离是多少?9.在平直的高速公路上,一辆汽车正以s m /28的速度匀速行驶,因前方出现紧急情况,司机立即刹车,直到汽车停下,已知汽车的质量为 3.0×103kg ,刹车时汽车所受的阻力大小为2.4×104N ,求:(1)刹车时汽车的加速度大小;(2)从开始刹车到最终停下,汽车运动的时间;(3)从开始刹车到最终停下,汽车前进的距离10.一个质量为50kg 的人乘电梯竖直向上运行,如图为电梯的速度-时间图像。
牛顿定律精选练习题及详解答案
牛顿运动定律精选练习题科苑学校门贵宝一、选择题1.下列说法正确的是()A.走路时,只有地对脚的作用力大于脚蹬地的力时,人才能往前走B.走路时,地对脚的作用力与脚蹬地的力总是大小相等,方向相反的C.物体A静止在物体B上,A的质量是B的质量的10倍,则A对B的作用力大于B 对A的作用力D.以卵击石,石头没有损伤而鸡蛋破了,是因为鸡蛋对石头的作用力小于石头对鸡蛋的作用力解析:地对脚的作用力与脚蹬地的力是作用力和反作用力,由牛顿第三定律,这两个力总是大小相等,方向相反的,A不正确,B正确;物体A对B的作用力总是等于B对A 的作用力,与A、B两物体的质量无关,C不正确;以卵击石时,鸡蛋对石头的作用力等于石头对鸡蛋的作用力,但鸡蛋的承受能力较小,所以鸡蛋会破,D不正确.答案: B2.实验小组利用DIS系统(数字化信息实验系统),观察超重和失重现象.他们在学校电梯内做实验,在电梯天花板上固定一个拉力传感器,测量挂钩向下,并在钩上悬挂一个重为10 N的钩码,在电梯运动过程中,计算机显示屏上出现如右图所示图线,根据图线分析可知下列说法正确的是()A.从时刻t1到t2,钩码处于失重状态,从时刻t3到t4,钩码处于超重状态B.t1到t2时间内,电梯一定在向下运动,t3到t4时间内,电梯可能正在向上运动C.t1到t4时间内,电梯可能先加速向下,接着匀速向下,再减速向下D.t1到t4时间内,电梯可能先加速向上,接着匀速向上,再减速向上解析:在t1~t2时间内F<mg,电梯具有向下的加速度,处于失重状态,t3~t4时间内F>mg,电梯有向上的加速度,处于超重状态,A正确.因电梯速度方向未知,故当速度方向向上时,电梯先减速向上,接着匀速向上,再加速向上,当速度方向向下时,电梯先加速向下,接着匀速向下,再减速向下,C正确.答案:AC3.如右图所示,圆柱形的仓库内有三块长度不同的滑板aO、bO、cO,其下端都固定于底部圆心O,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a、b、c处开始下滑(忽略阻力),则()A.a处小孩最先到O点B.b处小孩最后到O点C.c处小孩最先到O点D.a、c处小孩同时到O点答案: D4.一个物体在多个力的作用下处于静止状态,如果仅使其中一个力大小逐渐减小到零,然后又从零逐渐恢复到原来的大小(此力的方向始终未变),在此过程中其余各力均不变.那么,下列各图中能正确描述该过程中物体速度变化情况的是()解析:物体所受合力先增大后减小,所以加速度先增大后减小,速度一直增大,D正确.答案: D5.木箱以大小为2 m/s2的加速度水平向右做匀减速运动.在箱内有一轻弹簧,其一端被固定在箱子的右侧壁,另一端拴接一个质量为1 kg的小车,木箱与小车相对静止,如右图所示.不计小车与木箱之间的摩擦.下列判断正确的是()A.弹簧被压缩,弹簧的弹力大小为10 NB.弹簧被压缩,弹簧的弹力大小为2 NC.弹簧被拉伸,弹簧的弹力大小为10 ND.弹簧被拉伸,弹簧的弹力大小为2 N解析:由木箱水平向右做匀减速运动可知小车加速度方向水平向左,小车所受合外力方向水平向左,弹簧向左的弹力提供合外力,弹力大小为F=ma=2 N,选项B正确.答案: B6.如右图所示,质量为m的球置于斜面上,被一个竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是( )A .若加速度足够小,竖直挡板对球的弹力可能为零B .若加速度足够大,斜面对球的弹力可能为零C .斜面和挡板对球的弹力的合力等于maD .斜面对球的弹力不仅有,而且是一个定值答案: D7.如右图所示,足够长的传送带与水平面夹角为θ,以速度v 0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是( )解析: 小木块被释放后的开始阶段做匀加速直线运动,所受摩擦力沿斜面向下,加速度为a 1.当小木块的速度与传送带速度相同后,小木块开始以a 2的加速度做匀加速直线运动,此时小木块所受摩擦力沿斜面向上,所以a 1>a 2,在v -t 图象中,图线的斜率表示加速度,故选项D 对.答案: D8.质量为M 的光滑圆槽放在光滑水平面上,一水平恒力F 作用在其上促使质量为m 的小球静止在圆槽上,如下图所示,则( )A .小球对圆槽的压力为MF m +MB .小球对圆槽的压力为mF m +MC .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增加D .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小解析: 利用整体法可求得系统的加速度a =F M +m,对小球利用牛顿第二定律可得: 球对圆槽的压力为(mg )2+m 2F 2(M +m )2,可知只有C 选项正确. 答案: C解析: 设t =2.0 s 内车厢的加速度为a B ,由x =12a B t 2,得a B =2.5 m/s 2,A 正确;由牛顿第二定律:F -F f =m B a B ,得F f =45 N .所以A 的加速度大小为a A =F f /m A =2.25 m/s 2,因此,t =2.0 s 末A 的速度大小为:v A =a A t =4.5 m/s ,B 正确,D 错误;在t =2.0 s 内A 运动的位移为x A =12a A t 2=4.5 m ,A 在B 上滑动的距离Δx =x -x A =0.5 m ,C 正确. 答案: ABC9.下列说法正确的是( )A .走路时,只有地对脚的作用力大于脚蹬地的力时,人才能往前走B .走路时,地对脚的作用力与脚蹬地的力总是大小相等,方向相反的C .物体A 静止在物体B 上,A 的质量是B 的质量的10倍,则A 对B 的作用力大于B 对A 的作用力D .以卵击石,石头没有损伤而鸡蛋破了,是因为鸡蛋对石头的作用力小于石头对鸡蛋的作用力解析: 地对脚的作用力与脚蹬地的力是作用力和反作用力,由牛顿第三定律,这两个力总是大小相等,方向相反的,A 不正确,B 正确;物体A 对B 的作用力总是等于B 对A 的作用力,与A 、B 两物体的质量无关,C 不正确;以卵击石时,鸡蛋对石头的作用力等于石头对鸡蛋的作用力,但鸡蛋的承受能力较小,所以鸡蛋会破,D 不正确.答案: B10..实验小组利用DIS 系统(数字化信息实验系统),观察超重和失重现象.他们在学校电梯内做实验,在电梯天花板上固定一个拉力传感器,测量挂钩向下,并在钩上悬挂一个重为10 N 的钩码,在电梯运动过程中,计算机显示屏上出现如右图所示图线,根据图线分析可知下列说法正确的是( )A .从时刻t 1到t 2,钩码处于失重状态,从时刻t 3到t 4,钩码处于超重状态B .t 1到t 2时间内,电梯一定在向下运动,t 3到t 4时间内,电梯可能正在向上运动C .t 1到t 4时间内,电梯可能先加速向下,接着匀速向下,再减速向下D .t 1到t 4时间内,电梯可能先加速向上,接着匀速向上,再减速向上解析: 在t 1~t 2时间内F <mg ,电梯具有向下的加速度,处于失重状态,t 3~t 4时间内F >mg ,电梯有向上的加速度,处于超重状态,A 正确.因电梯速度方向未知,故当速度方向向上时,电梯先减速向上,接着匀速向上,再加速向上,当速度方向向下时,电梯先加速向下,接着匀速向下,再减速向下,C正确.答案:AC11.(2011·哈尔滨测试)如下图所示,一箱苹果沿着倾角为θ的斜面,以速度v匀速下滑.在箱子的中央有一个质量为m的苹果,它受到周围苹果对它作用力的方向()A.沿斜面向上B.沿斜面向下C.竖直向上D.垂直斜面向上答案: C12.如右图所示是一种汽车安全带控制装置的示意图,当汽车处于静止或匀速直线运动时,摆锤竖直悬挂,锁棒水平,棘轮可以自由转动,安全带能被拉动.当汽车突然刹车时,摆锤由于惯性绕轴摆动,使得锁棒锁定棘轮的转动,安全带不能被拉动.若摆锤从图中实线位置摆到虚线位置,汽车的可能运动方向和运动状态是()A.向左行驶、突然刹车B.向右行驶、突然刹车C.向左行驶、匀速直线运动D.向右行驶、匀速直线运动解析:简化模型如右图所示,当小球在虚线位置时,小球、车具有向左的加速度,车的运动情况可能为:向左加速行驶或向右减速行驶,A错误,B正确;当车匀速运动时,无论向哪个方向,小球均处于竖直位置不摆动.C、D错误.答案: B13.一个沿竖直方向运动的物体,其速度图象如右图所示,设向上为正方向.则可知()A.这是竖直下抛运动B.这是竖直上抛又落回原地的过程C.这是从高台上竖直上抛又落回地面的过程D.抛出后2 s物体又落回抛出点解析:由v-t图象可知,速度先正后负,物体先向上后向下,A错误;图线与横轴所夹面积先有正面积,后有负面积,到2 s时正负面积相等,回到原地,D正确;到3 s末,负面积比正面积大,物体的最终位置在抛出点的下方,C 正确,B 错误.答案: CD14 如右图所示,在光滑的斜面上放置3个相同的小球(可视为质点),小球1、2、3距斜面底端A 点的距离分别为x 1、x 2、x 3,现将它们分别从静止释放,到达A 点的时间分别为t1、t2、t 3,斜面的倾角为θ.则下列说法正确的是( )A.x 1t 1=x 2t 2=x 3t 3B.x 1t 1>x 2t 2>x 3t 3C.x 1t 12=x 2t 22=x 3t 32 D .若θ增大,则x 1t 12的值减小 解析: 三个小球在光滑斜面上下滑时的加速度均为a =g sin θ,由x =12at 2知x t 2=12a ,因此x 1t 12=x 2t 22=x 3t 32,C 对.若θ增大,a 增大,x t 2的值增大,D 错.v =x t ,且v =v 2,由物体到达底端的速度v 2=2ax 知v 1>v 2>v 3,因此v 1>v 2>v 3,即x 1t 1>x 2t 2>x 3t 3,A 错,B 对. 答案: BC15.如右图所示,物体A 、B 用细绳连接后跨过定滑轮.A 静止在倾角为30°的斜面上,B 被悬挂着.已知质量mA =2mB ,不计滑轮摩擦,现将斜面倾角由30°增大到50°,但物体仍保持静止,那么下列说法中正确的是( )A .绳子的张力将增大B .物体A 对斜面的压力将减小C .物体A 受到的静摩擦力将先增大后减小D .滑轮受到的绳的作用力不变解析: 由于B 物体的质量保持不变,且B 物体静止,所以绳的张力保持不变,A 项错误;以A 物体为研究对象,在垂直于斜面的方向上有m A g cos θ=F N ,沿斜面方向有2m B g sin θ-m B g =F f ,当斜面的倾角为30°时,摩擦力恰好为0,当斜面的倾角增大时,支持力减小,静摩擦力增大,B 项正确,C 项错误;在斜面倾角增大的过程中,绳子的张力不变,但是夹角减小,所以合力增大,因此D 项错误.答案: B16. 物体A 、B 在同一直线上做匀变速直线运动,它们的v -t 图象如下图所示,则( )A .物体A 、B 运动方向一定相反B .物体A 、B 在0~4 s 内的位移相同C .物体A 、B 在t =4 s 时的速度相同D .物体A 的加速度比物体B 的加速度大解析: 本题考查匀变速直线运动、v -t 图象.两物体的速度都为正,因此运动方向相同,A 项错误;图线与横轴所围的面积即为位移,可以看出0~4 s 内B 物体的位移大于A 物体的位移,B 项错误;两物体在t =4 s 时的速度相同,C 项正确;从0~4 s 内看,B 的速度变化量大于A 的速度变化量,因此B 的加速度大于A 的加速度,D 项错误.答案: C17.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如右图所示.(已知cos 53°=0.6,sin 53°=0.8)以下说法正确的是( )A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 解析: 细绳烧断前对小球进行受力分析,小球受到三个力的作用:重力mg ,竖直向下;弹簧的弹力F 1,水平向右;细绳的拉力F 2,沿细绳斜向上,如右图所示,由平衡条件得:F 2cos 53°=mg ,F 2sin 53°=F 1解得F 2=53mg ,F 1=43mg 细线烧断瞬间,细绳的拉力突然变为零,而弹簧的弹力不变,此时小球所受的合力与F 2等大反向,所以小球的加速度立即变为a =53g . 答案: D18.如图甲所示,物体原来静止在水平面上,用一水平力F 拉物体,在F 从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出()A.物体的质量为1 kgB.物体的质量为2 kgC.物体与水平面间的动摩擦因数为0.3D.物体与水平面间的动摩擦因数为0.5解析:设物体质量为m,物体与水平面间的动摩擦因数为μ,由图乙可看出,当物体所受水平拉力F1=7 N时,其加速度a1=0.5 m/s2,由牛顿第二定律得F1-μmg=ma1,当物体所受水平拉力F2=14 N时,其加速度a2=4 m/s2,由牛顿第二定律得F2-μmg=ma2,联立解得m=2 kg,μ=0.3,所以正确选项为B、C.答案:BC二、非选择题19.物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如右图所示.一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50 Hz,开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运动,在纸带上打出一系列小点.(1)上图给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个打点(图中未标出),计数点间的距离如图所示.根据图中数据计算的加速度a =________(保留三位有效数字).(2)回答下列两个问题:①为测量动摩擦因数,下列物理量中还应测量的有________.(填入所选物理量前的字母)A .木块的长度lB .木板的质量m 1C .滑块的质量m 2D .托盘和砝码的总质量m 3E .滑块运动的时间t②测量①中所选定的物理量时需要的实验器材是________________________________________________________________________.(3)滑块与木板间的动摩擦因数μ=________(用所测物理量的字母表示,重力加速度为g )与真实值相比,测量的动摩擦因数________(填“偏大”或“偏小”).写出支持你的看法的一个论据:________________________________________________________________________________________________________________________________________________. 解析: (1)将题干图中每段距离标记为x 1,x 2…x 7,加速度可由逐差法计算a =(x 4+x 5+x 6)-(x 1+x 2+x 3)9T 2可得:a =0.496 m/s 2. (2)为测量动摩擦因数,需计算压力和摩擦力,压力F N =m 2g ,所以为确定压力需测量滑块质量m 2,而摩擦力满足F T -F f =m 2a ,又因为m 3g -F T =m 3a ,所以F f =m 3g -(m 2+m 3)a ,所以为确定摩擦力还需测量托盘和砝码的总质量m 3、m 2,m 3需用托盘天平测出,还需要的实验器材是托盘天平(带砝码).(3)由(2)中分析得:F N =m 2g F f =m 3g -(m 2+m 3)a ,又F f =μF N ,故μ=m 3g -(m 2+m 3)a m 2g.由于纸带与限位孔及滑轮处阻力的存在,所计算F f 值比真实值偏大.所以μ的测量值偏大.答案: (1)0.495m/s 2~0.497m/s 2 (2)①CD ②托盘天平(带砝码) (3)m 3g -(m 2+m 3)a m 2g 偏大 因为纸带和打点计时器之间有摩擦.20.一质量m =0.5 kg 的滑块以一定的初速度冲上一倾角为30°足够长的斜面,某同学利用DIS 实验系统测出了滑块冲上斜面过程中多个时刻的瞬时速度,如图所示为通过计算机绘制出的滑块上滑过程的v -t 图象(g 取10m/s 2).求(1)滑块冲上斜面过程中加速度的大小;(2)滑块与斜面间的动摩擦因数;(3)判断滑块最后能否返回斜面底端.若能返回,求出滑块返回斜面底端时的动能;若不能返回,求出滑块所停位置.解析: (1)滑块的加速度大小a =⎪⎪⎪⎪Δv Δt a =12 m/s 2.(2)滑块在冲上斜面过程中,由牛顿第二定律得mg sin θ+μmg cos θ=maμ=7153≈0.81. (3)滑块速度减小到零时,重力沿斜面方向的分力小于最大静摩擦力,不能再下滑. x =v 022ax =1.5 m 滑块停在斜面上,距底端1.5 m 处.答案: (1)12 m/s 2 (2)0.81 (3)不能 距底端1.5 m 处21.某科研单位设计了一空间飞行器,飞行器从地面起飞时,发动机提供的动力方向与水平方向夹角α=60°,使飞行器恰恰与水平方向成θ=30°角的直线斜向右上方匀加速飞行,经时间t 后,将动力的方向沿逆时针旋转60°同时适当调节其大小,使飞行器依然可以沿原方向匀减速飞行,飞行器所受空气阻力不计,求:(1)t 时刻飞行器的速率;(2)整个过程中飞行器离地的最大高度.解析: (1)起飞时,飞行器受推力和重力作用,两力的合力与水平方向成30°斜向上,设推力为F 、合力为F 合,如图所示.在△OFF 合中,由几何关系得F 合=mg11由牛顿第二定律得飞行器的加速度为a 1=F 合m=g 则t 时刻的速率v =a 1t =gt .(2)推力方向逆时针旋转60°,合力的方向与水平方向成30°斜向下,推力F ′跟合力F ′合垂直,如图所示.此时合力大小F ′合=mg sin 30°飞行器的加速度大小为a 2=mg sin 30°m =g 2到最高点的时间为t ′=v a 2=gt 0.5g=2t 飞行的总位移为x =12a 1t 2+12a 2t ′2 =12gt 2+gt 2=32gt 2 飞行器离地的最大高度为h m =x ·sin 30°=3gt 24. 答案: (1)gt (2)3gt 24。
牛顿运动定律习题
1.质量为M 的斜面原来静止于光滑水平面上,将一质量为m 的木块轻轻放于斜面上,如图。
当木块沿斜面加速下滑时,斜面将 ( )(A )保持静止. (B )向右加速运动.(C )向右匀速运动. (D )如何运动将由斜面倾角θ 决定.2.如图,滑轮、绳子质量忽略不计。
忽略一切摩擦阻力,物体A 的质量m A 大于物体B 的质量m B 。
在A 、B 运动过程中弹簧秤的读数是(A )(m 1+m 2)g. (B )(m 1-m 2)g .(C ).22121g m m m m +. (D )g m m m m 21214+.3.水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ。
现加一恒力F 如图所示。
欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足 ( )(A )sin θ = μ.(B )cos θ = μ.(C )tg θ = μ. (D )ctg θ = μ.二、填空题:1.沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为f 0,若外力增至2F ,则此时物体所受静摩擦力为____________________。
2.在如图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速度为a=________________________,m 1和m 2间绳子的张力T =__________________________ ________________________。
F1.如图所示,质量为m 的摆球A 悬挂在车架上。
求在上述各种情况下,摆线与竖直方向的夹角α 和线中的张力T :(1)小车沿水平方向作匀速运动 (2)小车沿水平方向作加速度为a 的运动。
2.一质量为60kg 的人,站在质量为30kg 的底板上,用绳和滑轮连接如图。
设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长。
牛顿运动定律习题
一 选择题
1.光滑的水平桌面上放有两块相互接触的滑块,
质量分别为m1和m2,且m1<m2.今对两滑块施 加相同的水平作用力,如图所示.设在运动过
程中,两滑块不离开,则两滑块之间的相互作
用力N应有
(A) N =0.
(B) 0 < N < F.
(C) F < N <2F. (D) N > 2F. [ B ]
(C) 必须等于 2gR (D) 还应由汽车的质量M决定. [ B ]
二 填空题
10.质量m=40 kg的箱子放在卡车的车厢底板上,已知箱子
与底板之间的静摩擦系数为ms=0.40,滑动摩擦系数为mk= 0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的
大小和方向.
(1)卡车以a = 2 m/s2的加速度行驶,f =8__0_N_,方向 与车行
3.质量分别为m和M的滑块A和B,叠放在光滑水平面上,如
图.A、B间的静摩擦系数为m 0,滑动摩擦系数为mk ,系统原先
处于静止状态.今将水平力F作用于B上,要使A、B间不发生相
对滑动,应有
(A) F ≤ms mg. (B) F ≤ms (1+m/M) mg. (C) F ≤ms (m+M) g.(D) F ≤ kmgMMm.
转弯时不至滑出公路?
解:(1) (2)
a0 Tmg
Tsinma Tcosmg
A
tga/g [或tg1(a/g)]
Tm a2g2
精选2021版课件
8
16.质量为m的物体系于长度为R的绳子的一个端点上,在
竖直平面内绕绳子另一端点(固定)作圆周运动.设t时刻
物体瞬时速度的大小为v,绳子与竖直向上的方向成θ角,如 图所示.
四套牛顿运动定律专题练习题(带答案)高中物理必修1
B.物块的质量为1.5kg
C.物块在6-9s内的加速度大小是2m/s2
D.物块前6s内的平均速度大小是4.5m/s
6、如图所示,质量为M的长平板车放在光滑的倾角为
的斜面上,车上站着一质量为m的人,若要平板车静止在斜面上,车上的人必须()
A.匀速向下奔跑
B.以加速度 向下加速奔跑
解得:
牛顿运动定律练习2
一、选择题
1.在太空站的完全失重环境中,下列仪器可以使用的是()
A.体重计B.打点计时器
C.天平D.弹簧测力计
2.甲乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移——时间图像(s-t)图像如图所示,则下列说法正确的是()
A.t1时刻乙车从后面追上甲车
D、自由落下的物体处于完全失重状态,但物体的惯性并没有消失
2、关于牛顿第二定律,正确的说法是:()
A、物体的质量跟外力成正比,跟加速度成反比
B、加速度跟合外力成正比,跟物体的质量成反比
C、加速度的方向一定与合外力的方向一致
D、由于加速度跟合外力成正比,整快砖的重力加速度一定是半块砖重力加速度的2倍
3、跳高运动员从地面上起跳的瞬间,下列说法中正确的是:()
6、一物体从某高度自由落下,恰好落在直立于地面上的轻弹簧上,如图所示,在A点物体开始与弹簧接触,到B点时物体速度为零,以后被弹回、那么下列说法中正确的是:()
A、下降时物体在AB段的速度越来越小
B、上升时物体在AB段的速度越来越大
C、物体在AB段下降时和在AB段上升时其速度是先增大后减小
D、在B点时因为物体速度为零,所以它受到的合外力也为零
B.力F在时间 t内可以使质量 m的物体移动的距离为s
高中物理牛顿运动定律练习题(含解析)
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
gL 6
时,求绳对物体的拉力。
(2)当 v
3gL 2
时,求绳对物体的拉力。
O L
θ
7. 半径为 R 的轮子以恒定速度 v 在水平面上沿直线作无滑动滚动,将一质量为 m 的小石 子放在轮子顶端,小石子与轮子间滑动摩擦因数为μ ,小石子与轮子相对静止,试问: 经过多少时间小石子与轮子之间发生相对滑动?
3 做诚信、务实、创新、自强,受人尊敬的教育品牌!
北京新百年教育
重点高校自主招生网络课程习题
答案
1.
N m2g m1
a2
g2
, min
m2 g
m2a m1 a2
g2
ቤተ መጻሕፍቲ ባይዱ
2.
a
m
mg tan 2Mg tan2
3.
M m
aE
M
m
M 2 tan2
g
4. F 3(M m)g
5. 1) h 2 R 2) h 2 R 3) h 0.81R
m1 m2
2. 如图所示的两个质量皆为 M 的相同的光滑立方块摆在水平面上,在它们之间放上一个 质量为 m,顶角为 2α 的重劈。求立方块的加速度。
3. 如图所示,两斜面重合的楔块 ABC 和 ADC 的质量均为 M,AD 和 BC 两面成水平,E 为质量等于 m 的小滑块,楔块的倾斜角为α , 各接触面之间的摩擦均不计,系统放在水平平台角上从静止开 始释放,求两斜面未分离前小滑块 E 的加速度。
北京新百年教育
重点高校自主招生网络课程习题
第三讲 牛顿定律 课后练习
1. 如图所示,一轻绳两端各系重物 m1 和 m2,挂在车厢内的定滑轮上,滑轮摩擦不计,m2 >m1,m2 静止在车厢地板上,当车厢以加速度 a 向右作匀加速运动时,m2 仍在原处不 动。求此时 m2 对地板的压力为多大?这时 m2 与地板间的动摩擦因数至少为多大才能维 持这种状态?
1 做诚信、务实、创新、自强,受人尊敬的教育品牌!
北京新百年教育
重点高校自主招生网络课程习题
5. 一个小滑块放在半径为 R 的光滑半球顶部,如图所示。由于轻微的扰动,它开始由静 止下滑。求下列情况下它离开球面时,离半球底部的高度 h。
(1)半球面以 10m/s 的速度匀速上升。 (2)半球面以大小为 g/2 的加速度匀加速上升。 (3)半球面以大小为 g/4 的加速度匀加速向右运动。
A α
E D
B
αC
4. 光滑水平桌面上的厚木板质量为 M,它的上面有一个半径为 R 的球穴,如图所示,槽
穴的深度为 R/2;一个半径为 R,质量为 m 的小球放在球穴中,A、B 点是 通过球心的竖直剖面中板面与球的接触点。试分析计算,沿水平方向作用 于木板的力 F 至少多大,球才会从球穴中翻出来?
F AB
2 做诚信、务实、创新、自强,受人尊敬的教育品牌!
北京新百年教育
重点高校自主招生网络课程习题
8. 如图所示,半径为 R=0.5m 的空心球绕本身的竖直直径旋转,角速度为 5rads,在球内离底 R/2 处有一小木块同球一起旋转,问:
(1)实现这一情况所需的最小摩擦因数是多少? (2)如果角速度为 8rads,实现这一情况的条件是什么?
3
3
6. 1)T ( 3 1)mg 2)T 2mg 26
7. t R (arccos v2 arctan 1 )
v
gR 1 2
8. 1) 3 3 2) 3 3
23
29
4 做诚信、务实、创新、自强,受人尊敬的教育品牌!
6. 一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为
θ =30°,如图所示,一条长度为 L 的细绳(质量不计),一端的位置固定在圆锥体的
顶点 O 处,另一端拴着一个质量为 m 的小物体(物体可视为质点)。物体以速率 v 绕
圆锥体的轴线做水平面上的匀速圆周运动。
(1)当 v