初中数学数据分析知识点总复习含解析
北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习数据的分析——知识讲解【学习目标】1、了解加权平均数的意义和求法,会求一组数据的平均数,体会用样本平均数估计总体平均数的思想.2、了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3、了解极差、方差和标准差的意义及求法,体会它们在刻画数据波动时的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯. 【要点梳理】要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数.(2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响.若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数. 要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算. 要点二、中位数和众数 1.中位数一般地,n 个数据按照大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半. 2.众数一组数据中出现次数最多的那个数据叫做这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数. 要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差 1.极差一组数据中最大数据与最小数据的差,称为极差,极差=最大数据-最小数据. 要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定. 2.方差方差是各个数据与平均数差的平方的平均数.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=,其中,x 是1x ,2x ,…n x 的平均数. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.3.标准差方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点五、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差. 要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、平均数、中位数、众数1、(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【答案与解析】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选C.【总结升华】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数举一反三:【变式】若数据3.2,3.4,3.2,x,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5;解:由题意3.43.5, 3.62xx+==,所以众数是3.2,平均数是3.5.2、(2016•广州)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表: 小组 研究报告 小组展示 答辩 甲 91 80 78 乙 81 74 85 丙798390计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙; (2)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),由上可得,甲组的成绩最高. 答案:甲组的成绩最高【总结升华】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分).所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分.3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20 学生个数(个)a15205请根据图表中的信息,回答以下问题.(1)求a 的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数. 【答案】解:(1) a =50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型二、极差、方差和标准差4、(2015•徐州)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【思路点拨】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【答案与解析】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),【总结升华】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩. 类型三、统计思想5、我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图所示的条形统计图.(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t 的约有多少户.【思路点拨】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t 的用户所占的百分比,再进一步估计总体. 【答案与解析】解:(1)观察条形图,可知这组样本数据的平均数是62 6.54717.52816.810x ⨯+⨯+⨯+⨯+⨯==.∴这组样本数据的平均数为6.8.∴在这组样本数据中,6.5出现了4次,出现的次数最多. ∴这组数据的众数是6.5.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有6.5 6.56.52+=. ∴这组数据的中位数是6.5.(2)∵10户中月均用水量不超过7t 的有7户,有7503510⨯=. ∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t 的约有35户.【总结升华】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.。
(完整word)初二数学八下数据的分析所有知识点总结和常考题型练习题,推荐文档
一、统计学中的几个基本概念 1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
二、平均数把一组数据的总和除以这组数据的个数所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
算术平均数x =1n (1x +2x +3x +…n x )。
加权平均数x =1122k k x f x f x f n +++K 。
三、众数、中位数1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差 1、极差极差是指一组数据中最大数据与最小数据的差。
极差=最大值-最小值。
反映这组数据的变化范围。
2、方差的概念 在一组数据,,,,21n x x x Λ中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
即:])()()[(1222212x x x x x x ns n -++-+-=Λ即:“先平均,再求差,然后平方,最后再平均”方差反映一组数据的波动大小,方差值越大,波动越大,也越不稳定或不整齐。
(2)计算公式(Ⅱ):]')'''[(12222212x n x x x ns n-+++=Λ 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++=Λ 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
八年级数学数据分析知识点
八年级数学数据分析知识点数学在我们生活中扮演着越来越重要的角色。
而数据成为进步的重要保障,对于数据分析的知识点,更是我们必须要掌握的一部分。
下面,就让我们一起来了解八年级数学数据分析知识点。
1. 总体和样本总体是指我们在数据分析中所要研究的全部对象,而样本则是从总体中选出的一部分对象。
当然,所选出的样本需要具有代表性,以反映总体的规律性。
2. 统计图统计图是将数据用图形直观地表现出来的一种方法,它能够更好地展示数据的分布和规律。
八年级所学统计图形包括:条形图、折线图、饼图、散点图等。
3. 统计量统计量是通过样本对总体的一些特征,如“中心位置”或“差异程度”进行度量的一些指标。
八年级所学的统计量包括:平均数、中位数、众数、方差、标准差等。
4. 抽样方法抽样方法是在样本的选择过程中采用的一种规律或方案。
合理的样本抽取能够使样本更好地代表总体,从而使数据分析更加准确。
常用的抽样方法有:简单随机抽样、分层抽样、整群抽样等。
5. 参数估计所谓参数估计,就是根据样本对总体某一参数的值进行的估计。
在实际应用中,总体的参数尽管很难完全得知,但是根据样本统计推断总体参数是完全可行的。
6. 假设检验假设检验是通过检验样本数据与总体假设相符合的程度,来判断样本所体现的总体特征是否具有代表性。
在假设检验中,我们要设置一个假设,通过样本数据的观察和分析来验证假设是否成立。
总之,在八年级数学数据分析中,我们必须了解总体和样本、统计图、统计量、抽样方法、参数估计、假设检验等知识点,这些知识点是我们进行数据分析的基础,也是我们在日常生活中了解事物、分析问题、做出决策的重要途径。
初中数学数据分析知识点总复习含答案解析
初中数学数据分析知识点总复习含答案解析一、选择题1.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b107,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,+=,3a4b825∴++++=,即a b10又众数是3,∴、b中一个数据为3、另一个数据为7,a则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.2.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.3.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数5.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:648090841010⨯+⨯=(分)故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.6.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.7.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.8.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)25++++++=,7故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据13.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定【答案】A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s2甲=0.002<s2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.14.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.17.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.18.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.19.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.20.根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,众数与中位数分别是1.75,1.70.故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.。
(版)八年级数学《数据分析》知识点,文档
八年级数学下册?数据的分析?知识点知识梳理.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2. 平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式x x'a,其中a是取接近于这组数据平均数中比拟“整〞的数;?当所给一组数据中有重复屡次出现的数据,常选用加权平均数公式。
众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据屡次重复出现时,可用众数来描述。
4. 极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5. 方差与标准差用“先平均,再求差,然后平方,最后再平均〞得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=1[(x1-x)2+(x2-x)2+ +(xn-x)2];n标准差=方差方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
能力训练一、选择题〔本大题共分12小题,每题3分共36分〕1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,那么这组数据的中位数是〔〕2.数据2、4、4、5、5、3、3、4的众数是〔〕3.样本 x1,x2,x3,x4的平均数是2,那么x1+3,x2+3,x3+3,x4+3的平均数是〔〕4.学校食堂有2元,3元,4元三种价格的饭菜供师生选择〔每人限购一份〕.如图是某月的销售情况统计图,那么该校师生购置饭菜费用的平均数和众数是〔〕元,3元元,3元元,4元元,4元5.如果a、b、c的中位数与众数都是5,平均数是4,那么a可能是〔〕A. 2③①20%25%2元3元②4元55%6.甲、乙两组数据的平均数相等,假设甲组数据的方差=,乙组数据的方差=,那么〔〕第4题图A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的数据波动不能比拟7.样本数据3,6,a,4,2的平均数是4,那么这个样本的方差是〔〕A.2B.C.3D .28.某同学5次上学途中所花的时间〔单位:分钟〕分别为x,y,10,11,9,这组数据的平均数为10,方差为2,那么x-y的绝对值为〔〕A.1B.2C.3D .49.假设样本x1+1,x2+1,x3+1,,xn+1的平均数为18,方差为2,那么对于样本x1+2,x2+2,x3+2,,xn+2,以下结论正确的选项是〔〕A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩〔总分值30分〕统计整理,得到下表,那么以下说法错误的选项是〔分数22122232425262728A.该组数据的人数238109631是24分组数据的平均数是2 5分C.该组数据的中位数是24分D.该组数据的极差是8分11.为了解某校计算机考试情况,抽取了50名学生的计算机考试进行统计,统计结果如下表所示,那么生计算机考试成绩的众数、中位数分别为〔〕,16,20,12,12众数该名学12.如果将一组数据中的每一个数都乘以一个非零常数,那么该组数据的〔〕A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变二、填空题〔本大题共8小题,每题3分,共24分〕13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.14.假设x1,x2,x3的平均数为7,那么x1+3,x2+2,x3+4的平均数为.15.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是.16.五个数1,2,4,5,a的平均数是3,那么a=,这五个数的方差为.17.假设10个数的平均数是3,极差是4,那么将这10个数都扩大10倍,那么这组数据的平均数是,极差是.1 8.如图是某同学6次数学测验成绩统计表,那么该同学6次成绩的中位数是19.数分数/分据3x,3x,3x,,3x的方差为126xn的20.样本985考试分数〔分〕y97857688788196978868885858782878918987888986〔x≤y〕的平8差为2,那么x75人数24185 7三、解答题656.3,那么一组新数据6x1,6x2,,.899,101,102,x,均数为100,方3=,y=.〔本大题共40分〕5521.计算题测验1测验2测验3测验4测验5测验6〔每题3分,共6分〕〔1〕假设1,2,3,a第18题图的平均数是3;4,5,a,b的平均数是5.求:0,1,2,3,4,a,b的方差是多少?〔2〕有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42.求它们的中位数.22.〔本小题8分〕如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?23.〔本小题8分〕如图是某中学乒乓球队队员年龄分布的条形图.⑴计算这些队员的平均年龄;⑵大多数队员的年龄是多少?⑶中间的队员的年龄是多少?24.〔本小题8分〕甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下图:⑴你根据图中的数据填写下表:姓名平均数〔环〕众数〔环〕方差甲乙⑵从平均数和方差相结合看,分析谁的成绩好些.25.〔本小题10分〕为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩〔总分值为100分〕如下表所示:年级决赛成绩〔单位:分〕七年级88898074八年级九年级⑴请你填写下表:⑵请从以下两个不同的角度对三个年级的决赛成绩进行分析:7788年级平均数众数中位数七年级87八年级85九年级84①从平均数和众数相结合看〔分析哪个年级成绩好些〕;②从平均数和中位数相结合看〔分析哪个年级成绩好些〕③如果在每个年级分别选出3人参加决赛,你认为哪个年级实力更强一些?并说明理由.参考答案:一、;;;;;;;;;;;;二、;;;,2;,40;分;;,100;三、21.⑴由=3 得a=6;由=5 得b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为a,b,c,d,e,f,g,a<b<c<d<e<f<g依题意得=38①,=33②,=42③,由①、②得e+f+g=7×38-33×4④,将④代入③得d=34.22.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数 .因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.23.⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁24.⑴甲:6,6,乙:6,6,⑵甲、乙成绩的平均数都是6,且<,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些 .25.⑴七年级众数是80;八年级中位数是86;九年级的平均数为,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些 .②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.。
最新初中数学数据分析知识点(详细全面)讲解学习
最新初中数学数据分析知识点(详细全面)讲解学习
学习资料
精品文档第五讲、数据分析
一、数据的代表
(一)、(1)平均数:。
注:
(2)加权平均数:
,
(3)平均数的计算方法
①定义法:。
(4)算术平均数与加权平均数的区别与联系
①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1
)。
②区别:算术平均数就是简单的把所有数加起来然后除以个数。
而加权平均数是指各个数所占的比重不同,按照相应的比例把所有数乘以权值再相加,最后除以总权值。
(二)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。
(注:不是唯一的,可存在多个)
(三)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
(注:
(一)极差:
(1)概念:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
(2)意义:能够反映数据的变化范围,是最简单的一种度量数据
波动情况的量,极差越大,波动越大。
(二)方差:
(1)概念:(2)意义:衡量数据波动大小的量,方差越大,数据的波动越大;方差越小,数据的波动越小,数据的波动越稳定。
《常考题》初中八年级数学下册第二十章《数据的分析》知识点总结(含答案解析)
一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是()A.6℃B.6.5℃C.7℃D.7.5℃2.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,223.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.1004.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.50 B.52 C.48 D.25.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.甲乙丙丁平均分85909085方差50425042A .甲B .乙C .丙D .丁7.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数8.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6B .2,2105C .6,0.4D .6,21059.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年10.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.5 11.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( )A .2B .3C .5D .712.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数13.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁14.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126则这45名同学一天的生活费用中,平均数是( ) A .15B .20C .21D .2515.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题16.一组数据2,3,4,x ,6的平均数是4,则x 是_______.17.若一组数据3、4、5、x 、6的平均数是5,则这组数据的方差为_____18.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 19.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.20.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.21.某样本数据是:2,2,x ,3,3,6如果这个样本的众数为2,那么这组数据的方差是______22.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.23.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________. 24.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.25.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元) 1 2 3 4 5 人 数25896则这30名同学每天使用的零花钱的中位数是_____元.26.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).三、解答题27.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次 第2次 第3次 第4次 第5次甲 86 83 90 80 86 乙 7882848992中位数 平均数 方差甲 ▲ 85 ▲ 乙 848524.828.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲7乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.29.如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北AC 米.八位环卫工人分别测得的BC长度如下表:和正东方向,40甲丁丙丁戊戌申辰BC (单位:8476788270848680 m)他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.(1)表中的中位数是、众数是;(2)求表中BC长度的平均数x;(3)求A处的垃圾量,并将图2补充完整;(4)用(2)中的x作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.30.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8 4.2(1)写出表格中a,b的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.。
初二数学数据的分析所有知识点和常考题及提高练习难题(含解析)
初二数学数据的分析知识点常考题与提高练习与压轴难题(含解析)【知识点】1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:x1x2x nn使用:当所给数据x,x2,,,x n中各个数据的重要程度相同时,一般使用该公式计算平均数.12、加权平均数:若n个数x,x2,,,x n的权分别是w1,w2,,,w n,则1xwxwxw1,叫做这n个数的加权平均数.122nnwww12n使用:当所给数据x1,x2,,,x n中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。
【相似题练习】1.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.﹣3.5B.3C.0.5D.﹣32.8个数的平均数12,4个数的平均为18,则这12个数的平均数为()A.12B.13C.14D.153.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.aB.a+3C.aD.a+154.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2 天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆5.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.6.成成在满分为100分的期中、期末数学测试中,两次的平均分为90分,若按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,则成成的学期数学成绩可能是()A.85B.88C.95D.100第1页(共14页)4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.【相似题练习】1.某市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:最高气温(℃)38394041天数3214则这组数据的中位数和平均数分别为()A.39.5,39.6B.40,41C.41,40D.39,412.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定3.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6B.3.5C.2.5D.14.在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数133432这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,35.小王班的同学去年6﹣12月区孔子学堂听中国传统文化讲座的人数如下表:月6789101112份人46324232273242数则该班去年6﹣12月去孔子学堂听中国传统文化讲座的人数的众数是()56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【知识点】1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:2122 sxxxxx n12n x 2意义:方差(2s)越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a时,其平均数、中位数、众数也增加a,而其方差不变;②当一组数据扩大k倍时,其平均数、中位数和众数也扩大k倍,其方差扩大k2倍.【相似题练习】1.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()人数135701083金额(元)20000015000080000150001000080005000A.极差是195000B.中位数是15000C.众数是15000D.平均数是150002.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环3.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/01234周)人数(单位:人)14622A.中位数是2B.平均数是2C.众数是2D.极差是24.某赛季甲、乙两面运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()C .甲得分的方差大于乙得分的方差D .甲得分的最小值大于乙得分的最小值5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们2的成绩如表:甲乙丙丁平均分8.58.28.58.2 方差1.81.21.21.1 最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A .丁B .丙C .乙D .甲 2,则a+2,b+2,c+2的平均数和方差分别是() 6.若a ,b ,c 这三个数的平均数为2,方差为s A .2,s2B .4,s 2C .2,s 2+2D .4,s 2+42,第2组数据:52,54,56,58的方差为S 22,第3组数据: 7.已知第1组数据:1,3,5,7的方差为S 12,则S 2,S 2,S 2的大小关系是()2016,2015,2014,2013的方差为S 31232>S 22>S 12B .S 12=S 22<S 32C .S 12=S 22>S 32D .S 12=S 22=S32 A .S 3 【知识点】 统计量的选择平均数、众数、中位数都是用来描述数据集中趋势的量。
2024中考数学总复习课件:第31讲 数据的分析(共42张PPT)
2
甲
乙 = 165 , 甲
= 1.5 , 乙
= 2.5 ,那么身高更整齐的是____.
知识点三 频数分布直方图
1.整理数据时,我们往往把数据分成若干组,每一小组出现的数据个数叫做该
频数
频率
组的______,而各小组的频数与数据总数的比叫做该组的______,由此可见,各小
1
组的频率之和等于___.
大
不稳定
度)的量,方差越大,数据的波动越____,偏离平均数越多,数据越________;方差
小
稳定 .
越小,数据的波动越____,偏离平均数越少,数据越______
4.应用:当几组数据的平均数相同时,可用方差来比较几组数据的稳定性.
5.数据变化对平均数、方差的影响
数据
1 , 2 , ⋯ ,
48
15
75
24
51
24
0
报班
300
0.02
(1)根据表1, 的值为_____,
的值为_____.
分析处理
(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比.
12
解:
500
× 100% = 2.4% .
答:“双减”后报班数为3的学生人数所占的百分比为 2.4% .
差
组数
2.画频数分布直方图的步骤:①计算最大值与最小值的____;②决定______与
组距
列频数分布表
______;③决定分点;④______________;⑤用横轴表示各分段数据,用纵轴表示
各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.
初中数学中考复习考点知识与题型专题讲解37 数据的分析(解析版)
初中数学中考复习考点知识与题型专题讲解专题37 数据的分析【知识要点】考点知识一 数据的集中趋势算术平均数:简称平均数,记作“x̅”,读作“x 拔”。
公式:平均数= n 个数的和 个数 =nx x x n +⋅⋅⋅++21 【注意】分析平均数时,容易被数据的极值影响,导致错误的判断。
加权平均数概念:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nn n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.【注意】若各数据权重相同,则算术平均数等于加权平均数。
中位数的概念:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这个数据的中位数,如果数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数。
确定中位数的一般步骤:第1步:排序,由大到小或由小到大。
第2步:确定是奇个数据(n+12)或偶个数据(n 2个数和它后一个数(n 2+1)个数的平均数)。
第3步:如果是奇个数据,中间的数据就是中位数。
如果是偶数,中位数是中间两个数据的平均数。
众数的概念:一组数据中出现次数最多的数据就是这组数据的众数。
【注意】如果一组数据中有两个数据的频数一样且都是最大,那么这两个数据都是这组数据的众数,所以一组数据中众数的个数可能不唯一。
众数的意义:当一组数据有较多的重复数据时,众数往往能更好地反映其集中的趋势。
平均数、中位数、众数的区别:1、平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大。
2、 当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势。
但当各个数据的重复次数大致相等时,众数往往没有意义。
3.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点。
考点知识二 数据的波动方差的概念:在一组数据1x ,2x ,…,n x 中,各个数据与平均数的差的平方的平均数叫做这组数据的方差,记作.计算公式是:求一组数据方差的步骤:先平均、再做差、然后平方、最后再求平均数。
八年级上册数学数据的分析知识点
八年级上册数学数据的分析知识点在我们的学习时代,说起知识点,应该没有人不熟悉吧?知识点有时候特指教科书上或考试的知识。
哪些才是我们真正需要的知识点呢?下面是店铺精心整理的八年级上册数学数据的分析知识点,仅供参考,大家一起来看看吧。
1、平均数①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数2、中位数与众数①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数②一组数据中出现次数最多的那个数据叫做这组数据的众数③平均数、中位数和众数都是描述数据集中趋势的统计量④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的.信息⑥各个数据重复次数大致相等时,众数往往没有特别意义3、从统计图分析数据的集中趋势4、数据的离散程度①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。
一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量②数学上,数据的离散程度还可以用方差或标准差刻画数学的方法和技巧狠抓“双基”训练“双基”即基础知识与基本技能。
基础知识是指数学概念、定理、法则、公式以及各种知识之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,初中数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。
只有扎实地掌握“双基”,才能灵活应用、深入探索,不断创新。
解决疑难这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。
初中数学数据分析知识点及同步练习
初中数学数据分析知识点及同步练习
有理数的混合运算
(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
(2)展开有理数的混合运算时,特别注意各个运算律的运用,并使运算过程获得精简.
【规律方法】有理数混合运算的四种运算技巧
1.转变法:一是将乘法转变为乘法,二是将乘方转变为乘法,三就是在秦九韶混合运算中,通常将小数转变为分数展开约分后排序.
2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.
3.拆分法:先将带分数拆分成一个整数与一个真分数的和的形式,然后展开排序.
4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.。
初中数学数据分析知识点整理
初中数学数据分析知识点整理数据分析是数学中一个重要的分支领域,它通过收集、整理、分析和解读数据来帮助我们理解和解决实际问题。
初中数学中涉及的数据分析知识点主要包括数据的收集、整理和呈现。
下面我将对这些知识点进行整理和介绍。
一、数据的收集数据的收集是数据分析的第一步,它是指通过观察、测量和调查等方式,将所需的数据收集起来。
在初中数学中,常用的数据收集方式包括调查问卷、实地观察和实验测量等。
1. 调查问卷调查问卷是一种常用的数据收集方式。
通过设计合理的问卷,可以收集到大量的数据,从而了解人们的观点、习惯和态度等。
在设计问卷时,需要注意问题的准确性和客观性,并且要保证问卷的样本具有代表性。
2. 实地观察实地观察是指直接到现场进行观察和记录。
通过观察,可以收集到一些客观的数据,如天气、交通状况、人流量等。
在实地观察时,需要注意记录的准确性和细致性,并且要避免主观偏差。
3. 实验测量实验测量是通过设计和进行实验来收集数据。
在实验中,需要确保条件的控制和实验结果的准确性。
通过实验测量,可以收集到一些科学和严谨的数据。
二、数据的整理数据的整理是将收集到的数据进行分类、排序和汇总,以便后续的分析和研究。
数据整理的方法主要包括频数统计和数据图表的绘制。
1. 频数统计频数统计是将数据按照具体数值进行分类,并统计每个数值出现的次数。
通过频数统计,我们可以了解数据的分布情况,找到数据的特点和规律。
2. 数据图表的绘制数据图表是将数据以图形的形式进行呈现,使数据更加直观和易于理解。
常用的数据图表有条形图、折线图、饼图等。
在绘制图表时,需要注意选择合适的图表类型,并保证图表的准确性和清晰性。
三、数据的呈现数据的呈现是通过合适的方式将整理好的数据进行展示,以便更好地传达数据的含义和结果。
数据的呈现主要包括文字描述和图表展示两种方式。
1. 文字描述文字描述是通过文字的方式来描述数据的内容和结果。
在描述数据时,需要简明扼要地表达数据的特点和规律,并且要注意避免主观色彩的介入。
八年级数学知识点归纳(数据的分析)
数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、选择题1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6B.7C. 7.5D. 152.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()A.92 B.93 C.96 D.92.73.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85 B.86 C.92 D.87.95.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4 km/hB. 3.75 km/hC. 3.5 km/hD.4.5 km/h6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题:(每小题6分,共42分)7.将9个数据从小到大排列后,第个数是这组数据的中位数8.如果一组数据4,6,x,7的平均数是5,则x = .9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = .11.某射击选手在10次射击时的成绩如下表:则这组数据的平均数是,中位数是,众数是 .12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 .13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
人教课标版初中数学八年级下册《数据的分析——小结与复习》优质课件PPT
这组数据的众数。
注意
1.求中位数要将数据排序。 2. 众数可能不唯一。
平均数、中位数、众数各自的特点:
1.平均数的计算要用到所有的数据,它能 够充分利用数据提供的信息,因此,在现实生 活中较为常用,但它受极端值的影响较大.
2.当一组数据中某些数据多次重复出现时, 众数往往是人们关心的一个量众数不受极端值 的影响.
典例精析
x
典例精析
能力提升
先计算抽取的总人数
17 8
x
能力提升
添加数据后: 1,2,2,2,3
能力提升
课堂小结
谈谈你本节课的收获:
样本估计总体的统计思想
一种思想 两个公式
加权平均数和方差 的计算公式
四个概念
加权平均数、中位数 、众数、方差
作业
课本P136 第 4、6题.
用样本平均数估 计总体平均数
计 总
用样本方差估
体
计总体方差
本章知识结构图
数 据
的
平均数
若n个数x1,x2,…xn的权分别是w1,w2,… wn, 则 x1w1 x2w2 xn wn 叫做这n个数的
w1 w2 wn 加权平均数
用样 本平
数 据 的 分 析
集
中 趋 势
将一组数据按由小到大(或由大到小)的
典例精析
方差越大 ,数据波 动越大, 越不稳定 ; 方差越小 ,数据波 动越小, 越稳定.
典例精析
知识点三 用样本估计总体
用样本估计总体是统计的基本思想,如 果所要考察的总体包含很多个体,或者考察 本身带有破坏性,考察总体平均数和总体方
差时,实际中常常用样本平均数、样本方 差来估计总体平均数、总体方差。
初中数学数据分析知识点梳理
初中数学数据分析知识点梳理数据分析是现代化社会中一项非常重要的技能,它在各个领域都有着广泛的应用。
在数学课程中,初中阶段的学生也会接触到基本的数据分析知识,本文将对初中数学中的数据分析知识点进行梳理。
1. 统计图表统计图表是数据分析中常用的一种工具,它能够直观地展示数据的分布和关系。
初中数学课程中,学生需要了解和掌握以下几种常见的统计图表:1.1 条形图:用于比较不同类别数据的数量差异,例如不同城市的人口数量比较等。
1.2 折线图:用于表示随时间变化而变化的数据,例如某个地区的温度变化曲线等。
1.3 饼图:用于表示不同类别数据在整体中的占比,例如一个班级各个成绩等级的比重。
1.4 散点图:用于表示两组数据之间的关系,例如身高与体重之间的关系等。
2. 平均数平均数是一组数据的代表性指标,它表示数据的集中趋势。
在初中数学中,学生需要学会计算简单的平均数。
计算平均数的步骤如下:2.1 将一组数据进行相加,得到总和。
2.2 将总和除以数据的个数,得到平均数。
3. 中位数中位数也是一组数据的代表性指标,它表示数据的中间位置。
对于一个有奇数个数据的集合,中位数就是中间的那个数据;对于一个有偶数个数据的集合,中位数是中间两个数据的平均数。
计算中位数的步骤如下:3.1 将一组数据从小到大排序。
3.2 如果数据个数是奇数,则中位数是排序后的中间一个数据。
3.3 如果数据个数是偶数,则中位数是排序后中间两个数据的平均数。
4. 众数众数是一组数据中出现次数最多的数,它表示数据中的典型值。
一个数据集可以有一个或多个众数,也可以没有。
计算众数的步骤如下:4.1 统计数据集中每个数出现的次数。
4.2 找出出现次数最多的数,即为众数。
5. 范围范围表示一组数据的最大值和最小值之间的差异,它可以反映数据的分散程度。
计算范围的步骤如下:5.1 找出一组数据中的最大值和最小值。
5.2 将最大值减去最小值,得到范围。
除了以上提到的知识点,初中数学的数据分析还涉及到数据的收集、整理和处理等方面的知识。
初二数据的分析所有知识点总结和常考题练习含答案
])()()[(1222212x x x x x x n S n -++-+-= 初二数据的分析所有知识点总结和常考题知识点:1.加权平均数:权的理解:反映了某个数据在整个数据中的重要程度;学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法;2.中位数:将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;3.众数:一组数据中出现次数最多的数据就是这组数据的众数;4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差;5.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定;6.方差规律: x 1,x 2,x 3,…,x n 的方差为m,则ax 1,ax 2,…,ax n 的方差是a 2 m; x 1+b, x 2+b,x 3+b,…,x n +b 的方差是m7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺序有关,计算很少不受极端值的影响;8.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流常考题:一.选择题共14小题1.我市某一周的最高气温统计如下表:最高气温℃ 25 26 27 28天 数 1 1 2 3则这组数据的中位数与众数分别是A .27,28B .27.5,28C .28,27D .26.5,272.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.53.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁6.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.7.2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,358.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁9.为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差10.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是5411.某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分12.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是2013.一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,14.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁二.填空题共14小题15.数据﹣2,﹣1,0,3,5的方差是.16.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.18.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.19.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.单位:m这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差填“变大”、“不变”或“变小”.20.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工57000木工46000瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差填“变小”、“不变”或“变大”.21.一组数据:2015,2015,2015,2015,2015,2015的方差是.22.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.23.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.注:计算方差的公式是S2=x1﹣2+x2﹣2+…+xn﹣224.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是.25.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第组.组别时间小时频数人第1组0≤t<0.512第2组0.5≤t<124第3组1≤t<1.518第4组 1.5≤t<210第5组2≤t<2.5626.一组数据1,4,6,x的中位数和平均数相等,则x的值是.27.统计学规定:某次测量得到n个结果x1,x2,…,xn.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.28.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是.三.解答题共12小题29.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率没有弃权票,每位职工只能推荐1人如图所示,每得一票记作1分.1请算出三人的民主评议得分;2如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;精确到0.013根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用30.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.1已求得甲的平均成绩为8环,求乙的平均成绩;2,2观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙3如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.31.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.1分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;2试通过计算说明,哪个山上的杨梅产量较稳定32.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识平均数、中位数、方差和极差回答下列问题:1两段台阶路有哪些相同点和不同点2哪段台阶路走起来更舒服,为什么3为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度单位:cm.并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=.33.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次王军68807879817778848392张成86807583857779808075利用表中提供的数据,解答下列问题:1张老师从测验成绩记录表中,求得王军10次测验成绩的方差S王2=33.2,请你帮助张老师计算张成10次测验成绩的方差S张2;平均成绩中位数众数王军8079.5张成80802请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由.34.苍洱中学九年级学生进行了五次体育模拟测试,甲同学的测试成绩如表一,乙同学的测试成绩折线统计图如图一所示:表一次数一二三四五分数46474849501请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲 48 2乙 48 482甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定请说明理由.35.如图是甲,乙两人在一次射击比赛中靶的情况击中靶中心的圆面为10环,靶中数字表示该数所在圆环被击中所得的环数,每人射击了6次.1请用列表法将他俩的射击成绩统计出来;2请你用学过的统计知识,对他俩的这次射击情况进行比较.36.甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.1请你根据图中的数据填写下表:姓名平均数环众数环方差甲乙 2.82从平均数和方差相结合看,分析谁的成绩好些.37.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:命中环数10987命中次数321根据统计表图中提供的信息,补全统计表及扇形统计图;2已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去并说明理由.参考资料:38.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩单位:环相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差见小宇的作业.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a71a= ,= ;2请完成图中表示乙成绩变化情况的折线;3①观察图,可看出的成绩比较稳定填“甲”或“乙”.参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.39.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示其中男生收看3次的人数没有标出.根据上述信息,解答下列各题:1该班级女生人数是,女生收看“两会”新闻次数的中位数是;2对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;3为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量如表.统计量平均数次中位数次众数次方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.40.有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况单位:元:甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23小强用如图所示的方法表示甲城市16台自动售货机的销售情况.1请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;2用不等号填空:甲乙;S甲2S乙2;3请说出此种表示方法的优点.初二数据的分析所有知识点总结和常考题提高难题压轴题练习含答案解析参考答案与试题解析一.选择题共14小题1.2011•安顺我市某一周的最高气温统计如下表:最高气温℃25262728天数1123则这组数据的中位数与众数分别是A.27,28 B.27.5,28 C.28,27 D.26.5,27分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28.故选:A.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.2015•大庆某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.5分析中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数或最中间的两个数即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.解答解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7环;因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,故中位数是7.5环.故选C.点评本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.3.2013•北京某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时分析根据加权平均数的计算公式列出算式5×10+6×15+7×20+8×5÷50,再进行计算即可.解答解:根据题意得:5×10+6×15+7×20+8×5÷50=50+90+140+40÷50=320÷50=6.4小时.故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.点评此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.4.2014•滨州有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差分析因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.解答解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.点评中位数是将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.5.2014•常州甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁分析根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.2015•内江有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.分析先由平均数的公式计算出a的值,再根据方差的公式计算.解答解:由题意得:3+a+4+6+7=5,解得a=5,S2=3﹣52+5﹣52+4﹣52+6﹣52+7﹣52=2.故选C.点评本题考查方差的定义与意义:一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.2007•韶关2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,35分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答解:从小到大排列此数据为:30、31、31、31、32、34、35,数据31出现了三次最多为众数,31处在第4位为中位数.所以本题这组数据的中位数是31,众数是31.故选C.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.2014•咸宁甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁分析此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.解答解:由于乙的方差较小、平均数较大,故选乙.故选:B.差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.2006•广安为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差分析根据平均数、中位数、众数、方差的意义进行分析选择.解答解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.点评此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.2014•孝感为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是54分析根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.解答解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.点评考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.11.2015•安徽某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分分析结合表格根据众数、平均数、中位数的概念求解.解答解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.点评本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.12.2013•黄石为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是20分析根据极差、众数、中位数及平均数的定义,结合表格即可得出答案.解答解:A、众数是20,故本选项错误;B、平均数为26.67,故本选项错误;C、极差是95,故本选项错误;D、中位数是20,故本选项正确;故选D.点评本题考查了中位数、极差、平均数及众数的知识,掌握各部分的定义是关键.13.2013•衢州一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,分析根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.解答解:根据题意得:80×5﹣81+79+80+82=78,方差=81﹣802+79﹣802+78﹣802+80﹣802+82﹣802=2.故选C.点评本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.2014•天津某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁分析根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答解:甲的平均成绩为:86×6+90×4÷10=87.6分,乙的平均成绩为:92×6+83×4÷10=88.4分,丙的平均成绩为:90×6+83×4÷10=87.2分,丁的平均成绩为:83×6+92×4÷10=86.6分,因为乙的平均分数最高,所以乙将被录取.故选:B.点评此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.二.填空题共14小题15.2013•宁波数据﹣2,﹣1,0,3,5的方差是.分析先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答解:这组数据﹣2,﹣1,0,3,5的平均数是﹣2﹣1+0+3+5÷5=1,则这组数据的方差是:﹣2﹣12+﹣1﹣12+0﹣12+3﹣12+5﹣12=;故答案为:.点评本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2.16.2014•宿迁某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.分析按3:3:4的比例算出本学期数学学期综合成绩即可.解答解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88分.。
中考数学数据分析知识点归纳及真题解析
数据分析知识点归纳及真题解析【知识归纳】一、统计调查1、数据处理的过程(1)数据处理一般包括—数据、—数据、—数据和—数据等过程。
(2)收集数据的方法:a、民意调查:如投票选举b、实地调查:如现场进行观察、收集、统计数据c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
注意:选择收集数据的方法,要掌握两个要点:①,②蔓0数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理的推断和预测。
2、统计调查的方式及其优点(1)全面调查:考察的调查叫做全面调查.(2)划计法:整理数据时,用的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。
(3)百分比:每个对象出现的次数与总次数的o注意:①调杳方式有两种:一种是全面调查,另一种是抽样调查.②^计之和为总次数,百分比之和为lo③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法。
全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。
3、抽样调查(0抽样调查是这样的一种主法同,它只抽取一部分对象进行调查,然后根据调查数拥推断全体对象的情况。
(2)为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。
4、总体和样本总体:要考查的对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:从当中抽出的所有实际被调查的对象组成一个样本。
样本容量:样本中叫样本容量(不带单位)。
二、直方图1、数据频数(数据表格)数据的频数分布表反映了一组数据中的每个败据出现的,从而反映了在数据组中各数据的分布情况。
要全面地掌握一组数据,必须分析这蛆数据中各个数据的分布情况。
2、(频教)直方图(统计各个数据出现的次数,即频数,并用图像展示出来)为了直观地表示一组数据的分布情况,可以以—为基础,绘制分布直方图。
(I)频数分布直方图简称直方图,它是条形统计图的一种。
⑵直方图的结构:宜方图、—、—三部分组成。
(3)作直方图的步骤:①-(即极差,为II大值与II小值的差);②—(每个小组的两个端点之间的距离)与组敷(用极差。
数据的分析—初中数学知识点
数据的分析—初中数学知识点
数据的分析—初中数学知识点集锦
数据的分析—初中数学知识点集锦(中)
初二是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。
这个“分水岭”并不是仅仅体现在初二的期末考试中,最重要的它会更加清楚的体现在你的初三复习中,体现在最终的中考当中。
有个远大的目标,有个合适的计划--严格管理时间,科学安排时间。
大部分初三学生的时间真的是挤出来的,幸运的是我们距离初三还有一个学期和一个暑假的时间,把握住这段时间,我们的初三将会无比的轻松。
偏科相当的.可怕,我虽然只教数学可是深有体会。
有个人大附的男生几乎每个压轴题都能第一个做出来,做完之后就在那“默写”某某个课文。
一问才知道,偏科,语文总在90边缘徘徊。
偏科的危害就不用我说了,可是同学们可能不知道,到初三再想补“瘸腿”是多么的可怕--原因很简单,每科都在复习!
上面的内容是初中数学学习方法之初二数学,请同学们认真浏览了。
接下来还有更多的数学学习方法营养大餐等着同学们来汲取吸收呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是( )
A.2B.3C.4D.8
【答案】C
【解析】
【分析】
先根据平均数为5得出 ,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.
【详解】
解: 数据3,a,4,b,8的平均数是5,
,即 ,
C.平均数是101D.方差是93
【答案】D
【解析】
【分析】
把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论.
【详解】
解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,
∴众数是108,中位数为 ,平均数为 ,
【详解】
解:原来数据的平均数= ,
原来数据的方差= ,
增加数据5后的平均数= (平均数没变化),
增加数据5后的方差=
,
比较 , 发现两式子分子相同,因此 > (两个正数分子相同,分母大的反而小),
故答案为A.
【点睛】
本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.
【详解】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差= = ,
添加数字2后的方差= = ,
故方差发生了变化.
故选D.
19.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
2.一组数据2, ,6,3,3,5的众数是3和5,则这组数据的中位数是()
A.3B.4C.5D.6
【答案】B
【解析】
【分析】
由众数的定义求出x=5,再根据中位数的定义即可解答.
【详解】
解:∵数据2,x,3,3,5的众数是3和5,
∴x=5,
则数据为2、3、3、5、5、6,这组数据为 =4.
故答案为B.
= [(a-5)2+(b-5)2+(c-5)2]=4,
故选B.
【点睛】
本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.
4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数 和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择( )
【详解】
解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,
∴ (a-2+b-2+c-2)=3,
∴数据a-2,b-2,c-2的平均数是3;
∵数据a,b,c的方差为4,
∴ [(a-5)2+(b-5)2+(c-5)2]=4,
∴a-2,b-2,c-2的方差= [(a-2-3)2+(b-2-3)2+(c--2-3)2]
【解析】
试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.
考点:中位数;统计与概率.
10.回忆位中数和众数的概念;
11.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()
A.平均数B.方差C.众数D.中位数
A. 个B. 个C. 个D. 个
【答案】A
【解析】
【分析】
根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.
【详解】
一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.
,
=4.4,
乙:数据8出现了2次,次数最多,所以众数为8,
排序后最中间的数是4,所以中位数是4,
15.下列说法正确的是()
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差 =0.128,乙组数据的方差 =0.036,则甲组数据更稳定
【答案】C
【解析】
【分析】
直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.
∵100元的有3张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,
∴众数是10元.
故答案为A.
【点睛】
本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.
18.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数B.中位数C.众数D.方差
【答案】D
【解析】
又众数是3,
、b中一个数据为3、另一个数据为7,
则数据从小到大为3、3、4、7、8,
这组数据的中位数为4,
故选C.
【点睛】
此题考查了平均数、众数和中位数,中位数是将一组数据从小到大 或从大到小 重新排列后,最中间的那个数 最中间两个数的平均数 ,叫做这组数据的中位数,众数是一组数据中出现次数最多的数.
14.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.( )
A.3,2B.3,4C.5,2D.5,4
【答案】B
【解析】
试题分析:平均数为 (a−2 + b−2 + c−2)= (3×5-6)=3;原来的方差: ;新的方差: ,故选B.
考点:平均数;方差.
【答案】B
【解析】
【分析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.
【详解】
解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.
【点睛】
考核知识点:均数、众数、中位数、方差的意义.
【点睛】
本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.
3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为( )
A.7,6B.7,4C.5,4D.以上都不对
【答案】B
【解析】
【分析】
根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出 (-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.
∴甲优<乙优,
故选:A.
【点睛】
本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.
6.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是 ,乙组数据的方差是 ,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()
A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较
【答案】A
【解析】
【分析】
根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.
【详解】
解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,
∵甲班的中位数是104,乙班的中位数是106,
∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,
方差为
;故选:D.
【点睛】
考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.
8.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()
故选:C.
【点睛】
此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.
16.已知一组数据 , ,6, ,9,其中 为任意实数,若增加一个数据5,则该组数据的方差一定()
A.减小B.不变C.增大D.不确定
【答案】A
【解析】
【分析】
先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案.
根据中位数、平均数、众数、极差的概念求解.
【详解】
解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,
则中位数是(91+93)÷2=92,
平均数是(87+87+91+93+96+97)÷6=91 ,
众数是87,
极差是97﹣87=10.
故选C.
【点睛】
本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.
【详解】
A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;
B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;
C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;