刀具角度

合集下载

金属切削刀具常用的5个切削角度

金属切削刀具常用的5个切削角度

金属切削刀具是制造业中常用的工具,正确的切削角度对切削质量有着重要的影响。

在金属加工过程中,常用的五个切削角度包括:刀尖倒角角度、主偏角、副偏角、前角和后角。

一、刀尖倒角角度刀尖倒角角度是指刀具前端倒角的角度,它的大小会影响切削的刀尖强度和耐磨性。

一般来说,刀尖倒角角度越小,刀尖强度越高,耐磨性也越好。

常见的刀尖倒角角度为15度至45度不等,选用合适的刀尖倒角角度能够减小切屑厚度、改进切削刚度和提高刀具寿命。

二、主偏角主偏角又称前角,是指切削刃与工件表面的夹角。

主偏角的大小直接影响着刀具的切削力和切屑的形态。

通常情况下,主偏角越小,切削力越小,切削刚度越大。

然而,主偏角过小也容易导致刀具容易断裂和刀尖易磨损。

在实际加工中需要根据不同的工件材料和加工条件来选择合适的主偏角。

三、副偏角副偏角又称侧倾角,是指刀具刃部与切削面的夹角。

副偏角的大小影响着切屑的流动和刀具的耐磨性。

一般情况下,副偏角越小,切屑流动越顺畅,切屑的形态也更好。

但过小的副偏角容易导致刀具刃部的磨损加剧。

在选择副偏角时需要兼顾切屑形态和刀具的耐磨性。

四、前角前角是刀具刃部与工件表面接触时形成的角度,它的大小直接影响着切削时的切削力和切屑的形态。

一般情况下,前角越大,切削力越小,切屑流动也更加顺畅。

然而,过大的前角容易导致刀具刃部的磨损加快。

在实际加工中需要根据工件材料和加工条件来选择合适的前角。

五、后角后角是刀具刃部背面与工件表面形成的角度,它的大小影响着刀具刃部的强度和切削力。

一般情况下,后角越大,刀具刃部强度越高,切削力也相对较小。

然而,过大的后角会导致刃部切削过程中的摩擦增大,从而影响切削质量。

在选择后角时需要根据实际情况进行合理的选择。

总结:金属切削刀具的切削角度对切削质量和刀具寿命有着重要的影响。

正确选择刀尖倒角角度、主偏角、副偏角、前角和后角,可以有效地改善切削过程中的刀具性能,提高加工质量,降低成本,增加经济效益。

在实际加工中,需要根据具体的工件材料和加工条件来合理选择切削角度,以达到最佳的加工效果。

刀主要角度

刀主要角度

1.车刀分:外圆车刀、端面车刀、切断刀、内孔车刀、螺纹车刀。

2.车刀的角度有:前角、后角、副后角、刃倾角、主偏角、副偏角。

(1)前角γ0:前刀面与基面的夹角,在主剖面中测量。

前角的大小影响切削刃锋利程度及强度。

增大前角可使刃口锋利,切削力减小,切削温度降低,但过大的前角,会使刃口强度降低,容易造成刃口损坏。

取值范围为:-8°到+15°。

选择前角的一般原则是:前角数值的大小与刀具切削部分材料、被加工材料、工作条件等都有关系。

刀具切削部分材料性脆、强度低时,前角应取小值。

工件材料强度和硬度低时,可选取较大前角。

在重切削和有冲击的工作条件时,前角只能取较小值,有时甚至取负值。

一般是在保证刀具刃口强度的条件下,尽量选用大前角。

如硬质合金车刀加工钢材料时前角值可选5°-15°。

(2)主后角α0: 主后刀面与切削平面间的夹角,在主剖面中测量。

其作用为减小后刀面与工件之间的摩擦。

它也和前角一样影响刃口的强度和锋利程度。

选择原则与前角相似,一般为0到8°。

(3)主偏角κr: 主切削刃与进给方向间的夹角,在基面中测量。

其作用体现在影响切削刃工作长度、吃刀抗力、刀尖强度和散热条件。

主偏角越小,吃刀抗力越大,切削刃工作长度越长,散热条件越好。

选择原则是:工件粗大刚性好时,可取小值;车细长轴时为了减少径向切削抗力,以免工件弯曲,宜选取较大的值。

常用在15°到90°之间。

(4)副偏角κ'r: 副切削刃与进给反方向间的夹角,在基面中测量。

其作用是影响已加工表面的粗糙度,减小副偏角可使被加工表面光洁。

选择原则是:精加工时,为提高已加工表面的质量,应选取较小的值,一般为5到10°。

(5)刃倾角λs :主切削刃与基面间的夹角,在主切削平面中测量。

主要作用是影响切屑流动方向和刀尖的强度。

以刀柄底面为基准,主切削刃与刀柄底面平行时,λs =0,切屑沿垂直于主切削刃的方向流出。

刀具角度选用原则

刀具角度选用原则

答:1是前角; 2是后角; 3是副偏角; 4是刀尖角;5是主偏角; 6是副后角; 7是副前角; 8是刃倾角名称:前角作用:加大前角,刀具锋利,切削层的变形及前面摩擦阻力小,切削力和切削温度可减低,可抑制或消除积屑瘤,但前角过大,刀尖强度降低;选择原则:(1)工件材料的强度、硬度低,塑性好时,应取较大的前角;反之应取较小的前角;加工特硬材料(如淬硬钢、冷硬铸铁等)甚至可取负的前角(2)刀具材料的抗弯强度及韧性高时,可取较大的前角(3)断续切削或精加工时,应取较小的前角,但如果此时有较大的副刃倾角配合,仍可取较大的前角,以减小径向切削力(4)高速切削时,前角对切屑变形及切削力的影响较小,可取较小前角(5)工艺系统钢性差时,应取较大的前角作用:减少刀具后面与工件的切削表面和已加工表面之间的摩擦。

前角一定时,后角愈锋利,但会减小楔角,影响刀具强度和散热面积。

选择原则:(1)精加工时,切削厚度薄,磨损主要发生在后刀面,宜取较大后角;粗加工时,切削厚度大,负荷重,前、后面均要发生磨损、宜取较小后角(2)多刃刀具切削厚度较薄,应取较大后角(3)被加工工件和刀具钢性差时,应取较小后角,以增大后刀面与工件的接触面积,减少或消除振动(4)工件材料的强度、硬度低、塑性好时,应取较大的后角,反之应取较小的后角;但对加工硬材料的负前角刀具,后角应稍大些,以便刀刃易于切入工件;(5)定尺寸刀具(如内拉刀、铰刀等)应取较小后角,以免重磨后刀具尺寸变化太大;(6)对进给运动速度较大的刀具(如螺纹车刀、铲齿车刀等),后角的选择应充分考虑到工作后角与标注后角之间的差异;(7)铲齿刀具(如成形铣刀、滚刀等)的后角要受到铲背量的限制,不能太大,但要保证侧刃后角不小于2°。

作用:(1)改变主偏角的大小可以调整径向切削分力和轴向切削分力之间的比例,主偏角增大时,径向切削分力减小,轴向切削分力增大;(2)减小主偏角可减小削厚度和切削刃单位长度上的负荷;同时主切削刃工作长度和刀尖角增大,刀具的散热得到改善,但主偏角过小会使径向切削分力增加,容易引起振动。

刀具标注角度

刀具标注角度

⼑具标注⾓度2)后⾓αo -- 后⼑⾯与切削平⾯之间的夹⾓。

若通过选定点的切削平⾯位于楔形⼑体的实体之外,后⾓为正值;反之为负值。

3)楔⾓βo -- 前⼑⾯与主后⼑⾯之间的夹⾓。

显然有:βo + γo +αo = 90°。

在基⾯P r中测量的⾓度:4)主偏⾓k r -- 主切削刃在基⾯上的投影与假定进给⽅向之间的夹⾓。

5)副偏⾓k'r -- 副切削刃在基⾯上的投影与假定进给反⽅向之间的夹⾓。

6)⼑尖⾓εr -- 主切削刃与副切削刃在基⾯上投影之间的夹⾓。

显然有: k r+k'r +εr = 180°。

在切削平⾯P s中测量的⾓度:7)刃倾⾓λs -- 主切削刃与基⾯之间的夹⾓。

当⼑尖是主切削刃上最低点时,刃倾⾓定为负值;当⼑尖是主切削刃上最⾼点时,则刃倾⾓为正值,如图2-62 所⽰。

图2-62 刃倾⾓当λs = 0°时,主切削刃与切削速度垂直,称之为直⾓切削或正切削。

⽽λs≠ 0°的切削称为斜⾓切削或斜切削。

λs的正或负会改变切屑流出的⽅向。

在副正交平⾯中测量的⾓度8)副后⾓α'o -- 副后⼑⾯与切削平⾯之间的夹⾓;9)副前⾓γ'o -- 前⼑⾯与基⾯之间的夹⾓。

实际上,当γo、λs 、k r及k'r为已定值,且主、副切削刃处于共同的前⼑⾯时,γ'o也已被确定了。

另外,βo及εr是派⽣⾓。

因此,外圆车⼑的标注⾓度只有六个是独⽴的:γo、αo、k r、 k'r、λs与α'o,外圆表⾯的加⼯路线1粗车→半精车→精车:应⽤最⼴,满⾜IT≥IT7,▽≥0.8外圆可以加⼯2粗车→半精车→粗磨→精磨:⽤于有淬⽕要求IT≥IT6,▽≥0.16 的⿊⾊⾦属。

3粗车→半精车→精车→⾦刚⽯车:⽤于有⾊⾦属、不宜采⽤磨削加⼯的外⽤表⾯。

4.粗车→半精车→粗磨→精磨→研磨、超精加⼯、砂带磨、镜⾯磨、或抛光在2的基础上进⼀步精加⼯。

第1章刀具角度

第1章刀具角度
23
3) 背平面、假定工作平面参考系
图1-11 背平面、假定工作平面参考系
24

刀具角度的作用:
a 确定切削刃的空间位置 b 确定前、后刀面的空间位置
1.2.2 刀具标注角度
(1)刀具在正交平面参考系中的角度 1)主偏角κr
基面Pr中测量的主切削平面 与假定工作平面(进给方向)间夹角。 切削平面Ps中测量的主切削 刃与基面间的夹角。 γo (正交平面Po中测量的) 前刀面与基面间的夹角。 (主)后角 αo (正交平面Po中测量 的)后刀面与切削平面间的夹角。
9
图1-6 平面刨削的切削运动与加工表面
10
(3)切削用量:三要素 ①切削速度vc 当主运动为旋转运动时,工件或刀具最大 直径处的切削速度由下式确定:

式中 d——完成主运动的工件或刀具的最 大直径 (mm); n——主运动的转速(r/s或r/min)。

11


②进给量f
若进给运动为直线运动,则进给速度在切削刃上
间的夹角。
①楔角:楔角 是前刀面Ag 与后面刀A 之
在正交平面Po上测量时:
bο =
90°--( go + o )
②刀尖角er :是在基面Pr上的测量的主
切削平面Ps与副切削平面Ps’之间的夹角。
er = 180°--( r + r’ )
(1)刀具在正交平面参考系中的角度
27
图1-12 外圆车刀在正交平面参考系的角度
主剖面



侧平面

6)背平面Pp:Pr、Ps、Po组成一个正交的正交平面参考系。
三个参考系
{
Pr、Ps、Pn组成一个正交的法平面参考系。 21 Pr、Pf、Pp组成一个背平面、假定工作平面参考系。

刀具角度选择

刀具角度选择
后角ao
后角的主要作用是减小刀具后刀面与工件之间的摩擦。后角过大会使到刃强度降低,并使散热条件变差,使刀具耐用度降低
车刀合理后角f≤0.25mm/r时,可选ao=10°~12°;在f>0.25mm/r时,取ao=5°~8°
1) 工件材料强度、硬度较高时,应取较小后角;工件材料软、粘时应取较大后角;加工脆性材料时,宜取较小后角。
1)前刀面Ay—切下的切屑沿其流出的表面。
2)主后刀面Aa—与工件上过渡表面相对的表面。
3)副后刀面A'a—与工件上已加工表面相对的的表面。
4)主切削刀S—前刀面与主后刀面的交线,它承担主要切削工作。
5)副切削刃S'—前刀面与副后刀面的交线,它协同主切削刃完成切削工作,并最终形成已加工表面。
6)刀尖—主切削刃与副切削刃连接处的那部分切削刃。
刀具角度选择
角度名称
作用
选择时应考虑的主要因素
前角yo
增大前角可以减小切屑变形和摩擦阻力,使切削力、切削功率及切削时产生的热量减小。前角过大将导致切削刃强度降低,刀头散热体积减小,致使刀具寿命降低
加工一般灰铸铁时,可选yo=5°~15°;加工铝合金时,选yo=30°~35°;用硬质合金刀具加工一般钢料时,选yo=10°~20°
2) 精加工及切削厚度较小的刀具,应采用较大的后角;粗加工、强力切削、宜取较小后角。
3) 工艺系统刚性较差时,应适当尖小后角。
4) 定尺寸刀具,如拉刀、铰刀等,为避免重磨后刀具尺寸变化过大,宜取较小的后角。
主偏角kr
主偏角减小,可使刀尖处强度增大且作用切削刃长度增加,有利于散热和减轻单位刀刃长度的负荷,提高刀具的寿命。减小主偏叫4还可使工件表面残留面积高度减小。增大主偏角,可使背向力Fp减小,进给力Ff增加,因而可降低工艺系统的变形与振动

刀具几何角度的基本定义与标注及工作角度

刀具几何角度的基本定义与标注及工作角度
刀具几何角度的 基本定义与标注 及工作角度
汇报人:XX
目录
• 刀具几何角度概述 • 刀具标注方法 • 工作角度及其影响因素 • 刀具几何角度的优化设计 • 刀具几何角度的测量与调整 • 刀具几何角度的应用实践
01
CATALOGUE
刀具几何角度概述
定义与重要性
定义
刀具几何角度是指刀具切削部分 各表面的倾斜角度和刀尖形状。
刀具几何形状
刀具的刃形、刃倾角等几何形状因素也会对 工作角度产生影响。
04
CATALOGUE
刀具几何角度的优化设计
优化设计原则与目标
原则
在满足切削性能的前提下,尽可能减小刀具的结构尺寸和重量,提高刀具的刚性和耐用度。
目标
通过优化刀具的几何角度,改善切削力、切削热和刀具磨损等状况,从而提高切削效率和加工质量。
案例三
针对难加工材料的切削,通过采 用具有大前角和大后角的刀具优 化设计,有效减少了切削刃的磨 损和破损,提高了切削稳定性和 加工精度。
05
CATALOGUE
刀具几何角度的测量与调整
测量方法与工具介绍
测量方法
通常采用投影法、坐标法、光学法等 进行测量。
测量工具
主要包括投影仪、万能角度尺、光学 分度头等。
工件表面质量
工作角度对工件表面的粗糙度、残 余应力等有直接影响。
04
影响工作角度的因素分析
刀具材料
不同材料的刀具具有不同的强度和韧性,需 要相应调整工作角度以适应其特性。
切削用量
切削速度、进给量和切削深度等切削用量参 数的变化会导致工作角度的调整。
工件材料
工件材料的硬度、韧性等物理特性对工作角 度的选择有重要影响。

刀具(厨刀小刀)刃角测量

刀具(厨刀小刀)刃角测量

刀具刃角测量
一把好用的刀必需锋利持久耐用,这取决要有好的钢材和处理工艺,刃角是影响锋利度的重要因素。

刃角越小,刃部越尖,切入阻力也越小,锋利度也越高。

一,刀具常规开刃角度(以下指是双边角度,单边除2) 34度:一般是西式刀厨刀或菜刀的角度,国际标准(ISO8442)不超40度, 日系刀大多在30度左右。

40度:可提供一相当锐利的刃面,一般用作随身小刀。

50度:兼具刀刃锐利及持续性的开刃角度。

一般野外用刀多为此角度。

60度:刺刀或野外用刀使用,不易变钝,易于研磨是其优点。

二,生产工厂如何控制刃角。

老式的砂轮机定好角度开出的刃肯定能达到标准,但这种方法锋利度谁用谁知道在此就不多说了。

当前最普及的是湿式开刃法,采取湿式方法开刃是保证刃口不发生相变的工艺保证。

但好坏取决开刃工人的水平,开刃角度难以标准 ,一批产品出现30-50度大幅偏差也是常态。

解决这个问题必需加强品控,配备专业的测量工具是刀具生产工厂提升品质必不可少的利器。

三,如何选择刃角测量仪
随着国内刀具厂家慢慢地从以前的普通产品走向高端产品。

然而重要性作用的刃角测量方面存在瓶颈, LH公司刃角测量仪可以满足工厂的检测需要提高产品质量。

LH产品设计上除了精准外还考虑实用,耐用和完美的外观。

用现在流行的来说就是:
高端大气上档次,实用耐用更给力!
六合科技阳江总代理 QQ 3576153415。

刀具的标注角度[指南]

刀具的标注角度[指南]

刀具的标注角度1.前角:当前面与切削平面夹角小于90度时,前角为正值,大于90度时为负值.2.后角; 当后面与基面夹角小于90度时,后角为正值,大于90度时,后角为负值。

车切基本知识一、车刀材料在切削过程中,刀具的切削部分要承受很大的压力、摩擦、冲击和很高的温度。

因此,刀具材料必须具备高硬度、高耐磨性、足够的强度和韧性,还需具有高的耐热性(红硬性),即在高温下仍能保持足够硬度的性能。

常用车刀材料主要有高速钢和硬质合金。

1.高速钢高速钢又称锋钢、是以钨、铬、钒、钼为主要合金元素的高合金工具钢。

高速钢淬火后的硬度为HRC63~67,其红硬温度550℃~600℃,允许的切削速度为25~30m/min。

高速钢有较高的抗弯强度和冲击韧性,可以进行铸造、锻造、焊接、热处理和切削加工,有良好的磨削性能,刃磨质量较高,故多用来制造形状复杂的刀具,如钻头、铰刀、铣刀等,亦常用作低速精加工车刀和成形车刀。

常用的高速钢牌号为W18Cr4V和W6Mo5Cr4V2两种。

2.硬质合金硬质合金是用高耐磨性和高耐热性的WC(碳化钨)、TiC(碳化钛)和Co(钴)的粉末经高压成形后再进行高温烧结而制成的,其中Co起粘结作用,硬质合金的硬度为HRA89~94(约相当于HRC74~82),有很高的红硬温度。

在800~1000℃的高温下仍能保持切削所需的硬度,硬质合金刀具切削一般钢件的切削速度可达100~300m/min,可用这种刀具进行高速切削,其缺点是韧性较差,较脆,不耐冲击,硬质合金一般制成各种形状的刀片,焊接或夹固在刀体上使用。

常用的硬质合金有钨钴和钨钛钴两大类:(1)钨钴类(YG)由碳化钨和钴组成,适用于加工铸铁、青铜等脆性材料。

常用牌号有YG3、YG6、YG8等,后面的数字表示含钴量的百分比,含钴量愈高,其承受冲击的性能就愈好。

因此,YG8常用于粗加工,YG6和YG3常用于半精加工和精加工。

(2)钨钛钴类(YT)由碳化钨、碳化钛和钴组成,加入碳化钛可以增加合金的耐磨性,可以提高合金与塑性材料的粘结温度,减少刀具磨损,也可以提高硬度;但韧性差,更脆、承受冲击的性能也较差,一般用来加工塑性材料,如各种钢材。

刀具的工作角度

刀具的工作角度

小结
刀具材料 应具备的性能 常用的刀具材料种类、特点、应用 切削变形 切削变形机理 现象 切屑收缩 不同切屑种类 形成条件 对加工过程的影响 积屑瘤 产生原因 特点、对加工过程的影响 影响因素及控制所示 已加工表面加工硬化 表现 对零件不利影响和控制措施
高速钢 (典型牌号:W18Cr4V、 W6Mo5Cr4V2) 硬度:HRC63~70 热硬性:550~650℃ 切削速度:V=40m/min 强度和韧性好、工艺性好、容易磨得锋利 主要制作复杂形状刀具:如铣刀、孔加工刀具、螺纹刀具、拉刀、齿轮刀具等
常用刀具材料种类和应用
作业
章后习题 2
刀具材料
解决两个问题: 刀具材料应具备的性能 常用的刀具材料\性能\应用
刀具材料应具备的性能
硬度 耐磨性 强度和韧性 化学稳定性 工艺性 经济性
工具钢 基本特性 价格便宜 容易刃磨的锋利 硬度低、耐磨性差 应用 手工刀具 低速切削刀具
刀具材料的种类和应用
常用刀具材料种类和应用
积屑瘤对加工过程的影响
形成过程中经过了强烈的变形,所以硬度明显提高,一般比工件材料的硬度提高1.5~2.5倍,因此可以代替刀刃切削,保护切削刃。另外,积屑瘤存在增大了刀具的工作前角γe,切削变得轻快,所以粗加工时产生积屑瘤有一定好处。 但是积屑瘤长大到一定高度后,由于切削过程中的冲击、振动等原因,会发生破裂脱落,被切屑带走或留在已加工表面上,而且这个过程周而复始,造成积屑瘤时大时小,极不稳定,容易应起加工过程振动;另外积屑瘤沿切削刃伸出的形状很不规则,会在工件已加工表面留下不均匀的沟痕,直接影响已加工表面的形状精度和粗糙度,所以在精加工和使用定尺寸刀具加工时,尽量避免积屑瘤的产生。 教学光盘(30”)
切削变形现象 之二

刀具角度

刀具角度

刀具角度刀尖刀具刀具工作角度是刀具在工作参考系中定义的一组角度。

在切削过程中,由于刀具安装位置和进给因素的影响,使刀具在工作角度(即刀具的实际切削角度)不同于其在静止参考系中的角度。

表2-4列出了各种不同影响因素下,车到工作角度的修正计算。

刀具几何角度与刃部参数的选择刀具切削部分的几何参数,对切削过程中的金属变形、切削力、切削温度、工件的加工质量都有显著影响。

选择合理的刀具几何参数,就是要在保证工件加工质量和刀具经济耐用度的前提下,达到提高生产率、降低生产成本的目的。

影响刀具合理几何参数选择的主要因素是工件材料、刀具材料及类型、切削用量、工艺系统钢度以及机床功率等。

图2-3 外圆车刀刀具角度刀具(1)定义刀具角度的参考系:为了定义刀具切削部分的几何角度,需选定适当组合的基准坐标平面作为参考系。

其中用于规定刀具设计、制造、刃磨和测量时几何参数的参考系称为刀具静止参考系,如图2-2所示。

规定刀具进行切削加工时几何参数的参考系称为刀具工作参考系。

刀具静止参考系的各平面名称、表示符号及定义见表2-1。

图2-2 刀具静止参考系(2)刀具角度的定义:刀具角度是刀具在静止参考系中的一组角度,其名称,表示符号及定义见表2-2。

外圆车刀刀具角度见图2-3。

表2-2 刀具角度定义角加一撇“′”以示区别,例如车刀副偏为k′r,副后角为a′o。

(3)刀具角度的换算:制造或刃磨刀具时常需在不同坐标平面间进行刀具角度换算。

各坐标平面间刀具角度的换算关系见表2 -3表2-3 刀具角度的换算关系刀具图2-1 车刀切削部分的结构要素外圆车刀的切削部分可以看作是各类刀具切削部分的基本形态。

图2-1所示是外圆车刀的切削部分,其结构要素及其定义如下:1)前刀面Ay—切下的切屑沿其流出的表面。

2)主后刀面Aa—与工件上过渡表面相对的表面。

3)副后刀面A'a—与工件上已加工表面相对的的表面。

4)主切削刀S—前刀面与主后刀面的交线,它承担主要切削工作。

收藏!刀具5个角度选择基础

收藏!刀具5个角度选择基础

前角yo作用增大前角可以减小切屑变形和摩擦阻力,使切削力、切削功率及切削时产生的热量减小。

前角过大将导致切削刃强度降低,刀头散热体积减小,致使刀具寿命降低选择时应考虑的主要因素加工一般灰铸铁时,可选yo-=5°~15°;加工铝合金时,选yo=30°~35°;用硬质合金刀具加工一般钢料时,选yo=10°~20° 1)刀具材料的抗弯强度及韧性较高时,可取较大前角。

2)工件材料的强度、硬度较低、塑性较好时,应取较大前角;加工硬脆材料应取较小前角,甚至取负前角。

3)继续切削或粗加工有硬皮的铸锻时,应取叫小前角,精加工时宜取叫大前角。

4)工艺系统刚性较差或机床功率不足时,应取较大前角。

5)成形刀具和齿轮刀具全减小齿形误差,应取小前角甚至零前角。

后角ao作用后角的主要作用是减小刀具后刀面与工件之间的摩擦。

后角过大会使到刃强度降低,并使散热条件变差,使刀具耐用度降低选择时应考虑的主要因素车刀合理后角f≤0.25mm/r时,可选ao=10°~12°;在f>0.25mm/r时,取ao=5°~8° 1)工件材料强度、硬度较高时,应取较小后角;工件材料软、粘时应取较大后角;加工脆性材料时,宜取较小后角。

2)精加工及切削厚度较小的刀具,应采用较大的后角;粗加工、强力切削、宜取较小后角。

3)工艺系统刚性较差时,应适当尖小后角。

4)定尺寸刀具,如拉刀、铰刀等,为避免重磨后刀具尺寸变化过大,宜取较小的后角。

主偏角kr作用主偏角减小,可使刀尖处强度增大且作用切削刃长度增加,有利于散热和减轻单位刀刃长度的负荷,提高刀具的寿命。

减小主偏叫4还可使工件表面残留面积高度减小。

增大主偏角,可使背向力Fp减小,进给力Ff增加,因而可降低工艺系统的变形与振动选择时应考虑的主要因素1)在工艺系统刚性允许的条件下,应采用较小的主偏角。

如系统刚性较好时(Lw/dw<6),可取kr=30°~45°;当系统刚性较差时(Lw/dw=6~12),取kr=60°~75°;车削细长轴时(Lw/dw>12),取kr90°~93°2)加工很硬的材料时,应取较小的主偏角。

刀具角度的标注

刀具角度的标注

1.75°内孔车刀几何角度:主偏角Kr二75。

,副偏角Kr'二15。

,前角丫0二10。

后角a 0二8,副后角a 0'二8,刃倾角入S二5°
答案:
2. 75°外圆车刀几何角度:主偏角K T二75°,副偏角KJ二15°,前角丫o二10.,后角a o二8,副后角a o二8,刃倾角入S二—5°
答案:
3.60°内孔车刀几何角度:主偏角Kr二60,副偏角Kr'二15°,前角丫0二10。

后角
a 0二8,副后角a 0'二8,刃倾角入s = — 5
答案:
4. 90°外圆车刀几何角度:主偏角Kr二90°,副偏角Kr - 15°,前角丫0二10。

后角a 0二8,副后角a 0'二8,刃倾角入s二5°
答案:
5. 45°内孔车刀几何角度: 主偏角Kr二45°,副偏角Kr1 - 15。


前角丫o二10°,后角日o二10°,副后角曰o二10°,刃倾角入S二-5°答案:
F O-P D
6. 45°端面车刀几何角度:主偏角Kr二45°,副偏角Kr'二45°,前角丫0二5后角
a 0二8,副后角a 0'二8,刃倾角入S二5°
答案:
5. 45°内孔车刀几何角度: 主偏角Kr二45°,副偏角Kr1 - 15。

,。

刀具角度的基本概念

刀具角度的基本概念

刀具角度的基本概念:1、前角:基面和前刀面的夹角.是刀具的锋利程度.我们把铁屑流经过的面成为前刀面.2、后角:切削平面和后刀面的夹角.主要影响摩擦和刀具强度.3、主偏角:主切削刃和刀具进给方向的夹角.影响刀具的强度,和影响背向力,主偏角减小,背向力越大,机床的消耗率也越大,并且主偏角还会影响表面粗糙度.4、副偏角、副切削刃与进给方向的反方向的夹角即为副偏角.同样影响强度,摩擦,以及表面粗糙度.5、刃倾角:是控制流屑的方向.主切削刃和基面的夹角.。

刀具角度课程设计

刀具角度课程设计

刀具角度课程设计一、课程目标知识目标:1. 学生能理解并掌握刀具的基本角度概念,包括前角、后角、主偏角和副偏角。

2. 学生能描述不同刀具角度在实际加工中的应用及其对工件表面质量的影响。

3. 学生能运用相关知识解释金属切削过程中的力学和热学现象。

技能目标:1. 学生能够准确地使用量具测量并计算出刀具的角度。

2. 学生通过实例分析和问题解决,能够设计简单的刀具角度,以满足特定的加工需求。

3. 学生能够运用所学知识,对实际加工过程中出现的刀具问题进行分析,提出改进措施。

情感态度价值观目标:1. 培养学生对机械加工学科的兴趣,激发他们探索机械加工技术奥秘的热情。

2. 强化学生的工程意识,培养学生严谨的科学态度和精益求精的工匠精神。

3. 通过团队协作完成刀具角度的设计和分析,增强学生的团队合作意识和沟通能力。

本课程设计旨在通过理论讲解、实践操作和案例分析,使学生在掌握刀具角度知识的同时,提高解决实际问题的能力,并在学习过程中培养积极的情感态度和正确的价值观。

二、教学内容1. 刀具角度基本理论:- 刀具角度的定义与分类- 刀具角度对加工性能的影响- 刀具角度与加工参数的关系2. 刀具角度的测量与计算:- 常用量具的使用方法- 刀具角度的测量步骤- 刀具角度的计算公式及应用3. 刀具角度在实际加工中的应用:- 不同加工方式下刀具角度的选择- 刀具角度对工件表面质量的影响- 刀具角度优化案例分析4. 刀具角度设计与问题分析:- 刀具角度设计的基本原则- 刀具角度设计实例解析- 加工过程中刀具问题分析及改进措施教学内容依据课程目标进行安排,涵盖刀具角度的基本理论、测量与计算、实际应用和设计分析等方面,确保教学内容具有科学性和系统性。

本教学内容参考教材相关章节,结合教学实际,按照教学大纲逐步推进,旨在帮助学生全面掌握刀具角度知识,提高实际操作能力。

三、教学方法本章节将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性,提高教学效果:1. 讲授法:- 对于刀具角度的基本理论、定义和分类等知识点,采用讲授法进行系统讲解,帮助学生建立完整的知识结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章金属切削原理
第一节金属切削加工基本知识
二、刀具切削部分基本定义
金属切削刀具的种类很多,结构、性能各不相同,但就其单个刀齿而言,可以看成是由外圆车刀的切削部分演变而来的,下面以外圆车刀为例,介绍刀具切削部分的基本定义。

(一)刀具切削部分的组成
刀具切削部分由刀面、切削刃构成。

1.前面(前刀面)Aγ刀具上切屑流过的表面。

2.后面(后刀面)Aα与工件上过渡表面相对的表面。

3.副后面(副后刀面)Aα′与已加工表面相对的表面。

4.主切削刃S前刀面与后刀面的交线。

它承担主要切削任务。

5.副切削刃S切削刃上除主切削刃以外刀刃,它承担部分切削任务。

6.刀尖主、副切削刃汇交的一小段切削刃。

(二)刀具的标注角度参考系
标注角度参考系或静止参考系:在刀具设计、制造、刃磨、测量时用于定义刀具几何参数的参考系称为。

在该参考系中定义的角度称为刀具的标注角度。

建立刀具标注角度参考系时不考虑进给运动的影响,且假定车刀刀尖与工件中心等高,车刀刀杆中心线垂直于工件轴线。

刀具标注角度参考系由下列参考平面所构成:
1.基面p r过切削刃选定点垂直于该点切削速度方向的平面,车刀的基面可理解为平行刀具底面的平面。

2.切削平面p s过切削刃选定点与切削刃相切并垂直于基面的平面。

3.正交平面p o与正交平面参考系过切削刃选定点同时垂直于切削平面与基面的平面称为正交平面。

p
、p s、p o组成一个正交的正交平面参考系。

r
4.法平面
5.假定工作平面p f、背平面p p
二、刀具切削部分基本定义
(三)刀具的标注角度
在上述三种不同的刀具标注角度参考系内,均可定义相应的刀具角度,但一般以采用正交平面参考系兼用法平面参考系较多。

1、正交平面参考系内的标注角度
(1)前角γo正交平面中测量的前面与基面间的夹角。

(2)后角αo正交平面中测量的后面与切削平面间的夹角。

(3)主偏角κr基面中测量的主切削平面与假定工作平面间夹角。

(4)刃倾角λs 切削平面中测量的切削刃与基面间的夹角。

上述四角就能确定车刀主切削刃及其前、后面的方位。

其中γo 、λs 两角可确定前面的方位,αo 、κr 两角确定后面的方位,κr 、λs 两角可确定主切削刃的方位。

同时副切削刃及其相关的前、后面在空间的定向也需要4个角度,即副刃前
角γoˊ、副后角αo ˊ副偏角κ′r 、副刃倾角λ′s ,它们的定义与主切削刃四角类似。

常用的刀具派生角度有:前刀面与后刀面之间的夹角称为楔角βo ;主、副切削刃在基面上投影的夹角称为刀尖角εr 。

刀具角度正负规定: 前面与基面平行时前角为零;前面与切削平面间夹角小于90°时,前角为正;大于90时,前角为负。

后面与基面夹角小于90°时,后角为正;大于90°时后角为负。

切削刃与基面(车刀底平面)平行时,刀倾角为零;刀尖相对车刀以底平面处于最高点时,刀倾角为正;处于最低点时,刀倾角为负。

主偏角、副偏角只有正值。

派生角度只有正值。

2、其它参考坐标系内的标注角度
(四)刀具的工作角度
刀具标注角度都是在假定运动条件和假定安装条件下定义的,如果考虑合成运动和实际安装情况,则刀具的参考系将发生变化,刀具角度也发生了变化。

按照刀具工作中的实际情况,在刀具工作角度参考系中确定的角度称为刀具工作角度。

多数情况下,不必进行工作角度的计算,只有在进给运动和刀具安装对工作角度产生较大影响时,需考虑工作角度。

1.进给运动对工作角度的影响
2.刀具安装高低对工作角度的影响
3.刀杆中心线与进给方向不垂直时对工作角度的影响
(五)切削层参数
切削层是由切削部分以一个单一动作所切除的工件材料层。

将通过切削刃基点并垂直于该点主运动方向的平面称为切削层尺寸平面,此平面是切削层参数的测量平面。

1.1.切削层公称横截面积
D
2.2.切削层公称宽
D
3.3.切削层公称厚度
若车刀刀尖为主,副切削刃的实际交点,且λs=0°,κ′r=0°,则切削层公称横截面积为平行四边形。

切削层各有关参数间的关系为
h
=f sinκr b D=αp/sinκr A D=h D b D=αp f
D
三、刀具材料
刀具材料一般是指刀具切削部分的材料。

它的性能是影响加工表面质量、切削效果、刀具寿命和加工成本的重要因素。

(一)刀具应具备的性能
金属切削过程中,刀具切削部分承受很大切削刀和剧烈摩擦,并产生很高的切削温度;在断续切削工作时,刀具将受到冲击和产生振动,引起切削温度的波动。

为此,刀具材料应具各下列基本性能:
1.硬度和耐磨性
2.强度和韧性
3.热硬性
4.工艺性与经济性
(二)常用刀具材料
常用刀具材料分为:工具钢(包括碳素工具钢、合金工具钢、高速钢),硬质合金,超硬刀具材料(包括陶瓷,金刚石及立方氮化硼等)
1、1、高速钢
高速钢特别适用于制造结构复杂的成形刀具,孔加工刀具例如各类铣刀、拉刀、齿轮刀具、螺纹刀具等;由于高速钢硬度,耐磨性,耐热性不及硬质合金,因此只适于制造中、低速切削的各种刀具。

高速钢按其性能分成两大类:普通高速钢和高性能高速钢。

2、2、硬质合金
硬质合金大量应用在刚性好,刃形简单的高速切削刀具上,随着技术的进步,复杂刀具也在逐步扩大其应用。

常用硬质合金的牌号,成分及性能见表2—2。

钨钴类硬质合金是由WC和 Co烧结而成,代号为YG,一般适用于加工铸铁和有色金属等脆性材料。

钨钛钴类硬质合金是以WC为基体,添加TiC,用Co作粘结剂烧结而成,代
号为YT,一般适用于高速加工钢料。

添加钽(铌)类硬质合金是在以上两种硬度合金中添加少量其它碳化物(如TaC 或NbC)而派生出的一类硬质合金,代号为YW,既适用加工脆性材料,又适用于加工塑性材料。

常用牌号YW1、YW2。

3、涂层刀具材料
硬质合金或高速钢刀具通过化学或物理方法在其上表面涂覆一层耐磨性好的难熔金属化合物,既能提高刀具材料的耐磨性,而又不降低其韧性。

对刀具表面涂覆的方法有两种:
化学气相沉积法(CVD法),适用于硬质合金刀具;
物理气相沉积法(PVD法),适用于高速钢刀具。

涂层材料可分为TiC涂层、TiN涂层、TiC与TiN涂层、Al
2O
3
涂层等。

4、其它刀具材料
(1)陶瓷刀具:是以氧化铝(Al
2O
3
)或以氮化硅(Si
3
N
4
)为基体,再添加
少量金属,在高温下烧结而成的一种刀具材料。

一般适用于高速下精细加工硬材料。

一些新型复合陶瓷刀也可用于半精加工或粗加工难加工的材料或间断切削。

陶瓷材料被认为是提高生产率的最有希望的刀具材料之一。

(2)人造金刚石:它是碳的同素异形体,是目前最硬的刀具材料,显微硬度达10000HV。

它有极高的硬度和耐磨性,与金属摩擦系数很小,切削刃极锋利,能切下极薄切屑,有很好的导热性,较低的热膨胀系数,但它的耐热温度较低,在700~800℃时易脱碳,失去硬度,抗弯强度低,对振动敏感,与铁有很强的化学亲合力,不宜加工钢材,主要用于有色金属及非金属的精加工,超精加工以及作磨具、磨料用。

(3)立方氮化硼:是由立方氮化硼(白石墨)在高温高压下转化而成的,其硬度仅次于金刚石,耐热温度可达1400℃,有很高的化学稳定性,较好的可磨性,抗弯强度与韧性略低于硬质合金。

一般用于高硬度,难加工材料的半精加工和精加工。

相关文档
最新文档