二元一次方程组解行程问题

合集下载

二元一次方程组---行程问题

二元一次方程组---行程问题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。

如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m 长的环形跑道上练习百米赛跑,甲的速度是14m ,乙的速度是16m 。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

人教版七年级下册数学二元一次方程组应用题(行程问题)

人教版七年级下册数学二元一次方程组应用题(行程问题)

人教版七年级下册数学二元一次方程组应用题(行程问题)1.小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?2.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟,甲地到乙地全程多少km?3.甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等.求A、B两人骑自行车的速度.(只需列出方程即可)4.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?5.甲说:你先跑10米,我跑5秒钟就能追上你.乙说:那我先跑2秒钟呢?甲说:那我只用跑4秒钟就追上你了.根据以上对话回答问题:求甲、乙两人速度各是多少?(假设两人同地同向出发且速度不变)6.岳阳到长沙的公路全长140千米,甲、乙两车同时从岳阳、长沙两地相向开出,0.5h后到达同一地点,甲车比乙车多行了20千米,求出甲、乙两车的速度7.甲、乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后4小时两人相遇.分别求出甲、乙两人的速度.8.一辆快车和一辆慢车相距400千米,如果它同时相向而行,2小时后可以相遇;如果两车同时同向而行(快车追慢车),6小时后快车还落后慢车160千米,求快车、慢车的速度.9.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.10.甲、乙、丙3人,甲每分钟行60米,乙每分钟行67.5米,丙每分钟行75米,如果甲乙二人在东村,丙在东西村,他们3人同时由两村相向而行,丙遇到乙后,继续行走10分钟才遇到甲.东西两村相距多小米?11.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?12.A地至B地的航线长9750km,-架飞机从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h,求飞机无风时的平均速度与风速.13.为了测得隧道长度和火车通过隧道时的速度,小明和小亮在隧道两端进行观察:火车从开始入隧道到完全出隧道共用时24秒,整列火车完全在隧道内的时间为14秒,整列火车长300米.请你根据小明和小亮获得的数据,求出隧道的长度和火车过隧道的速度.14.李华家到学校的路是一段平路和一段下坡路.已知李华在平路骑自行车的速度为240米/分钟,在下坡路骑自行车的速度为320米/分钟,在上坡路骑自行车的速度为160米/分钟,若李华从家里到学校需20分钟,从学校到家里需30分钟.请问李华家与学校的距离是多少?(不考虑其他因素)15.新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?16.小明家离学校2120米,其中有一段为上坡路,另一段为下坡路.他跑步去学校共用了16分钟,已知小明在上坡路上的平均速度是4.8千米/时,而他在下坡路上的平均速度是12千米/时,小明上坡、下坡各用了多长时间?17.A,B两地相距3千米,甲从A地出发步行到B地,乙从B地出发步行到A 地.两人同时出发,20分钟后相遇,又经过10分钟后,甲所余路程为乙所余路程的2倍.求两人的速度.18.一个游乐场里有一段直线巡游路,琪琪和佳佳分别以相同速度相对而行,一辆巡游电车从琪琪身边通过用了3秒,5分钟后这辆车与佳佳迎面相遇,从佳佳身边通过用了2秒,巡游电车离开佳佳后多少分钟琪琪和佳佳碰面了?19.小明从家里到学校先是走一段平路然后走一段下坡路,假设他始终保持平路每分钟走80m,下坡路每分钟走90m,上坡路每分钟走60m,则他从家里到学校需20min,从学校到家里需25min.问:从小明家到学校有多远?20.小颖家到学校的距离为1200m,其中有一段为上坡路,另一段为下坡路,她去学校共用去16min,假设小颖在上坡路的平均速度为3km/h,下坡路的平均速度为5km/h,小颖家到学校的上坡路和下坡路各有多少米?。

(完整版)二元一次方程组的运用1(行程问题)

(完整版)二元一次方程组的运用1(行程问题)
等量关系1:火车完全过桥路程=桥的长度+火车的长度
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1:火车完全过桥路程=桥的长度+火车的长度 等量关系2:火车在桥=120 整理,得 X+y=120
3(x-y)=120
x-y=40
解得
x=80 y=40
答:巡逻车的速度是80千米/时,犯 罪团伙的车的速度是40千米/时.
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1: 快车行的路程+慢车行的
客车路程
路程=两列火车的车长和
货车路程
例6:客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车 长600米,如果两车相向而行,那么从两车车头相遇到车尾离开共需21
秒钟;如果客车从后面追赶货车,那么从客车车头追上货车车尾到客车 车尾离开货车车头共需1分45秒,求两车的速度。
作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两
辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油
站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻
车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车
和犯罪团伙的车的速度各是多少?
解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,
货车路程
客车路程
等量关系1:快车行的路程+慢车行的路程=两列火车的车长和
等量关系2:快车行的路程-慢车行的路程=两列火车的车长和

二元一次方程应用题8种类型

二元一次方程应用题8种类型

二元一次方程应用题8种类型一、行程问题1. 题目- 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲在乙后面,5小时后甲追上乙。

求甲、乙两人的速度。

2. 解析- 根据相向而行时,路程 = 速度和×时间,可得到方程3(x + y)=30,化简为x + y = 10。

- 根据同向而行时,路程差=速度差×时间,可得到方程5(x - y)=30,化简为x - y=6。

- 联立方程组x + y = 10 x - y = 6,将两式相加,2x=16,解得x = 8。

- 把x = 8代入x + y = 10,得y = 2。

二、工程问题1. 题目- 一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成;甲队单独做比乙队单独做少用5天。

求甲、乙两队单独完成这项工程各需要多少天?2. 解析- 把工作总量看作单位“1”,根据工作效率 = 工作总量÷工作时间,两队合作的工作效率为(1)/(6),甲队工作效率为(1)/(x),乙队工作效率为(1)/(y),则(1)/(x)+(1)/(y)=(1)/(6)。

- 又因为甲队单独做比乙队单独做少用5天,所以y - x=5,即y=x + 5。

- 将y=x + 5代入(1)/(x)+(1)/(y)=(1)/(6)中,得到(1)/(x)+(1)/(x + 5)=(1)/(6)。

- 去分母得6(x+5)+ 6x=x(x + 5),展开6x+30+6x=x^2+5x,移项化为一元二次方程x^2-7x - 30 = 0,因式分解(x - 10)(x+3)=0,解得x = 10或x=-3(天数不能为负舍去)。

- 当x = 10时,y=10 + 5=15。

三、利润问题1. 题目- 某商店购进甲、乙两种商品,甲商品进价为x元/件,乙商品进价为y元/件。

已知购进5件甲商品和4件乙商品共花费300元;甲商品每件售价20元,乙商品每件售价30元,全部售出后利润为100元。

二元一次方程行程问题

二元一次方程行程问题

行程问题与路程问题有关的等量关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速度1、从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走 3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。

甲地到乙地全程是多少?2、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。

已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。

3、某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A 处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.4、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。

求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?行程问题——相遇问题1、甲乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,经过3小时相遇,则甲走的路程为千米,乙走的路程为千米,两人的路程关系是2、、甲、乙两人从相距36米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米?3、甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地相向出发,经过80秒相遇;已知乙的速度是甲速度的2/3 ,求甲、乙两人的速度.4、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20 分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?5、两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.行程问题——追击问题1、甲乙两人相距30千米,甲速度为x千米/小时,乙速度y为千米/小时,若两人同时同向出发,甲速度比乙快,经过3小时甲追上乙,则甲走的路程为千米,乙走的路程为千米,两人的路程关系是。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、行程问题题目:A、B 两地相距 120 千米,甲、乙两人分别从 A、B 两地同时出发,相向而行。

甲的速度是每小时 10 千米,乙的速度是每小时 20 千米。

经过多少小时两人相遇?答案:设经过 x 小时两人相遇。

甲行驶的路程为 10x 千米,乙行驶的路程为 20x 千米。

由于两人是相向而行,所以他们行驶的路程之和等于两地的距离,可列出方程:10x + 20x = 12030x = 120x = 4答:经过 4 小时两人相遇。

二、工程问题题目:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。

若两人合作,需要多少天完成?答案:设两人合作需要 x 天完成。

把这项工程的工作量看作单位“1”,甲每天的工作效率是 1/10,乙每天的工作效率是 1/15。

两人合作每天的工作效率是(1/10 + 1/15),可列出方程:(1/10 + 1/15)x = 1(3/30 + 2/30)x = 15/30 x = 1x = 6答:两人合作需要 6 天完成。

三、商品销售问题题目:某商店将进价为 8 元的商品按每件 10 元售出,每天可售出200 件。

现在采用提高售价,减少销售量的办法增加利润,如果这种商品每件的销售价每提高 05 元,其销售量就减少 10 件,问应将每件售价定为多少元时,才能使每天利润为 640 元?答案:设将每件售价定为 x 元。

每件的利润为(x 8)元,售价提高了(x 10)元。

因为售价每提高 05 元,销售量减少 10 件,所以销售量减少了 10×(x 10)÷05 = 20(x 10)件。

实际销售量为200 20(x 10)件。

根据利润=每件利润×销售量,可列出方程:(x 8)200 20(x 10)= 640(x 8)(200 20x + 200)= 640(x 8)(400 20x)= 640400x 20x² 3200 + 160x = 640-20x²+ 560x 3840 = 0x² 28x + 192 = 0(x 12)(x 16)= 0解得 x₁= 12,x₂= 16答:应将每件售价定为 12 元或 16 元时,才能使每天利润为 640 元。

二元一次方程组的应用——行程问题

二元一次方程组的应用——行程问题

二元一次方程组的应用——行程问题行程问题是数学中常见的应用问题之一。

我们可以利用等量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度来解决问题。

列方程是解决问题的一般步骤,需要设列解验答。

例1:某车站有甲、乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出20km后乙车出发,则乙车出发4小时后追上甲车,求甲乙两车的速度。

设甲车每小时走x千米,乙车每小时走y千米,根据题意列出方程组,解得甲车速度为x=40km/h,乙车速度为y=50km/h。

例2:甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地相向、同向出发,经过80秒相遇;已知乙的速度是甲速度的2/3,求甲、乙两人的速度。

设甲的速度为x米/秒,乙的速度为y米/秒,根据题意列出方程组,解得甲的速度为3米/秒,乙的速度为2米/秒。

例3:甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果XXX比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米。

设甲每小时走x千米,乙每小时走y千米,根据题意列出方程组,解得甲每小时走12千米,乙每小时走24千米。

本题中需要求解飞机的速度和风速,可以利用等量关系进行计算。

首先,假设飞机在顺风飞行时的速度为v1,逆风飞行时的速度为v2,风速为w,则根据题意可以列出以下两个等式:1200 = v1 × 2.5 + (v1 + w) × 3.331200 = v2 × 3.33 + (v2 - w) × 2.67将两个等式联立,消去v1和v2,得到:w = 75v1 = 450v2 = 300因此,飞机的速度为450千米/小时,风速为75千米/小时。

课后拓展:1、如果飞机的速度不变,风速变为150千米/小时,从A市飞往B市需要多长时间?2、如果飞机的速度变为500千米/小时,风速仍为75千米/小时,从A市飞往B市需要多长时间?。

二元一次方程组应用题类型题

二元一次方程组应用题类型题

22名二级工和三级工人准备完 成1400个零件,其中二级工每人 定额完成200个,三级工人每人 定额完成50个,问二级工和三 级工各多少人
现在年龄
甲X
乙y
将来年龄
X+ x-y
61
Y- x-y
4
甲比乙大的岁数
x-y
解:设甲、乙现在的年龄分 从问题情境可以知知道甲
别是x、y岁根据题意,得 的年龄大于乙的年龄
y-(x- y)=4
x=42
X+(x-y)=61 解得 y=23
答:甲、乙现在的年龄分别是42、23岁
5、小明骑摩托车在公路上匀速行驶,12:00时看 到里程碑上的数是一个两位数,它的数字之和是7; 13:00时看里程碑上的两位数与12:00时看到的个 位数和十位数颠倒了;14:00时看到里程碑上的 数比12:00时看到的两位数中间多了个零,小明在 12:00时看到里程碑上的数字是多少
形或六边形要求每两个相邻的图形只有一条公共边,已 知摆放的正方形比六边形多4个,并且一共用了110个小 木棍,问连续摆放了正方形和六边形各多少个


图形 正方形 六边形
关系
连续摆放的个数 (单位:个) x
y
正反方形比六边形多 4 个
使用小木棒的根数 (单位: 根)
4+3(x-1)=3x+1
6+5(y-1)=5y+1
相等关系
30只母牛和15只小牛,1天约需用饲料675kg
42只母牛和20只小牛,1天约需用饲料940kg

30x 15y 675
42x 20y 940
解得: x 20
y
5
答:平均每只母牛1天约需饲料20kg,每只小牛1天约需饲料5kg,

列二元一次方程组解应用题的步骤

列二元一次方程组解应用题的步骤

列二元一次方程组解应用题的步骤一、和差倍分问题。

1. 已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数。

- 设甲数为x,乙数为y。

- 根据题意可列方程组:x + y=42 3x = 4y- 由x + y=42可得x = 42 - y,将其代入3x = 4y中,得到3(42 - y)=4y。

- 展开式子得126 - 3y = 4y,移项得126=4y + 3y,即7y = 126,解得y = 18。

- 把y = 18代入x = 42 - y,得x = 42-18 = 24。

2. 两个数的差是5,积是84,求这两个数。

- 设较大的数为x,较小的数为y。

- 则方程组为x - y=5 xy = 84- 由x - y=5可得x = y + 5,将其代入xy = 84中,得到(y + 5)y = 84。

- 展开得y^2+5y - 84 = 0,因式分解得(y + 12)(y - 7)=0,解得y=- 12或y = 7。

- 当y=-12时,x=-12 + 5=-7;当y = 7时,x = 7+5 = 12。

二、行程问题。

3. 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙,求甲、乙两人的速度。

- 根据路程 = 速度×时间。

- 对于相向而行:3x+3y = 30,化简得x + y = 10。

- 对于同向而行:6x-6y = 30,化简得x - y = 5。

- 所以方程组为x + y = 10 x - y = 5- 两式相加得2x = 15,解得x = 7.5。

- 把x = 7.5代入x + y = 10,得y = 10 - 7.5 = 2.5。

4. 一艘轮船顺流航行速度为每小时20千米,逆流航行速度为每小时16千米,求轮船在静水中的速度和水流速度。

- 设轮船在静水中的速度为x千米/小时,水流速度为y千米/小时。

二元一次方程组的行程问题

二元一次方程组的行程问题

二元一次方程组——行程问题1.某学校体育场的环形跑道长250m,甲、乙分别以一定的速度练习长跑和骑自行车,同时同地出发,如果反向而行,那么他们每隔20s相遇一次.如果同向而行,那么每隔50s乙就追上甲一次,设甲的速度为xm/s,乙的速度为ym/s,则可列方程组为()A.B.C.D.2.甲、乙二人相距6千米,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇,则甲、乙二人的平均速度各是()A.3千米/时,4千米/时B.4千米/时,2千米/时C.2千米/时,4千米/时D.4千米/时,3千米/时3.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?()A.2300千米B.2400千米C.2500千米D.2600千米4.A地至B地的航线长9750km,一架飞机从A地顺风飞往B地需12.5h,它逆风飞行同样的航线要13h,则飞机在无风时的平均速度是()A.720km/h B.750km/h C.765km/h D.780km/h5.某船往返两地,顺流时每小时航行18千米,逆流时每小时航行14千米,则水流速度是多少?()A.3.5千米/时B.2.5千米/时C.2千米/时D.3千米/时6.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时7.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需48min,从乙地到甲地需要36min,则甲地到乙地的全程是km.8.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.从小华家到学校的下坡路长米.9.甲、乙二人相距6千米,若两人同时出发、同向而行,则甲3小时可追上乙,相向而行1小时相遇,则甲的速度为,乙的速度为.10.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?11.列方程(组)解应用题已知某江上游甲地到下游乙地相距360千米,一轮船往返于甲、乙两地之间,此轮船现由甲地顺流而下到达乙地用18小时,由乙地逆流而上到达甲地用24小时,求此轮船在静水中的速度以及此江水流的速度.12.某铁路桥长1800m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用25s,整列高铁在桥上的时间是20s.试求此列高铁的车速和车长.13.A、B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇.6小时后甲剩余的路程是乙剩余路程的2倍,求甲乙二人的速度.14.某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.15.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度.16.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.17.某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.18.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?19.甲、乙两地之间路程为20km,A、B两人同时相对而行,A由甲向乙,B由乙向甲.2小时后相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有4km,求A、B两人的速度.20.列方程组解应用题:一位体育运动员连续参加自行车和长跑两个路段的训练,骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.。

二元一次方程组解决实际问题典型例题(1)

二元一次方程组解决实际问题典型例题(1)

【变式】某商场计划拨款9万元从厂家购进50台 电视机,已知厂家生产三种不同型号的电视机, 出厂价分别为:甲种每台1500元,乙种每台2100 元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视机 50台,用去9万元,请你研究一下商场的进货方 案; (2)若商场销售一台甲、乙、丙电视机 分别可获利150元、200元、250元, 在以上的方案中,为使获利最多,你选择哪种进 货方案?
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒 身或【【2变2变个式式盒23】底】某,一工一张厂个方有盒桌工身由人与1个6两0桌人个面,盒、生底4产配条某成桌种一腿由个组一完成个整, 螺盒如栓子果套,1立两问方个用米螺多木母少料的张可配铁以套皮做产制桌品盒面,身5每,0个人多,每少或天张做生铁桌产皮腿螺制3栓盒001底条4 ,。 个可现或以有螺正5立母好方2制0米个成的,一木应批料分完,配整那多的么少盒用人子多生?少产立螺方栓米,木多料少做人桌生面, 产用螺多母少,立才方能米使木生料产做出桌的腿螺,栓做和出螺的母桌刚面好和配桌套腿。,恰 好配成方桌?能配多少张方桌?
类型七:列二元一次方程组解决——和差倍分问题
7.“爱心”帐篷厂和“温暖”帐篷厂原计划每周 生产帐篷共9千顶,现某地震灾区急需帐篷14千顶, 两厂决定在一周内赶制出这批帐篷.为此,全体职工 加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内 制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好 按时完成了这项任务.求在赶制帐篷的一周内,“爱 心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?
【变式】小明家准备装修一套新住房,若甲、乙两个 装饰公司合作6周完成需工钱5.2万元;若甲公司单独 做4周后,剩下的由乙公司来做,还需9周完成,需工 钱4.8万元.若只选一个公司单独完成,从节约开支的 角度考虑,小明家应选甲公司还是乙公司?请你说明 理由.

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程组的应用题,总结了十个题型,学透很容易!

二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。

为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

二元一次方程组行程问题

二元一次方程组行程问题

二元一次方程组行程问题行程问题是数学中一个非常实用且广泛应用的问题类型,它可以通过建立二元一次方程组来求解不同时间、速度和距离下的各种行程问题。

本文将以一系列实际行程问题为例,演示如何通过建立二元一次方程组来解决这些问题。

问题一:两车同时从A、B两地相向而行,相距280公里时相遇,已知其中一辆车时速为80公里/时,求另一辆车的时速。

假设第一辆车的时速为x公里/时,根据题意可知两辆车的总路程为280公里,因此可列出方程组:x + y = 280 (其中y为第二辆车的时速)80x + 80y = 280×2解方程组得到y = 200公里/时,因此第二辆车的时速为200公里/时。

问题二:甲、乙两人同时从A、B两地相向而行,甲走了2小时后相遇,此时乙还需行10公里才到达B,已知乙的时速是甲的2倍,求甲、乙两人的时速。

假设甲的时速为x公里/时,根据题意可知:2x + 10 = 3x (其中10为乙到达B之前的剩余距离)因此得到x = 10公里/时。

由此可知乙的时速为20公里/时。

问题三:两船从A、B两地相向而行,两船相距52公里时相遇,已知两船的速度比为3:4,求A、B两地的距离。

假设两船的速度分别为3x和4x,根据题意可知两船的总路程为AB,因此可列出方程组:3x + 4x = AB/52AB = (3x + 4x) × 52解方程组得到AB = 520公里,因此A、B两地的距离为520公里。

问题四:两火车相对而行,速度分别为45公里/时和75公里/时,它们在相距225公里时开始互相避让,互相错开时最接近时的距离是多少?假设两车错开时的距离为x公里,它们需要行驶的总路程为225+x公里,因此可列出方程组:45t + 75t = 225+x75t - 45t = x其中t为两车错开时的时间,解得x = 300公里。

因此两车最接近时的距离为300公里。

问题五:一辆汽车从A地开往B地,速度为40公里/小时,车子停留了10分钟,然后改变方向开往C地,速度为60公里/小时,中途没有停留,到达C地所需总时间为5小时,求AC的距离。

二元一次方程组的应用——行程问题 (解析版)

二元一次方程组的应用——行程问题 (解析版)

二元一次方程组的应用——行程问题一、追及、相遇问题1、小蕾、大洋两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知小蕾比大洋的速度快.设小蕾每分钟跑x 米,大洋每分钟跑y 米,根据题意,列出方程组正确的是( ).A. 6060400300300400x y x y +=⎧⎨-=⎩B. 40055400x y x y +=⎧⎨-=⎩C. 6060400300300400x y x y +=⎧⎨-+=⎩D. 40055400x y x y +=⎧⎨-+=⎩2、《九章算术》是我国古代第一部数学专著,其中有这样一道名题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几步及之?”意思是说:走路快的人走100步的时候,走路慢的才走了60步,走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少部才能追上?若设走路快的人要走x 步才能追上走路慢的人,此时走路慢的人又走了y 步,根据题意可列方程组为( ).A. 10060100xy x y ⎧=⎪⎨⎪-=⎩B. 60100100xy x y ⎧=⎪⎨⎪-=⎩C. 10060100xy x y ⎧=⎪⎨⎪+=⎩D. 60100100xy x y ⎧=⎪⎨⎪+=⎩3、两人在400m 环形跑道上练习赛跑,方向相反时,每32s 相遇一次;方向相同时,每3分钟相遇一次,若设两人的速度分别为x 米/秒、y 米/秒,依题意可列方程组为________.4、小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是______分钟.5、某车站有甲、乙两辆汽车.若甲车先出发1h 后乙车出发,则乙车出发后5h 追上甲车;若甲车先开出20 km 后乙车出发,则乙车出发4h 后追上甲车,求甲乙两车的速度.6、小方、小程两人相距6千米,两人同时相向而行,1小时相遇.两人同时出发同向而行,小方3小时可追上小程,两人的平均速度各是多少?7、列方程或方程组解应用题:A、B两地之间的路程是36 km,小丽从A地骑自行车到B地,小明从B地骑自行车到A 地,两人同时出发,相向而行,经过1h后两人相遇;再过0.5h,小丽余下的路程是小明余下路程的2倍.小明和小丽骑车的速度各是多少?8、甲乙二人分别从相距20千米的A,B两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米,求甲乙二人每小时各走多少千米?9、甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇.求甲、乙两人每小时各走多少千米?10、A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2h后二人在途中相遇.相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙二人的速度.11、甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.12、利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,113小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?二、多种路段问题13、甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是().A. 24 km/h,8 km/hB. 22.5 km/h,2.5 km/hC. 18 km/h,24 km/hD. 12.5 km/h,1.5 km/h14、甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是().A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩15、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为().A.35120016x yx y+=⎧⎨+=⎩B.351.2606016x yx y⎧+=⎪⎨⎪+=⎩C.35 1.216x yx y+=⎧⎨+=⎩D.351200606016x yx y⎧+=⎪⎨⎪+=⎩16、从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3 km,平路每小时走4 km,下坡每小时走5 km,那么从甲地到乙地需54 min,从乙地到甲地需42 min.设从甲地到乙地上坡与平路分别为x km,y km,依题意,所列方程组正确的是().A.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.543460424560x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.54344245x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.54344254x yx y⎧+=⎪⎪⎨⎪+=⎪⎩17、小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如下:小明看了说明书后,和爸爸讨论:小明经过计算,得出这对轮胎能行驶的最长路程是().A. 9.5千公里B. 千公里C. 9.9千公里D. 10千公里18、一条船顺流航行每小时行40 km,逆流航行每小时行32 km,设该船在静水中的速度为每小时x km,水流速度为每小时y km,则可列方程组为________________________.19、某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了多少______千米.20、为响应“低碳出行”的号召,某初中决定举行周日徒步郊游活动,打算从A地前往B地,已知前13路段为山路,其余路段为平地.已知队伍在山路上的行进速度为6 km/h,在平地上行进的速度为10 km/h,队伍从A地到B地一共行进了2.2h.队伍在山路和平路上各行进多少小时?若设队伍在山路上行进x小时,在平路上行进y小时,根据题意,可列出二元一次方程组________________________.21、某校组织学生乘汽车去自然保护区野营,先以60 km/h的速度走平路,后又以30 km/h 的速度爬坡,共用了6.5h;汽车以40 km/h的速度下坡,又以50 km/h的速度走平路,共用了6h,平路有______m,坡路有______m.(汽车以原路返回)22、一船顺水航行48 km需要3h,逆水航行70 km需要5h,求船在静水中的速度和水流的速度各是多少?23、青岛和大连相距360千米,一轮船往返于两地之间,顺水行船用18小时,逆水行船用24小时,那么船在静水中的速度是多少?水流速度是多少?24、小张从家里到学校的路是一段平路和一段下坡路,如果他始终保持平路的速度为60m/ min,下坡路的速度为80m/ min,上坡的速度为40m/ min,那么他从家里到学校需10 min,从学校到家需15 min,请问小张家离学校有多远?25、从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3 km,平路每小时走4 km,下坡每小时走5 km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟,甲地到乙地全程是多少km?参考答案一、追及、相遇问题 1、答案:B解答:根据题意列出方程组为40055400x y x y +=⎧⎨-=⎩.2、答案:A解答:设走路快的人要走x 步才能追上走路慢的人,此时走路慢的人又走了y 步,根据题意,得10060100xy x y ⎧=⎪⎨⎪-=⎩.3、答案:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩.解答:设两人的速度分别为x 米/秒、y 米/秒,由题意得:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩, 故答案为:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩.4、答案:4解答:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 6x -6y =s .①每隔3分钟从迎面驶来一辆18路公交车,则 3x +3y =s .②由①②得,s =4x ,所以sx=4.即18路公交车总站发车间隔的时间是4分钟. 5、答案:25 km/h ,30 km/h .解答:设甲的速度为x km/h ,乙的速度为y km/h , 根据题意可得:564204y x y x =⎧⎨=+⎩,解得2530x y =⎧⎨=⎩.甲的速度为25 km/h ,乙的速度为30 km/h .6、答案:小方和小程的平均速度分别为为4千米/时和2千米/时. 解答:设小方平均速度为V 1千米/时, 小程平均速度为V 2千米/时,由题意知,()()12121636V V V V ⎧+⨯=⎪⎨-⨯=⎪⎩,解得:1242V V =⎧⎨=⎩,答:小方平均速度为4千米/时, 小程平均速度为2千米/时.7、答案:小明骑车的速度是20 km/h ,小丽骑车的速度是16 km/h . 解答:设小明骑车的速度为x km/h ,小丽骑车的速度为y km/h ,()36236 1.536 1.5x y x y+=⎧⎨-=-⎩,解得2016x y =⎧⎨=⎩. 答:小明骑车的速度是20 km/h ,小丽骑车的速度是16 km/h . 8、答案:甲每小时各走4千米,乙每小时各走5千米. 解答:设甲每小时各走x 千米,乙每小时各走y 千米,由题意得:522021120y x x y ⎧+=⎪⎨⎪++=⎩,解得:45x y =⎧⎨=⎩.答:甲每小时各走4千米,乙每小时各走5千米. 9、答案:甲每小时走6千米,乙每小时走3.6千米.解答:设甲每小时走x 千米,乙每小时走y 千米.根据题意,列方程组2 2.5 2.53632336x x y x y y ++=⎧⎨++=⎩, 解这个方程组,得63.6x y =⎧⎨=⎩.答:甲每小时走6千米,乙每小时走3.6千米.10、答案:甲的速度为5.5千米/小时,乙的速度为4.5千米/小时. 解答:设甲的速度为x 千米/小时,乙的速度为y 千米/小时,由题意得,()220222x y x y ⎧+=⎨-=⎩,解得: 5.54.5x y =⎧⎨=⎩,答:甲的速度为5.5千米/小时,乙的速度为4.5千米/小时.11、答案:甲的速度为6013m /s ,乙的速度为7013m /s . 解答:设甲、乙二人的速度分别为xm /s 、ym /s ,由题意得:()4040036030360x y x x y ⎧+=⎨⨯+=⨯⎩,解得:60137013x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度分别为6013m /s ,乙的速度分别为7013m /s . 12、答案:汽车行驶165千米,拖拉机行驶85千米.解答:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:()416031322x y x y⎧=⎪+⎪⎨⎪=⎪⎩,解得:9030x y =⎧⎨=⎩, 则汽车汽车行驶的路程是:(43+12)×90=165(千米),拖拉机行驶的路程是:(43+32)×30=85(千米).答:汽车行驶165千米,拖拉机行驶85千米. 二、多种路段问题 13、答案:B解答:设这艘轮船在静水中的船速为x 千米/小时,水流速度为y 千米/小时, 由题意得,()41005100x y x y ⎧+=⎨-=⎩(),解得:22.52.5x y =⎧⎨=⎩.14、答案:A解答:根据题意可得,顺水速度=x +y ,逆水速度=x -y , ∴根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,选A. 15、答案:B解答:设小颖上坡用了x 分钟,下坡用了y 分钟,由题意得:35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩.选B. 16、答案:A解答:设从甲地到乙地上坡与平路分别为x km ,y km ,根据题意得543460425460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,∴A 选项正确. 17、答案:C解答:设一只轮胎在前轮用x 千公里,在后轮用y 千公里.根据题意,有111x +19y =111y +19x =1, 解可得,x =y =9920=4.95,则x +y =2x =9.9. 18、答案:4032x y x y +=⎧⎨-=⎩解答:4032x y x y +=⎧⎨-=⎩.19、答案:20解答:设平路有x 千米,上坡路有y 千米,根据题意得:4x +3y +6y +4x =5,即2x +2y=5, 则x +y =10(千米),这5小时共走的路=2×10=20(千米). 故答案为:20.20、答案: 2.22610x y x y +=⎧⎨⨯=⎩解答:略. 21、答案:150;120解答:平路有x 千米,坡路有y 千米,由题意得:6.5603065040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:150120x y =⎧⎨=⎩, 答:平路和坡路各有150米、120米22、答案:x =15,y =1解答:设静水x ,水流速y .()()348570x y x y ⎧+=⎪⎨-=⎪⎩. x =15,y =1.23、答案:船在静水中的速度是17.5 km/h ,水流速度是2.5 km/h . 解答:设船在静水中的速度是x km/h ,水流速度是y km/h ,由题意得()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,解得:17.52.5x y =⎧⎨=⎩. 答:船在静水中的速度是17.5 km/h ,水流速度是2.5 km/h .24、答案:小张离学校700米.解答:设小张从家到学校的平路为x 米,下坡路为y 米. ∴106080156040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①整理得8x +6y =4800③,②整理得4x +6y =3600④,③-④得4x =1200,x =300.将x =300代入④得4×300+6y =3600,y =400.∴方程组的解为300400x y =⎧⎨=⎩,∴x +y =300+400=700,答:小张离学校700米.25、答案:3110km.解答:设甲地到乙地的上坡路长x km,平路长y km,根据题意得:543460424560x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,解得:3285xy⎧=⎪⎪⎨⎪=⎪⎩,∴x+y=32+85=3110∴甲地到乙地全程是3110km.。

二元一次方程组行程问题解题技巧

二元一次方程组行程问题解题技巧

二元一次方程组行程问题解题技巧《二元一次方程组行程问题解题技巧:速度与激情的数学之旅》嘿,大家好啊!今天咱就来唠唠二元一次方程组行程问题解题技巧这事儿。

一提到行程问题,可能有些小伙伴就开始头疼了:哎呀,那些什么速度啊、时间啊、路程啊,把我脑袋都绕晕了!别急别急,听我慢慢道来。

其实啊,解决行程问题就像是一场速度与激情的数学之旅!咱得先搞清楚那“速度三兄弟”——速度、时间、路程的关系。

路程等于速度乘以时间,就像你开车去兜风,速度快,时间长,那跑的路可不就多嘛。

然后,在面对具体问题时,咱得学会找关键信息。

比如说,甲、乙两个人同时从两地出发,相向而行啦;或者一个人先走一段,另一个人再追啦。

这时候,咱们就得抓住他们的路程、时间或者速度之间的关系。

假设甲的速度是x,乙的速度是y,他们相遇的时间是t,路程是s 之类的,把这些都设好了,就可以列出方程组啦。

就好像是给这些问题穿上了“数学的小外套”,把它们都给套住,然后慢慢解开。

有时候啊,解题就像是玩拼图。

把那些已知条件都当成拼图的小块,一点点拼起来,最后就能看到整个画面啦。

举个例子吧,比如说甲、乙两人相向而行,3 小时后相遇,甲走了15 公里,乙走了12 公里,求甲、乙的速度。

咱就可以设甲的速度是x,乙的速度是y,然后列出方程组:3x = 15,3y = 12。

是不是一下子就清楚啦?还有哦,解题的时候可别粗心大意。

有时候就因为把数字看错了一点,那就前功尽弃啦。

就好像你开车的时候看错了路牌,搞不好就开到沟里去了。

总之,解决二元一次方程组行程问题就像是一次充满挑战和乐趣的驾车旅行。

咱要细心、耐心,把那些零件都组装好,才能让这辆“数学之车”顺利跑起来。

相信大家只要掌握了这些解题技巧,再加上一点点耐心和细心,就能在这场速度与激情的数学之旅中畅通无阻啦!加油吧,小伙伴们!让我们一起在数学的道路上飞驰起来!。

二元一次方程组解决实际问题典型例题

二元一次方程组解决实际问题典型例题
【变式】 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色 游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩 看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?
类型八:列二元一次方程组解决——数字问题
8. 两个两位数的和是68,在较大的两位数的右边接 着写较小的两位数,得到一个四位数;在较大的两位数 的左边写上较小的两位数,也得到一个四位数,已知前 一个四位数比后一个四位数大2178,求这两个两位数。
求该商场购进A、B两种商品各多少件;
01
类型四:列二元一次方程组 解决——银行储蓄问题
02
小明的妈妈为了准备小明一 年后上高中的费用,现在以 两种方式在银行共存了 2000元钱,一种是年利率 为2.25%的教育储蓄,另一 种是年利率为2.25%的一年 定期存款,一年后可取出 2042.75元,问这两种储蓄 各存了多少钱?(利息所得 税=利息金额×20%,教育 储蓄没有利息所得税)
【变式1】一个两位数,十位上的数字比个位上的 数字大5,如果把十位上的数字与个位上的数字交换位 置,那么得到的新两位数比原来的两位数的一半还少9, 求这个两位数?
【变式2】某三位数,中间数字为0,其余两个数位上数 字之和是9,如果百位数字减1,个位数字加1,则所得新 三位数正好是原三位数各位数字的倒序排列,求原三位数。
类型九:列二元一次方程组解决——浓度问题
9.现有两种酒精溶液,甲种酒精溶液的酒精与 水的比是3∶7,乙种酒精溶液的酒精与水的比是 4∶1,今要得到酒精与水的比为3∶2的酒精溶液 50kg,问甲、乙两种酒精溶液应各取多少?
【变式1】要配浓度是45%的盐水12千克,现有 10%的盐水与85%的盐水,这两种盐水各需多少?
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;

七年级数学人教版下册第八章列二元一次方程组解行程与配套问题课件

七年级数学人教版下册第八章列二元一次方程组解行程与配套问题课件

【点拨】设 103 路公交车行驶速度为 x 米/分钟,爸爸行走速度 为 y 米/分钟,相邻两辆 103 路公交车间的间距为 s 米. 根据题意,得75xx- +75yy= =ss, ,解得 x=6y.
【答案】6
3.(2019·百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙 地顺流航行用了6小时,逆流航行比顺流航行多用了4小时.
(1)用8辆汽车装运乙、丙两种水果共22 t到A地销售,问 装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共 72 t到B地销售(每种水果不少于一车),假设装运甲 种水果的汽车为m辆,则装运乙、丙两种水果的汽车 各多少辆(结果用m表示)?
(1)设装运乙、丙两种水果的汽车分别为x辆、y辆.
应用2 生产配套问题
8.某教育服装厂要生产一批某种型号的学生服装,已 知3 m长的布料可做上衣2件或裤子3条,一件上衣 和一条裤子为一套,计划用600 m长的这种布料生 产,应分别用多少布料生产上衣和裤子才能恰好配 套?共能生产多少套?
解:设用x m布料做上衣,ym布料做裤子,
列方程组得
x+y=600
题型 1 行程问题 (1)求笔记本的单价和单独购买一支笔芯的价格;
根据题意,得W=5m+7(50-m)=-2m+350.
设乙的速度为x m/min,环形场地的周长为y m,则
答:用360 m布料生产上衣、240 m布料生产裤子才能恰好配套,共能生产240套.
1.基本关系式: 设张明前进的速度是x m/min,公共汽车的速度是y m/min.
(3)航行问题:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度.
应用1 相遇(追及)问题

初一数学下册二元一次方程解题方法行程问题

初一数学下册二元一次方程解题方法行程问题

初一数学下册二元一次方程解题方法:行程问题
1.列方程组解应用题的基本思想:
列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:
①方程两边表示的是同类量;
②同类量的单位要统一;
③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:
用两个字母表示问题中的两个未知数;
列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);
解:解方程组,求出未知数的值;
答:写出答案。

3.要点诠释:
(1)“设”、“答”两步,都要写清单位名称;
(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

行程问题
行程问题:
知识梳理路程=速度×时间;
相遇问题:
快行距+慢行距=原距;
追及问题:
快行距-慢行距=原距;
航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度 ;
典型例题:
思路点拨:
这两个问题均可以利用路程、速度和时间之间的关系列方程(组)求解,要明确快车与慢车的路程与A、B 两地的距离之间的关系,相向而行两车相遇时:快车路程+慢车路程=A、B两地距离;同向而行两车相遇时:快车路程-慢车路程=A、B两地距离。

变式拓展:
思路点拨:
根据水流速度与船在静水中的速度的关系可以得到船的顺水速度和逆水速度,再根据路程=时间×速度列出方程组求解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②顺逆问题: 顺水(风)速度=静水(风)速度+水流(风)速度; 逆水(风)速度=静水(风)速度—水流(风)速度。 相遇问题:两人各自走的路程和等于两地间的距离; 追及问题:两人各自走的路程差等于两地间的距离。
根据题意画出示意图,再根据路程、时间和速度的关 系找出等量关系,是行程问题的常用的解决策略。
(二)二元一次方程组解应用题的一般步骤
实际问题
设未知数,列方程组
数学问题 (二元一次方程组)
解 方 程 组
实际问题的答案
检验
数学问题的解 (二元一次方程组的解)
(三)列方程组解行程问题的基本关系量
(1)路程= 速度 × 时间 ;
路程 速度= 时间 ;
路程 时间= 速度 ;
(2)顺水(风)速度= 静水(风)速度+水流(风)速度;
y -y

240 4
240 6
x 50
,解得

y

10
答:船在静水中的速度为50km/h,水流速度为10km/h.
三、经典例题
例1:某车站有甲、乙两辆汽车,若甲车先出发1h后 乙车出发,则乙车出发5h后追上甲车;若甲车先开出 20km后乙车出发,则乙车出发4h后追上甲车,求甲乙两 车的速度。
《跑男第五季》初中数学题截图
复习课之
二元一次方程组解行程问题
师大五华实验中学 邓玉丽
一、知识回顾
(一)列方程组解应用题的基本方法
列方程组解应用题的关键是把已知量和未知量 联系起来,找出题目中的 相等关系 。
其特点:(1)方程左右两边表示的是 同类 量; (2)同类量的单位要 统一 ; (3)方程两边的数值要 相等 .
由题意的
12.05xx-120.y5y404000,解得
x

y

100 60
答:甲的速度为100 m/min,乙的速度为60 m/min.
【总结升华】根据题意画出示意图,再根据路程、时间和 速度的关系找出等量关系,是行程问题的常用的解决策略。
五、课堂小结
①二元一次方程组解决应用题的基本方法和一般步骤;
3、甲、乙二人都以不变的速度在环形路上跑步,如果同地同时出发, 反向而行,每隔2min相遇一次;如果同地同时出发,反向而行,每隔 6min相遇一次.已知甲比乙跑得快,甲、乙每分各跑多少圈?
18x18y450
x 15
由题意得
45090y90x
,解得

y

10
答:甲的速度为15 m/s,乙的速度为10 m/s.
思考2:甲、乙两人在周长为400m的环形跑道上练跑, 如果反向出发,每隔2.5min相遇一次;如果同向出发,每 隔10min相遇一次,假定两人速度不变,且甲快乙慢,求 甲、乙两人的速度.
解:设甲车的速度为xkm/h,乙车的速度为ykm/h.
第一个情境:若甲车先出发1h后乙车出发,则乙车出发5h后追上甲车 5y
乙 甲
x
5x
可得方程式:6x=5y
例1:某车站有甲、乙两辆汽车,若甲车先出发1h后 乙车出发,则乙车出发5h后追上甲车;若甲车先开出 20km后乙车出发,则乙车出发4h后追上甲车,求甲乙两 车的速度。
由题意可得
6x 4x
5y 20
,解得
4y
x

y

25 30
答:甲车的速度为25km/h,乙车的速度为30km/h.
方法总结:根据题意画示意图,根据路程、时间 和速度的关系找出等量关系
思考1:甲乙两人相距450m,两人同时出发相向 而行,18秒相遇 ; 同时出发同向而行,甲90秒追上 乙,求甲乙两人的速度。
第二个情境:同向出发,每隔10min相遇一次
可得:10x-10y=400
思考2:甲、乙两人在周长为400m的环形跑道上练跑, 如果反向出发,每隔2.5min相遇一次;如果同向出发,每 隔10min相遇一次,假定两人速度不变,且甲快乙慢,求 甲、乙两人的速度.
解:设甲的速度为x m/min,乙的速度为y m/min.
第二个情境:两人相距450m,同时出发同向而行,甲90秒追上乙
90x
450m
90y
追及问题:两人各自走的路程差等于两地间的距离
思考1:甲乙两 人 相距450m,两 人 同时出 发相向而行,18秒相遇;同时出发同向而行, 甲90秒追上乙,求甲乙两人的速度。
解:设甲的速度为x m/s,乙的速度为y m/s.
六、作业布置
用二元一次方程组解应用题
1、甲、乙两人赛跑,如果乙比甲先跑8m,那么甲跑4s就能追上乙; 如果甲让乙先跑1s,那么甲跑3s就能追上乙,求甲乙两人的速度。
2、张华和李明从相距15千米的两地同时出发,若同向而行,张华3小 时追上李明;若相向而行,两人1小时后相遇,则两人的速度分别是 多少。
解:设甲的速度为x m/s,乙的速度为y m/s.
第一个情境:两人相距450m,同时出发相向而行,18秒相遇
18x
18两地间的距离
思考1:甲乙两 人 相距450m,两 人 同时出 发相向而行,18秒相遇;同时出发同向而行, 甲90秒追上乙,求甲乙两人的速度。
解:设甲的速度为x m/min,乙的速度为y m/min.
第一个情境:相向而行,每隔2.5min相遇一次
可得:2.5x+2.5y=400
思考2:甲、乙两人在周长为400m的环形跑道上练跑, 如果反向出发,每隔2.5min相遇一次;如果同向出发,每 隔10min相遇一次,假定两人速度不变,且甲快乙慢,求 甲、乙两人的速度.
(3)逆水(风)速度= 静水(风)速度—水流(风)速度.
二、基础练习
已知A、B两码头之间的距离为240km,一艘船航行 于A、B两码头之间,顺流航行需4小时,逆流航行需6 小时,求船在静水中的速度及水流速度.
解:设船在静水中的速度为xkm/h,水流速度为ykm/h.

由题意得


x x
第二个情境:若甲车先开出20km后乙车出发,则乙车出发4h后追上甲车
4y 乙 甲
20km
4x
可得方程式:4x+20=4y
例1:某车站有甲、乙两辆汽车,若甲车先出发1h后乙车出 发,则乙车出发5h后追上甲车;若甲车先开出20km后乙车出发, 则乙车出发4h后追上甲车,求甲乙两车的速度。
解:设甲车的速度为xkm/h,乙车的速度为ykm/h.
相关文档
最新文档