初一数学上册测试题及答案

合集下载

七年级数学上册测试题及答案全套

七年级数学上册测试题及答案全套

七年级数学上册测试题及答案全套七年级(上)数学第一章有理数检测题满分100分 答题时间 90分钟班级 学号 姓名 成绩一、填空题(每小题3分 共36分) 1、下面说法错误的是( )(A))5(--的相反数是)5(- (B)3和3-的绝对值相等(C)若0>a ,则 a 一定不为零 (D)数轴上右边的点比左边的点表示的数小2、已知a a -=、b b =、0>>b a ,则下列正确的图形是( ) (A )(B )(C )(D )3、若a a +-=+-55,则a 是( )(A )任意一个有理数 (B )任意一个负数或0(C )任意一个非负数 (D )任意一个不小于5的数 4、对乘积)3()3()3()3(-⨯-⨯-⨯-记法正确的是( ) (A )43-(B )4)3(-(C )4)3(+-(D )4)3(-- 5、下列互为倒数的一对是( )(A )5-与5 (B )8与125.0 (C )321与231 (D )25.0与4-6、互为相反数是指( )(A )有相反意义的两个量。

(B )一个数的前面添上“-”号所得的数。

(C )数轴上原点两旁的两个点表示的数。

(D )相加的结果为O 的两个数。

7、下列各组数中,具有相反意义的量是( ) (A )节约汽油10公斤和浪费酒精10公斤 (B )向东走5公里和向南走5公里 (C )收入300元和支出500元 (D )身高180cm 和身高90cm 8、下列运算正确的是( )(A )422=- (B )4)2(2-=- (C )6)2(3-=- (D )9)3(2=-9、计算:22)2(25.03.0-÷⨯÷-的值是( )(A )1009-(B )1009(C )4009(D )4009- 10、下列的大小排列中正确的是( )(A ))21()32(43)21(0+-<-+<--<--<(B ))21(0)21()32(43--<<+-<-+<-- (C ))21()32(043)21(+-<-+<<--<--(D ))21(043)32()21(--<<--<-+<+-11、将边长为1的正方形对折5次后,得到图形的面积是( )(A )0.03125 (B )0.0625 (C )0.125 (D )0.25 12、已知5=x 、2=y ,且0<+y x ,则xy 的值等于( )(A )10和-10 (B )10 (C )-10 (D )以上答案都不对 二、填空题:13、用计算器计算68)2()9(-+-,按键顺序是: 、 、 、 、 、、 + 、 、 、 、 、 、 ;结果是 。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案一、选择题(每小题 1 分,共 20 分)1. 某数的 1/3 是6.这个数是多少?A) 18 B) 21 C) 24 D) 272. 下面哪个数是 12 的约数?A) 2 B) 3 C) 4 D) 53. 下图是一条数轴。

哪个数对应点 X 的位置?(请参考文章插入一个有标注的数轴图)A) -3 B) -2 C) 0 D) 24. 一辆汽车从 A 地出发,以每小时 60 公里的速度行驶,求 2 小时后汽车行驶的距离。

A) 100 公里 B) 120 公里 C) 150 公里 D) 180 公里5. 在 |m-3| = 5 中,m 的值是多少?A) -8 B) -2 C) 2 D) 86. 假设一张电影票的原价为 80 元,打折后的价格是原价的 0.8 倍,打折后的价格是多少?A) 40 元 B) 60 元 C) 64 元 D) 80 元7. 如图所示,一个正方形 ABCD,若相邻顶点间的距离为 1,求线段 EF 的长度。

(请参考文章插入一个有标注的正方形图)A) 1 B) 2 C) 3 D) 48. 线段 AB 的长度是 3,线段 BC 的长度是 4,求线段 AC 的长度。

A) 1 B) 2 C) 3 D) 49. 把一个分数 4/5 化成百分数是多少?A) 40% B) 45% C) 50% D) 80%10. 某数的 3/5 是 45,这个数是多少?A) 25 B) 45 C) 50 D) 7511. 已知∠A + ∠B + ∠C = 180°,且∠A = 60°,求∠B 的度数。

A) 30° B) 60° C) 90° D) 120°12. 根据如图所示的长方形 ABCD 和线段 EF,求线段 EF 的长度。

(请参考文章插入一个有标注的长方形图)A) 6 B) 7 C) 8 D) 913. 5.5 ÷ 0.5 = ?A) 10 B) 11 C) 12 D) 1314. 若 x = 3 ,y = 4 ,z = 5 ,求 x * y + z 的值。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -12. 如果a = -2,b = 3,那么a + b的值是多少?A. 1B. 5C. -1D. 43. 哪个选项是最小的负数?A. -1B. -2C. -3D. 无法确定4. 绝对值是5的数有几个?A. 1个B. 2个C. 3个D. 无数个5. 下列哪个表达式等于0?A. 3 - 3B. 2 + 2C. 5 - 2D. 4 × 06. 哪个选项是正确的乘法分配律应用?A. (a + b) × c = a × c + bB. (a + b) × c = a × c + b × dC. (a + b) × c = a × c + b × cD. (a - b) × c = a × c - b × c7. 哪个选项表示了有理数的加法?A. 2 + 3 = 5B. 2 - 3 = -1C. 2 × 3 = 6D. 2 ÷ 38. 哪个选项是正确的因式分解?A. x^2 - 1 = (x + 1)(x - 1)B. x^2 - 1 = (x - 1)(x + 1)C. x^2 - 1 = (x + 1)^2D. x^2 - 1 = x - 19. 下列哪个是完全平方数?A. 16B. 17C. 18D. 1910. 哪个选项是正确的因式分解?A. a^2 - b^2 = (a + b)(a - b)B. a^2 - b^2 = (a - b)(a + b)C. a^2 - b^2 = a^2 - b^2D. a^2 - b^2 = (a + b)^2 - b^2二、填空题(每题2分,共20分)11. 一个数的相反数是-4,这个数是________。

12. 绝对值等于4的数是________。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是3. 计算下列哪个表达式的结果为正数?A. -3 + 2B. 4 - 7C. -5 × 2D. 6 ÷ (-3)4. 下列哪个是偶数?A. 3B. 4C. 5D. 75. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 0B. 1C. 2D. 36. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 47. 一个数的立方根是它本身,这个数可能是:A. 0B. 1C. -1D. 88. 计算下列哪个表达式的结果为0?A. 3 × 0B. 5 - 5C. -2 + 2D. 4 ÷ 89. 下列哪个是质数?A. 2B. 4C. 6D. 810. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2二、填空题(每题2分,共20分)11. 一个数的绝对值是它自己,这个数是______或______。

12. 如果a = -3,那么-a = ______。

13. 一个数的平方是9,这个数是______或______。

14. 一个数的立方是-8,这个数是______。

15. 两个数的和是10,且这两个数是相反数,那么这两个数分别是______和______。

16. 如果一个数的平方根是2,那么这个数是______。

17. 一个数的立方根是-2,那么这个数是______。

18. 一个数的相反数是-5,那么这个数是______。

19. 一个数的绝对值是5,那么这个数是______或______。

20. 如果一个数的平方是16,那么这个数是______或______。

三、计算题(每题5分,共30分)21. 计算下列表达式的值:(-3) × (-2) - 4 × 322. 解下列方程:3x + 5 = 1423. 计算下列表达式的值:(-4)² - √1624. 解下列方程:2x - 3 = 7四、解答题(每题10分,共30分)25. 一个长方形的长是宽的两倍,如果宽是a厘米,那么长方形的周长是多少厘米?26. 一个数列的前三项是1, 3, 6,如果这个数列是等差数列,求第四项的值。

七年级上册数学测试题及答案

七年级上册数学测试题及答案

学习情况检测时间90分钟,满分120分 姓名__________ 得分___________一、选择题本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中 题号 123456789101112答案 1.2-等于A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是 A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y4.下列各组数中,互为相反数的是 A .)1(--与1 B .-12与1 C .1-与1 D .-12与15.下列各组单项式中,为同类项的是 A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于A .70° B.90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折标价的80%出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是 A .1+50%x×80%=x -28 B .1+50%x×80%=x +28 C .1+50%x×80%=x -28 D .1+50%x×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是A .110B .158C .168 D.178 二、填空题本大题共8个小题;每小题3分,共24分.把答案写在题中横线上A B C D 62224 20 4 884446 m10…… ABC第8题图北OAB第8题图13.-3的倒数是________. 14.单项式12-xy 2的系数是_________. 15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题本大题共8个小题;共60分21.本小题满分6分计算:-13-14×2--32. 22.本小题满分6分一个角的余角比这个角的21少30°,请你计算出这个角的大小. 23.本小题满分7分 先化简,再求值:41-4x 2+2x -8-21x -1,其中x =21. 24.本小题满分7分 解方程:513x +-216x -=1.25.本小题满分7分一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……1写出第一次移动后这个点在数轴上表示的数为 ; 2写出第二次移动结果这个点在数轴上表示的数为 ; 3写出第五次移动后这个点在数轴上表示的数为 ; 4写出第n 次移动结果这个点在数轴上表示的数为 ; 5如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.本小题满分8分如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.本小题满分8分如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、的中点E 、F 之间距离是10cm,求AB 、CD 的长.共43元共94元 O ACB EDE DBFC28.本小题满分11分某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.1求钢笔和毛笔的单价各为多少元2①学校仍需要购买上面的两种笔共105支每种笔的单价不变.陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 数学试题参考答案及评分说明一、选择题每小题3分,共36分1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B. 二、填空题每题3分,共24分 13.31-;14.21-;15.2;16.58°28′;17.×106;18.9;19.2;20.8. 三、解答题共60分21.解:原式= -1-14×2-9 ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x………………………………………………3分 =12--x ………………………………………………………………4分把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分25.解:1第一次移动后这个点在数轴上表示的数是3; ……………………………1分2第二次移动后这个点在数轴上表示的数是4; ……………………………2分 3第五次移动后这个点在数轴上表示的数是7; ……………………………3分 4第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分554. ………………………………………………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15,……………………………………………………………………7分∴∠COE =∠COD -∠DOE =90°-15°=75°…………………………………8分 27.解:设BD =x cm,则AB =3x cm,CD =4x cm,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点, ∴AE =12AB =,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =. ………………………………………………………4分 ∵EF =10cm,∴=10,解得:x =4. ………………………………………………………………6分∴AB =12cm,CD =16cm . ……………………………………………………………8分 28.解:1设钢笔的单价为x 元,则毛笔的单价为x +4元. ………………………1分由题意得:30x +45x +4=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 2设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为105-y 支. …6分根据题意,得21y +25105-y =2447.………………………………………………7分 解之得:y = 不符合题意 . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 32或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.3解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25105-z=2447-a.即:4z=178+a,因为 a 、z 都是整数,且178+a 应被4整除,所以 a 为偶数,又因为a 为小于10元的整数,所以 a 可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意; 当a=4时,4z=182,z=,不符合题意; 当a=6时,4z=184,z=46,符合题意; 当a=8时,4z=186,z=,不符合题意. 所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

人教版七年级数学上册单元测试题全套含答案

人教版七年级数学上册单元测试题全套含答案

输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)

初一数学上册第一单元测试题及答案

初一数学上册第一单元测试题及答案

初一数学上册第一单元测试题一、仔细选一选(30分)1。

0是()A.正有理数 B.负有理数 C.整数 D.负整数2. 中国第一座跨海大桥-—杭州湾跨海大桥全长36千米,其中36属于()A.计数 B.测量 C.标号或排序D.以上都不是3. 下列说法不正确的是( )A.0既不是正数,也不是负数 B.0的绝对值是0C.一个有理数不是整数就是分数 D.1是绝对值最小的数4。

在数-2 , 0 , 4。

5, |-9|,-6.7中,属于正数的有( )个A.2 B.3 C.4 D.5 5。

一个数的相反数是3,那么这个数是( )A.3 B.-3 C. D.6。

下列式子正确的是()A.2〉0>-4>—1 B.—4〉-1>2>0 C.—4<—1〈0<2 D.0〈2〉—1〈—47. 一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-18. 把数轴上表示数2的点移动3个单位后,表示的数为( )A.5 B.1 C.5或1 D.5或-19. 大于-2。

2的最小整数是()A.-2 B.-3 C.-1 D.010. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了7 0米,此时张明的位置在( )A。

在家 B。

在学校 C. 在书店 D。

不在上述地方二、认真填一填(本题共30分)11.若上升15米记作+15米,则-8米表示。

12.举出一个既是负数又是整数的数.13.计算:①312 +(-12 )—(—13 )+223③(23 —14 —38 +524 )×4814.计算5.24÷6。

55,结果用分数表示是______;用小数表示是________。

15.绝对值大于1而不大于3的整数是。

16.最小的正整数是_____;最大的负整数是_____。

17.比较下面两个数的大小(用“<",“>”,“= ”)(1) —3 -2;(2)-0。

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。

2024-2025学年人教版初一数学上册质量检查试卷及答案

2024-2025学年人教版初一数学上册质量检查试卷及答案

2024-2025学年人教版初一数学上册质量检查试卷班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.下列数中,是正整数的是()A. -3B. 0C. 2D. 1/2答案:C2.下列各式中,是方程的是()A. 2x + 1B. 3 + 5 = 8C. 4x = 2yD. 2 > 1答案:C3.下列计算正确的是()A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 7a + a = 7a^2D. 2x^2 - x^2 = x^2答案:D4.下列调查中,适合采用全面调查(即普查)的是()A. 对市场上某种饮料质量情况的调查B. 对乘坐飞机的旅客是否携带违禁品的调查C. 对某市中学生目前使用手机情况的调查D. 对某类烟花爆竹燃放安全情况的调查答案:B5.下列各组数中,不能构成直角三角形的是()A. 3, 4, 5B. 6, 8, 10C. 5, 12, 13D. 8, 15, 17答案:D(因为82+152≠172,不满足勾股定理的逆定理)二、多选题(每题4分)1.下列二次根式中,与√3是同类二次根式的是( )A. √6B. √12C. √(1/3)D. √27答案:B, C解析:A. √6 与√3 不同类;B. √12 = 2√3,与√3 同类;C. √(1/3) = √3/3,与√3 同类;D. √27 = 3√3,虽然包含√3,但系数不同,通常不视为严格同类。

2.下列计算正确的是( )A. √8 - √2 = √6B. 3√2 + 2√3 = 5√5C. (√3 + √2)^2 = 5 + 2√6D. √(a^2 + b^2) = a + b答案:C解析:A. √8 - √2 = 2√2 - √2 = √2 ≠ √6;B. 3√2 和2√3 不是同类二次根式,不能合并;C. (√3 + √2)^2 = 3 + 2√6 + 2 = 5 + 2√6;D. √(a^2 + b^2) 与 a + b 不等,除非 a, b 满足特定条件(如直角三角形的两直角边)。

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。

人教版七年级上册数学第一单元测试题及答案【三篇】

人教版七年级上册数学第一单元测试题及答案【三篇】

、、、、4对于近似数01830,下列说法正确的是、有两个有效数字,精确到千位、有三个有效数字,精确到千分位、有四个有效数字,精确到万分位、有五个有效数字,精确到万分5下列说法中正确的是.一定是负数一定是负数一定不是负数一定是负数二、填空题每题5分,共25分6若0<<1,则,,的大小关系是7若那么28如图,点在数轴上对应的实数分别为,则间的距离是.用含的式子表示9如果且2=4,2=9,那么+=10、正整数按下图的规律排列.请写出第6行,第5列的数字.三、解答题每题6分,共24分11①-5×6+-125÷-5②312+-12--13+223③23-14-38+524×48④-18÷-32+5×-123--15÷5四、解答题12本小题6分把下列各数分别填入相应的集合里1正数集合{…};2负数集合{…};3整数集合{…};4分数集合{…}13本小题6分某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14本小题6分已知在纸面上有一数轴如图,折叠纸面1若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合;2若-1表示的点与3表示的点重合,则5表示的点与数表示的点重合;15本小题8分某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10.1这10名同学中分是多少?最低分是多少?210名同学中,低于80分的所占的百分比是多少?310名同学的平均成绩是多少?参考答案1.234567≤8-9±1103211①-5②6③12④12①②③④1310千米14①2②-315①分92分;最低分70分②低于80分的学生有5人。

所占百分比50③10名同学的平均成绩是80分【篇二】人教版七年级上册数学第一单元测试题及答案一、仔细选一选30分10是.正有理数.负有理数.整数.负整数2中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于.计数.测量.标号或排序.以上都不是3下列说法不正确的是.0既不是正数,也不是负数.0的绝对值是0.一个有理数不是整数就是分数.1是绝对值最小的数4在数-,0,45,|-9|,-679中,属于正数的有个.2.3.4.55一个数的相反数是3,那么这个数是.3.-3..6下列式子正确的是.2>0>-4>-1.-4>-1>2>0.-4-17一个数的相反数是的负整数,则这个数是.1.±1.0.-18把数轴上表示数2的点移动3个单位后,表示的数为.5.1.5或1.5或-19大于-22的最小整数是.-2.-3.-1.010学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在在家在学校在书店不在上述地方二、认真填一填本题共30分11若上升15米记作+15米,则-8米表示。

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册第一章有理数章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.14D14-2.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.160 8×10104.某市一天上午的气温是10 ℃,下午上升了2 ℃,半夜(24时)下降了15 ℃,则半夜的气温是()A.3 ℃B.-3 ℃C.4 ℃D.-2 ℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()图1-1A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.-23-的倒数是()A. 32B.32- C.23 D. 23-7.下列运算错误的是()A.-8×2×6=-96B.(-1)2 014+(-1)2 015=0C.-(-3)2=-9D.2÷ 43× 34=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b<0C.(b-a)(a+1)>0D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____.12.已知有理数a,b,c在数轴上的位置如图1-3,且|a|=1,|b|=2,|c|=4,则a-b+c=_____.图1-313.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____.14.已知a,b互为相反数,且|a-b|=6,则b-1=____.15.已知|x|=4,|y|=12,且xy<0,则xy的值等于_____.16.将640 000精确到十万位为_______,4.10×105精确到了_____位.17.定义一种新的运算“@”的法则为:x@y=xy-1,则(2@3)@4=______.18.计算:1+2-3-4+5+6-7-8+9+10-11-12+……-2007-2008+2009+2010-2011-2012+2013=______.三、解答题(共58分)19.(8分)如图1-4,一个单位长度表示2,解答下列问题:图1-4(1)若点B与点D所表示的数互为相反数,求点D所表示的数;(2)若点A与点D所表示的数互为相反数,求点D所表示的数;(3)若点B与点F所表示的数互为相反数,求点D所表示的数的相反数.20.(8分)计算:(1)1137(3)() 63412+-÷-+-;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3;(3)11311()() 6841248--+-÷-;×(-12).(4)23292421.(10分)如图1-5,观察图形得1+3+5+7+9+11=()2,由此你能推出从1开始的n个连续奇数之和是多少吗?选择几个n的值,用计算器验证一下.图1-522.(10分)规定一种新的运算:a△b=ab-a-b+1,如3△4=3×4-3-4+1=6,试求(-5)△4的值.23.(10分)从图1-6中最小的数开始,由小到大依次用线段连接各数,并指出你所得图形的名称.图1-624.(12分)某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少答案一、1.A 2.A 3.C4.B 解析:根据题意可列算式为10+2-15=12-15=-3 (△).故选B.5.C 解析:(-0.1-0.3+0.2+0.3)+5×4=20.1(kg).故选C.6.B 解析:23-- =23-,23-的倒数为32-.故选B. 7.D 解析:2÷43×34 =2×34×34=98,故D 选项错误.故选D. 8.C 解析:由A ,B 两点在数轴上的位置可知,-1<a <0,b >1,所以ab <0,a +b >0,故A ,B 错误;因为-1<a <0,b >1,所以b -1>0,a +1>0,a -1<0,所以(b -a )(a +1)>0,(b -1)(a -1)<0,故C 正确,D 错误.故选C.9.D 解析:因为|a -1|+(b +3)2=0,所以a -1=0,b +3=0,所以a =1,b =-3,所以ba =(-3)1=-3.故选D.10.B 解析:2*1=2-1+2×1=1+2=3.故选B.二、11. -3 解析:由-1先向右平移6个单位长度到达点A ,再由点A 向左平移8个单位长度到达点B,则此时这个点表示的数是-1+6-8=-3.12. -7 解析:根据a,b,c在数轴上的位置可知b>0,c<0,a<0,再根据|a|=1,|b|=2,|c|=4可求出a,b,c的值,代入a-b+c进行计算即可.13. 75 -30 解析:根据题意知任取的三个数是-5,-3,5时,它们的积最大,是(-5)×(-3)×5=75.任取的三个数是-5,-3,-2时,它们的积最小,是(-5)×(-3)×(-2)=-30.14. 2或-4 解析:由a,b互为相反数,可得a+b=0,得a=-b.由|a-b|=6,得|-b-b|=6,|b|=3,所以b=±3.当b=3时,b-1=2;当b=-3时,b-1=-4.15. -8 解析:先根据xy<0确定xy的符号,再根据绝对值的定义求出x与y的比值即可.16. 6×105千17. 19 解析:根据运算法则x@y=xy-1知,(2@3)@4=(2×3-1)×4-1=19.18. 1 解析:原式=1+(2-3)+(-4+5)+(6-7)+(-8+9)+…+(2 006-2 007)+(-2 008+2 009)+(2 010-2 011)+(-2 012+2 013)=1.三、19.解:(1)因为点B与点D所表示的数互为相反数,且点B与点D之间有4个单位长度,每个单位长度为2,所以可得点D所表示的数为4.(2)因为点A与点D所表示的数互为相反数,且它们之间有5个单位长度,所以点D表示的数为5.(3)因为点B与点F所表示的数互为相反数,且它们之间有6个单位长度,可得C,D中间的点为原点,可得点D表示的数为2,它的相反数为-2.20.解:(1)原式=16+(-3)÷-16=16+3×6=1816.(2)原式=-8+(-4)-16÷(-8)=-8-4+2=-10.(3)原式=-16-18+34-112×(-48)=-16×(-48)-18×(-48)+34×(-48)-112×(-48)=8+6-36+4=-18.(4)原式=30-124×(-12)=30×(-12)-124×(-12)=-360+12=-35912.21.解:6;n2.验证略.22.解:根据题意,得(-5)△4=(-5)×4-(-5)-4+1=-20+5-4+1=-18.23.解:连数顺序为-193→-512→-4.9→-|-4.5|→-4→+(-1)→0→2→|-3|→-(-5)→|-6|→8.所得图形是小轿车.24.解:(1)250-9=241(辆).故本周六生产了241辆摩托车.(2)-5+7-3+4+10-9-25=-21<0,所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.第二章整式的加减章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列式子,不是整式的是( ) A .x y -12 B .37x C .x -11D .02.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .-2xy 2 B .3x 2 C .2xy 3 D .2x 33.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( ) A .都小于5 B .都大于5 C .都不小于5 D .都不大于54.下列各组单项式,不是同类项的是( ) A .3x 2y 与-2yx 2 B .2ab 2与-ba 2 C .xy3与5xy D .23a 与32a 5.若单项式2x n y m -n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( ) A .3,9 B .9,9 C .9,3 D .3,3 6.-[x -(y -z )]去括号后应得( )A .-x +y -zB .-x -y +zC .-x -y -zD .-x +y +z 7.A ,B 都是五次多项式,则A -B 一定是( ) A .四次多项式 B .五次多项式 C .十次多项式 D .不高于五次的多项式8.已知a ,b 两数在数轴上对应的点的位置如图2-1,则化简式子|a+b |-|a -2|+|b+2|的结果是( )图2-18A .2a +2bB .2b +3C .2a -3D .-19.已知m -n =100,x+y =-1,则式子(n+x )-(m -y )的值是( )A .99B .101C .-99D .-10110.某商家在甲批发市场以每包m 元的价格购进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格购进了同样的茶叶60包,如果商家以每包m n +2元的价格卖出这种茶叶,那么卖完后,该商家( ) A .盈利了 B .亏损了 C .不盈不亏 D .盈亏不能确定 二、填空题(每小题4分,共32分)11.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .12.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…,它们是按一定规律排列的,那么这列式子的第n 个单项式是 .13.若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k = . 14.写出一个只含有字母x ,y15.如果单项式-xy b +1与a x y -231216.在等式的括号内填上恰当的项,x 2-y 2+8y -4=x 2-( ). 17.已知P =2xy -5x +3,Q=x -3xy -2 且3P +2Q=5恒成立,则x = .18.如图2-2是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a+b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米,则王明家楼梯的竖直高度(即BC 的长度)为 米.图2-2三、解答题(共58分)19.(8分)计算:(1)-x+2(x-2)-(3x+5);(2)3a2b-2[ab2-2(a2b-2ab2)].xy△z△时,不小心把字母y,z的指数用墨水污染了,20.(8分)王佳在抄写单项式-23他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?21.(10分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.22.(10分)化简求值:(1)把a-2b看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.(2)已知|x-2|+(y-1)2=0,求x2+(2xy-3y2)-2(x2+xy-2y2)的值.23.(10分)已知成婷的年龄是m岁,乔豆的年龄比成婷的年龄的2倍少4岁,张华的年龄比乔豆的年龄的1还多1岁,求这三位同学的年龄的和.224.(12分)某超市在春节期间实行打折促销活动,规定如下表:一次性购物促销方法少于200元不打折低于500元但不低于200元打九折500元或超过500元其中500元部分打九折,超过500元部分打八折(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a <300),用含a的式子表示两次购物王老师实际付款多少元?答案一、1.C 解析:A.是多项式,故A 不符合题意;B.是单项式,故B 不符合题意;C.不是整式,故C 符合题意;D.是单项式,故D 不符合题意.故选C.2.D 解析:A.-2xy 2的系数是-2,不符合题意;B.3x 2的系数是3,次数是2,不符合题意;C.2xy 3的系数是2,次数是4,不符合题意;D.2x 3的系数是2,次数是3,符合题意.故选D.3.D 解析:因为多项式里次数最高项的次数,就是这个多项式的次数,该多项式的次数是5,所以这个多项式次数最高项的次数是5,所以这个多项式的任何一项的次数满足都不大于5.故选D.4.B 解析:字母相同且相同字母的指数也相同,故A ,C ,D 不符合题意;相同字母的指数不同,不是同类项,故B 符合题意.故选B.5.C 解析:由题意,得n =3,m -n =2n ,所以m =9,n =3.故选C.6.A 解析:-[x -(y -z )]=-(x -y +z )=-x +y -z .故选A.7.D 解析:若五次项是同类项,且系数相等,则A -B 的次数低于五次;否则A -B 的次数一定是五次.故选D.8.A 解析:由图可得-2<b <-1<1<a <2,且|a |>|b |,则|a +b |-|a -2|+|b +2|=a +b +(a -2)+b +2=a +b +a -2+b +2=2a +2b .故选A.9.D 解析:因为m -n =100,x +y =-1,所以原式=n +x -m +y =-(m -n )+(x +y )=-100-1=-101.故选D.10.A 解析:根据题意,得该商家在甲批发市场购进的茶叶的利润为40()m n m +-2=20(m +n )-40m =20n -20m (元);在乙批发市场购进的茶叶的利润为60m +n 2-n =30(m +n )-60n =30m -30n (元).所以该商家的总利润为20n-20m+30m-30n=10m-10n=10(m-n)(元).因为m>n,所以m-n>0,即10(m-n)>0,所以该商家盈利了.故选A.二、11.π 解析:在多项式3x2+πxy2+9中,次数最高的项是πxy2,其系数是π.12.(2n+1)a n2+1 解析:3a2=(2×1+1)a12+1,5a5=(2×2+1)a22+1,7a10=(2×3+1)a32+1,…,所以第n个单项式是(2n+1)a n2+1.13. 2 解析:原式=x2+(-3k+6)xy-3y2-8.因为该多项式不含xy项,所以-3k+6=0,所以k=2.14.x2+2xy+1(答案不唯一)15. 1 解析:由同类项的概念可知a-2=1,b+1=3,所以a=3,b=2,所以(a-b)2 017=(3-2)2 017=1.16.y2-8y+4 解析:括号内的项为x2-(x2-y2+8y-4)=y2-8y+4.17. 0 解析:因为P=2xy-5x+3,Q=x-3xy-2,所以3P+2Q=6xy-15x+9+2x-6xy-4=-13x+5.因为3P+2Q=5恒成立,所以-13x+5=5,解得x=0.即x=0时,3P+2Q=5恒成立.18.(a-2b)解析:根据题意可得,(3a-b)-(2a+b)=3a-b-2a-b=a-2b.故王明家楼梯的竖直高度(即BC的长度)为(a-2b)米.三、19.解:(1)原式=-x+2x-4-3x-5=-2x-9.(2)原式=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:由题意知,x的指数是1,则y,z的指数的和是4.当y的指数是1时,z的指数是3;当y的指数是2时,z的指数是2;当y的指数是3时,z的指数是1.所以这个单项式是-23xyz3或-23xy2z2或-23xy3z.21.解:因为-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,所以3+|a|=7,a-4≠0,所以a=-4.故a2-2a+1=(-4)2-2×(-4)+1=25.22.解:(1)-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5×(-1)3=-3×1+5×(-1)=-8.(2)原式=x2+2xy-3y2-2x2-2xy+4y2=-x2+y2.因为|x-2|+(y-1)2=0,所以x-2=0,y-1=0,即x=2,y=1,则原式=-4+1=-3.23.解:由题意可知,乔豆的年龄为(2m-4)岁,张华的年龄为12(2m-4)+1岁,则这三位同学的年龄的和为m+(2m-4)+12(2m-4)+1=m+2m-4+(m-2+1)=4m-5(岁).答:这三位同学的年龄的和是(4m-5)岁.24.分析:(1)500元部分按9折付款,剩下的100元按8折付款.(2)当200≤x<500时,他实际付款0.9x元;当x≥500时,他实际付款500×0.9+0.8×(x-500)=0.8x+50 (元).(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-500)×8折,把相关数值代入即可求解.解:(1)530.500×0.9+(600-500)×0.8=530(元).(2)0.9x 0.8x +50.(3)因为200<a <300,所以第一次实际付款为0.9a 元,第二次付款超过500元,超过500元部分为(820-a -500)元,所以两次购物王老师实际付款为0.9a +0.8(820-a -500)+450=0.1a +706(元).第三章 一元一次方程 章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在方程①3x -y =2,②x +1x -2=0 ,④ x 2-2x -3=0中一元一次方程的个数为( )A .1B .2C .3D .42.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .23.方程|x -3|=6的解是( )A .9B .±9C .3D .9或-34.运用等式的性质变形,正确的是( )A .如果a =b ,那么a +c=b -cB .如果 =a b c c ,那么a =bC .如果a =b ,那么 =a b c cD .如果a =3,那么a 2=3a 2 5.解方程 21101136++-=x x 时,去分母、去括号后,正确的结果是( )A .4x +1-10x +1=1B .4x +2-10x -1=1C .4x +2-10x -1=6D .4x +2-10x +1=66.若4x -5与 212-x 的值相等,则x 的值是( )A .1B .32C .23D .27.马强在计算“41+x ”时,误将“+”看成“-”,结果得12,则41+x 的值应为( )A .29B .53C .67D .708.为了参加全校文艺演出,某年级组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍.设从舞蹈队中抽调了x 人参加合唱队,可得正确的方程是( )A .3(46-x )=30+xB .46+x =3(30-x )C .46-3x =30+xD .46-x =3(30-x )9.当x =1时,式子ax 3+bx +1的值是2,则方程 123244+-+=ax bx x 的解是() A .x =13 B .x =-13C .x =1D .x =-1 10.某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,而按原价的九折出售,将赚20元,那么这种商品的原价是( )A .500元B .400元C .300元D .200元二、填空题(每小题4分,共32分)11.若关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,则k =______.12.若a -5=b -5,则a =b ,这是根据______.13.在方程3a -5=2a +6的两边同时减去一个多项式可以得到方程的解为a =11,则这个多项式是________.14.已知a ,b 互为相反数,且ab ≠0,则方程ax +b =0的解为________.15.如果2(x +3)的值与3(1-x )的值互为相反数,那么x 等于________.16.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解为x =________.17.张强在做作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是x + 13=13x +△,怎么办呢?张强想了想,便翻看了书后的答案,此方程的解是x =-3,张强很快补好了这个常数,并迅速完成了作业,这个常数是______.18.请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的树为______棵.三、解答题(共58分)19.(8分)解下列方程:(1)3x (7-x )=18-x (3x -15);(2) 0.170.210.70.03--=x x . 20.(8分)下面是马小哈同学做的一道题:解方程: 212134-+=-x x . 解:①去分母,得4(2x -1)=1-3(x +2).②去括号,得8x -4=1-3x -6.③移项,得8x +3x =1-6+4.④合并同类项,得11x =-1.⑤系数化为1,得x =- 111.(1)上面的解题过程中最早出现错误的步骤(填序号)是________.(2)请正确的解方程: 12224-+-=-x x x . 21.(10分)已知|a -3|+(b +1)2=0,式子22-+b a m 的值比 12b -a +m 的值多1,求m 的值. 22.(10分)当m 为何值时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.(10分)已知a 是非零整数,关于x 的方程ax |a |-bx 2+x -2=0是一元一次方程,求a +b 的值与方程的解.24.(12分)一艘载重480 t 的船,容积是1 050 m 3,现有甲种货物450 m 3,乙种货物350 t ,而甲种货物每吨的体积为2.5 m 3,乙种货物每立方米0.5 t .问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨? 答案一、1.A 解析:①含有两个未知数,不是一元一次方程;②方程左边不是整式,不是一元一次方程;③符合一元一次方程的概念;④未知数的最高次数是2,不是一元一次方程.故选A.2.A 解析:把x =1代入方程,得1+2a =-1,解得a =-1.故选A.3.D 解析:因为|x -3|=6,所以x -3=6或x -3=-6.①x -3=6,解得x =9;②x -3=-6,解得x =-3.故选D.4.B 解析:A.利用等式的性质1,两边都加c ,得到a +c=b +c ,所以A 不正确;B.利用等式的性质2,两边都乘c ,得到a =b ,所以B 正确;C.因为c 可能为0,所以C 不正确;D.因为a 2=9,3a 2=27,所以a 2≠3a 2,所以D 不正确.故选B.5.C 解析:去分母,得2(2x +1)-(10x +1)=6.去括号,得4x +2-10x -1=6.故选C.6.B 解析:根据题意,得4x -5=212-x .去分母,得8x -10=2x -1,解得x =32.故选B. 7.D 解析:根据题意,得41-x =12,解得x =29.所以41+x =41+29=70.故选D.8.B 解析:由题意可知,46+x =3(30-x ).故选B.9.C 解析:把x =1代入ax 3+bx +1=2,得a +b +1=2,即a +b =1.去分母,得2ax +2+2bx -3=x ,整理,得(2a +2b -1)x =1,即[2(a +b )-1]x =1.把a +b =1代入,得x =1.故选C.10.C 解析:设这种商品的原价是x 元.根据题意,得75%x +25=90%x -20,解得x =300.故选C.二、 11. 0 解析:由关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,得|k -1|=1且k -2≠0,解得k =0.12.等式的性质1 解析:在等式的两边同时加5就可以得到a =b .这是根据等式的性质1.13. 2a -5 解析:方程两边都减2a -5,得a =11.14.x =1 解析:因为a ,b 互为相反数,且ab ≠0,所以b a=-1.方程ax +b =0的解为x =-b a=1. 15. 9 解析:根据题意,得2(x +3)+3(1-x )=0.去括号,得2x +6+3-3x =0.移项,合并同类项,得-x =-9,解得x =9. 16.113 解析:根据题中的新定义,得3△4=12+1=13.代入方程(3△4)△x =2,得13△x =2,即13x +1=2,解得x =113. 17.53- 解析:设这个常数是a .把x =-3代入方程,得-3+13=13×(-3)+a ,解得a =53-.故这个常数是53-. 18. 5 解析:设诗句中谈到的树为x 棵,则鸦有(3x +5)只.根据题意,得5(x -1)=3x +5,解得x =5.所以诗句中谈到的树为5棵.三、19.解:(1)去括号,得21x -3x 2=18-3x 2+15x .移项、合并同类项,得6x =18,解得x =3.(2)将分母转化为整数,得=101720173--xx 方程两边同乘21,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 20.分析:(1)根据等式的性质,解一元一次方程的步骤即可判断;(2)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解. 解:(1)①.(2)去分母,得4x -2(x -1)=8-(x +2).去括号,得4x -2x +2=8-x -2.移项,得4x -2x +x =8-2-2.合并同类项,得3x =4.系数化为1,得x =43. 21.分析:先根据|a -3|+(b +1)2=0求出a ,b 的值,再根据式子22-+ba m 的值比12b -a +m 的值多1列出方程 22-+b a m =12b -a +m ,把a ,b 的值分别代入求出m 的值.解:因为|a -3|≥0,(b +1)2≥0,且|a -3|+(b +1)2=0,所以a -3=0且b +1=0,解得a =3,b =-1. 由题意,得22-+ba m =12b -a +m +1, 即131252-=--+++m m , 解得m =0.所以m 的值为0.22.分析:先分别解两个方程求得方程的解,再根据关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2,即可列方程求得m 的值.解:由4x -m =2x +5,得x =52+m . 由2(x -m )=3(x -2)-1,得x =-2m +7.因为关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2, 所以52+m +2=-2m +7, 解得m =1.故当m =1时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.分析:分情况讨论,(1)a =b ,|a |=2;(2)b =0,|a |=1.首先根据一元一次方程的概念求得a ,b 的值,然后将其代入a +b 并求值,最后将a ,b 的值代入原方程,由一元一次方程的解法解方程.解:(1)a =b ,|a |=2,当a =2时,b =2,此时a +b =4,方程的解为x =2;当a =-2时,b =-2,此时a +b =-4,方程的解为x =2.(2)|a |=1,b =0,解得a =±1,b =0.当a=1时,原方程为x+x-2=0,解得x=1,a+b=1+0=1;当a=-1时,原方程为-x+x-2=0,不存在.24.分析:求出甲种货物和乙种货物的吨数,与载质量进行比较即可作出判断;设装甲种货物x t,乙种货物(480-x)t,通过理解题意可知本题存在等量关系:甲种货物所占的总体积+乙种货物所占的总体积=1 050 m3,根据这个等量关系列出方程求解即可.解:(1)不能.=180(t),理由:甲种货物重4502.5180+350=530>480,所以甲、乙两种货物不能都装上船.x=1 050,(2)设装甲种货物x t,则装乙种货物(480-x)t.依题意有2.5x+4800.5解得x=180.480-x=300.答:为了最大限度地利用船的载质量和容积,应装甲种货物180 t,乙种货物300 t.第四章几何图形初步章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1. 下列第一行的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如,由a,b组成的图形记作a⊙b,那么由此可知,下列选项的图形,可以记作a⊙d的是()2. 如图4-1,该几何体从正面看得到的平面图形是()图4-13. 对于直线AB、线段CD、射线EF,其中能相交的图是()4. 下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5. 如图4-2,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则线段DB的长度为()图4-2A.4B.6C.8D.106. 已知线段AB和点P,如果PA+PB=AB,那么()A.P为AB的中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7. 学校、书店、邮局在平面图上的标点分别是A,B,C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25°B.65°C.115°D.155°8. 若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对图4-39. 如图4-3,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=1∠EOC210. 如图4-4,OD⊥AB于点O,OC⊥OE,图中与∠AOC互补的角有()图4-4A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,说明_____.12.如图4-5,C,D是线段AB上的两点,若AC=4,CD=5,DB=3则图中所有线段长度的和是_____.图4-513.已知∠A=100°,那么∠A的补角是_____.14.时钟上3点40分时分针与时针夹角的度数为____.15.如图4-6,O在直线AB上,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.图4-616.已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为_____.17.如图4-7,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为_____.图4-718.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出的直线有_____.三、解答题(共58分)19.(8分)计算:(1)22°18′×5;(2)90°-57°23′27″.20.(8分)把图4-8的展开图和它们的立体图形连起来.图4-821.(10分)如图4-9,已知线段a,b,c,用圆规和直尺画图.(不用写作法,保留画图痕迹)(1)画线段AB,使得AB=a+b-c;(2)在直线AB外任取一点K,画射线AK和直线BK;(3)反向延长AK至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK长度的和与线段AB长度的大小.图4-922.(10分)如图4-10,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求线段AB,CD的长度.图4-1023.(10分)如图4-11(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图4-11(2),4-11(3),4-11(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)图4-1124.(12分)如图4-12,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.图4-12答案一、1.A 解析:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合.故选A.2. A3. B 解析:A.直线AB与线段CD不能相交,故此选项不符合题意;B.直线AB 与射线EF能相交,故此选项符合题意;C.射线EF与线段CD不能相交,故此选项不符合题意;D.直线AB与射线EF不能相交,故此选项不符合题意.故选B.4. B 解析:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间,线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间,线段最短.故选B.5. D 解析:因为C为AB的中点,AB=12,所以AC=BC=12AB=12×12=6.因为AD∶CB=1∶3,所以AD=2,所以DB=AB-AD=12-2=10.故选D.6. B 解析:如图D4-1.因为PA+PB=AB,所以点P在线段AB上.故选B.图D4-17. C 解析:如图D4-2.由图可知,∠CAB=∠1+∠2=25°+90°=115°.故选C.图D4-28. B 解析:因为∠1=40.4°=40°24′,∠2=40°4′,所以∠1>∠2.故选B.9. B 解析:因为OD,OE分别是∠AOC,∠BOC的平分线,所以∠AOD=∠COD,∠EOC=∠BOE.又因为∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,所以∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选B.10. B 解析:根据题意,得(1)因为∠AOC+∠BOC=180°,所以∠BOC与∠AOC 互补.(2)因为OD⊥AB,OC⊥OE,所以∠EOD+∠DOC=∠BOC+∠DOC=90°,所以∠EOD=∠BOC,所以∠AOC+∠EOD=180°,所以∠EOD与∠AOC互补,所以图中与∠AOC互补的角有2个.故选B.二、11.线动成面12. 41 解析:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故题图中所有线段长度的和为AC+AD+AB+CD+CB+DB=41.13. 80°14. 130°解析:3点40分时分针与时针夹角的度数为30°×4+1=130°.315. 2 解析:因为∠AOD=90°,所以∠AOC+∠COD=90°.因为∠COE=90°,所以∠COD+∠DOE=90°,所以∠AOC=∠DOE.因为∠BOD=180°-∠AOD=90°,所以∠DOE+∠BOE=90°,所以∠BOE=∠COD.故图中相等的锐角有2对.16. 30°或150°解析:如图D4-3(1),因为∠BOD=90°,∠AOB=150°,所以∠AOD=60°.又因为∠AOC=90°,所以∠COD=30°.如图D4-3(2),因为∠BOD=90°,∠AOC=90°,∠AOB=150°,所以∠AOD=60°,所以∠COD=150°.综上所述,∠COD的度数为30°或150°.图D4-317. 51 解析:因为正方体的表面展开图,相对的面一定相隔一个正方形,所以6若不是最小的数,则6与9是相对面.因为6与9相邻,所以6是最小的数,所以这6个整数的和为6+7+8+9+10+11=51.18. 1条、4条或6条解析:如果A,B,C,D四点在同一直线上,那么只能确定一条直线,如图D4-4(1);如果4个点中有3个点(不妨设点A,B,C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图D4-4(2);如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B,C,D确定3条直线,点B分别与点C,D确定2条直线,最后点C,D确定一条直线,这样共确定6条直线,如图D4-4(3).综上所述,过其中每2个点可以画1条、4条或6条直线.(1)(2)(3)图D4-4三、19.解:(1)22°18′×5=110°90′=111°30′.(2)90°-57°23′27″=32°36′33″.20. 解:如图D4-5.图D4-521. 分析:(1)首先作射线CE在射线CE上截取CD=a,BD=b,再在CB上截取AC=c,则可得出AB=a+b-c;(2)根据射线和直线的概念过点K即可作出;(3)根据AP=AK,利用两点之间线段最短即可得出答案.解:(1)如图D4-6(1).(2)如图D4-6(2).(1)(2)(3)图D4-6(3)如图D4-6(3).因为AP=KA,所以线段PA与BK长度的和大于线段AB的长度.22.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.因为E,F分别为线段AB,CD的中点,所以AE=12AB=1.5x(cm),CF=12CD=2x(cm).所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm).因为EF=10 cm,所以2.5x=10,解得x=4.所以AB=12 cm,CD=16 cm.23. 解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5=485π.24. 解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案初一上册数学测试题及答案初一上册数学测试题1、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3b;C.-5a>-5bD. 0.5a> 0.5b2、据统计,2009年在国际金融危机的强烈冲击下,我国国内生产总值约为30 067 000 000 000元,仍比上年增长9.0%。

30 067 000 000 000元用科学计数法表示为(保留三位有效数字)A.3.0037×1013元 B.3.00×1013元C.30.1×1012元 D.3.01×1013元3、下列说法中,正确的是A.直线AB与直线BA是同一条直线B.射线OA与射线AO是同一条射线C.延长线段 AB到点C,使AC=BCD.画直线AB= 5cm4、下列等式是一元一次方程的是A.x2+3x=6 B.2x=4 C.- x-y=0 D.x+12=x-45、下列各单项式中,不是同类项的是A.x3y与2y3x B.-7.2a2与2.7a2C.25与52 D.- a2b2c与8a2cb26、如下图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为A.2对 B.3对 C.4对 D.5对7、已知x=2是关于x的方程+k=k(x+2)的解,则k的值应为A. B.9 C. D.18、若单项式3x2by与2x4ya+1的和仍是一个单项式,则ab的值为A.2 B.0 C.-2 D.-49、如下图所示,关于图中四条射线的方向说法错误的是A.OA的方向是北偏东35° B.OB的方向是北偏西15°C.OC的方向是南偏西25° D.OD的方向是东南方向10、某品牌西装进价为800元,售价为1200元,后由于该西装滞销积压,商家准备打折出售,若保持5%的利润率,则应打A.6折 B.7折 C.8折 D.9折11、如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是A.①② B.②③ C.②④ D.③④12、日常生活中我们使用的数是十进制数(即数的进位方法是“逢十进一”),而计算机使用的数是二进制数,即数的进位方法是“逢二进一”。

人教版七年级数学上册各章节测试题含答案全

人教版七年级数学上册各章节测试题含答案全

第一章 丰富的图形世界一、精心选一选,慧眼识金!(每小题4分,共10小题,共40分) 1. 如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种形状图都是同一种几何图形,则另一个几何体是 ( ) A .长方体 B .圆柱体C .球体D .三棱柱2. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是 ( )A.文B.明C.奥D.运3. 如图所示的几何体的从上面看到的形状图是( )4.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是 ( )5. 将如左下图所示的绕直角边旋转一周,所得几何体的从正面看到的形状图是 ( )6. 如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )7. 某几何体的三种形状图如下所示,则该几何体可以是 ( )第1题图 第5题图第2题图 第3题图 A B C D第6题图从正面看 从左面看 从上面看8. 一个无盖的正方体盒子的平面展开图可以是下列图形中的 ( )9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是 ( )10.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为 ( )(每小题4分,共5小题,共20分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是 .12.把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为cm.13.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为 .14.一个n 边形,从一个顶点出发的对角线有 条,这些对角线将n 边形分成了________个三角形.15.如图,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了802cm ,那么这根木料本来的体积是 3cm .A B C D 第10题图 3 1 1 2 2 4 第15题图1.6米三、用心做一做,马到成功!(每小题12分,共5小题,共60分) 16.将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.17.由一些大小相同的小正方体组成的简单几何体的从正面、从上面看到的形状图(如图):⑴若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值为 . ⑵请你画出这个几何体所有可能的从左面看到的形状图.18.如图是一个几何体的两种形状图,求该几何体的体积(л取3.14).19. 如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个;第3层,6个),小正方体的一个侧面的面积为1cm.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少?20.若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A 处有一只蜘蛛,B 处有一只小虫,如图所示,请你在图上作出一种由A 到B 的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.第16题图 1 5 4 62 3 7 第18题图20cm32cm 40cm 30cm30cm 25cmBA 第20题图第19题图单元测试题1.C2.A3.D4.C5.A6.B7.A8.D9.C 10.C 11.球体 12.7,6 13.30 cm 14.n-3,n-2 15.32 16.1号、2号 17.⑴8或9 ⑵图略 18.40048cm 319.18cm 220.略第二章 有理数及其运算一、耐心填一填:(每题3分,共30分)1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 . 2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 . 3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += .5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。

(完整版)人教版七年级上册数学测试题及答案

(完整版)人教版七年级上册数学测试题及答案

si学习情况检测(时间90分钟,满分120分) 姓名__________ 得分___________一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中)题号123456789101112答案1.等于( )2- A .-2B .C .2D .12-122.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( ) A .与1B .(-1)2与1C .与1D .-12与1)1(--1-5.下列各组单项式中,为同类项的是( ) A .a 与a B .a 与2a C .2xy 与2x D .-3与a 3212226.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( )A .B .C .D .32428-=xx 32428+=x x 3262262+-=+x x 3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A BC D第8题图A第8题图st hA .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式xy 2的系数是_________.1215.若x =2是方程8-2x =ax 的解,则a =_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-×[2-(-3)] . 14222.(本小题满分6分)一个角的余角比这个角的少30°,请你计算出这个角的大小. 2123.(本小题满分7分)先化简,再求值:(-4x 2+2x -8)-(x -1),其中x =.41212162224204884446……共43共94元24.(本小题满分7分) 解方程:-=1.513x +216x -25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n 次移动结果这个点在数轴上表示的数为;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .求:∠COE 的度数.27.(本小题满分8分)OA如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB 、CD 的中点E 、F 之间距离是131410cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.AE DBFC数学试题参考答案及评分说明一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.;14.;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.31-21-三、解答题(共60分)21.解:原式= -1-×(2-9) ………………………………………………………3分14=-1+ …………………………………………………………………………5分47= ……………………………………………………………………………6分4322.解:设这个角的度数为x . ……………………………………………………………1分由题意得:………………………………………………3分30)90(21=--x x 解得:x =80 …………………………………………………………………5分答:这个角的度数是80° ……………………………………………………………6分23.解:原式 = ………………………………………………3分1212212+--+-x x x =………………………………………………………………4分12--x把x =代入原式:21原式==……………………………………………………………5分12--x 1)21(2--= ……………………………………………………………………………7分45-24.解:.……………………………………………2分6)12()15(2=--+x x .………………………………………………………4分612210=+-+x x 8x =3.…………………………………………………………6分. …………………………………………………………7分83=x 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB∴∠BOC =∠AOB =45°, ………………………………………………………2分12∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE ∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =AB =1.5x cm ,CF =CD =2x cm . ……………………………………………3分1212∴EF =AC -AE -CF =2.5x cm . ………………………………………………………4分∵EF =10cm ,∴2.5x =10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 ……………………………………………3分解得:x =21 则x +4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分(2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分根据题意,得21y +25(105-y )=2447.………………………………………………7分解之得:y =44.5 (不符合题意) . ……………………………………………………8分所以王老师肯定搞错了. ……………………………………………………………9分(3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25(105-z)=2447-a. 即:4z=178+a ,因为 a 、z 都是整数,且178+a 应被4整除,所以 a 为偶数,又因为a 为小于10元的整数,所以 a 可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

初一上册数学综合测试卷及答案【三篇】

初一上册数学综合测试卷及答案【三篇】

【导语】本⽂由⽆忧考为您整理的初⼀上册数学综合测试卷及答案【三篇】,希望对⼤家有帮助。

初⼀上册数学有理数综合测试卷及答案 ⼀.选择题(每⼩题3分,共24分) 1.-2的相反数是() A.2B.-2C.D. 2.│3.14-|的值是(). A.0B.3.14-C.-3.14D.3.14+ 3.⼀个数和它的倒数相等,则这个数是() A.1B.C.±1D.±1和0 4.如果,下列成⽴的是() A.B. C.D. 5.⽤四舍五⼊法按要求对0.05019分别取近似值,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位) C.0.05(保留两个有效数字)D.0.0502(精确到0.0001) 6.计算的值是() A.B.C.0D. 7.有理数a、b在数轴上的对应的位置如图所⽰: 则() A.a+b<0B.a+b>0 C.a-b=0D.a-b>0 8.下列各式中正确的是() A.B. C.D. ⼆.填空(每题3分,共24分) 9.在数+8.3、-4、-0.8、、0、90、、中,________是正数,_________不是整数。

10.+2与-2是⼀对相反数,请赋予它实际的意义:_________. 11.的倒数的绝对值是___________. 12.+4=; 13.⽤科学记数法表⽰13040000,应记作_______________. 14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________. 15.⼤肠杆菌每过20分便由1个分裂成2个,经过3⼩时后这种⼤肠杆菌由1个分裂成__________个. 16.在数轴上与-3距离四个单位的点表⽰的数是__________. 三.解答题(每题6分,共12分) 17.(-0.9)+(+4.4)+(-8.1)+(+5.6) 18. 四.解答题(每题8分,共40分) 19.把下列各数⽤“”号连接起来: ,-0.5,,,-(-0.55), 20.如图,先在数轴上画出表⽰2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表⽰的数,以及B,C两点间的距离. 21.求+的最⼩值 22.某公司去年1~3⽉平均每⽉亏损1.5万元,4~6⽉平均每⽉赢利2万元,7~10⽉平均每⽉赢利1.7万元,11~12⽉平均每⽉亏损2.3万元,问:这个公司去年总的盈、亏情况如何? 23.某⾷品⼚从⽣产的袋装⾷品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不⾜的部分分别⽤正、负数来表⽰,记录如下表: 与标准质量的差值 (单位:g)520136 袋数143453 这批样品的平均质量⽐标准质量多还是少?多或少⼏克?若每袋标准质量为450克,则抽样检测的总质量是多少? 参考答案 ⼀.选择题 1.A 2.C 3.C 4.D 5.C 6.D 7.A 8.A ⼆.填空题 9.+8.3、90;+8.3、、、. 10.向前⾛2⽶记为+2⽶,向后⾛2⽶记为⽶。

完整版)初一数学上册期末测试卷及答案

完整版)初一数学上册期末测试卷及答案

完整版)初一数学上册期末测试卷及答案初一数学上期末试题及答案一。

填空题(本大题共10小题,每小题3分,共30分)1.甲数的3与乙数的2的差用代数式表示为a×3-b×2.2.用四舍五入法,把47.6精确到个位的近似值是48.3.单项式2x2yz3的系数是2,次数是6.4.把多项式3a2b+2ab2-5axy+3x2y按y的降幂排列后,第二项是-5axy。

5.最大的负整数与绝对值最小的数的和为-2.6.在公式v=v0+at中,已知a=3,v0=17,v=5,则t=-4.7.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时相向施工,则要6天可以铺好。

8.若x=1是关于x的方程ax+b=(a≠0)的解,则a+b-1=0.9.某商品的进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的折销售的。

10.如图是花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆)观察图案并探索:在第n个图案中,红花有2n-1盆,黄花有2n盆。

二。

选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个答案正确,将正确答案的代号填入题后的括号里)11.下列各式中计算正确的是(B)。

A。

11-(-7)=18B。

23-(-3)=26C。

(6)+(-13)=-7D。

(-9)×5×(-4)×2=36012.若室内温度是16℃,室外温度是-5℃,那么室内的温度比室外的温度高(D)。

A。

-21℃B。

21℃C。

-11℃D。

11℃13.如果y=3x,z=2(y-1),那么x-y+z等于(B)。

A。

4x-1B。

4x-2C。

5x-1D。

5x-214.下列运算正确的是(C)。

A。

-2a-2a=-4aB。

2xy+3xy=5xyC。

1/2+1/2=1D。

2/15ab+ba^2=a^2b15.下列方程为一元一次方程的是(D)。

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。

1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册第一单元测试题
一、仔细选一选(30分)
1.0是()
A.正有理数B.负有理数C.整数D.负整数
2.中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()
A.计数B.测量C.标号或排序D.以上都不是
3.下列说法不正确的是()
A.0既不是正数,也不是负数B.0的绝对值是0
C.一个有理数不是整数就是分数D.1是绝对值最小的数
4.在数-2,0,4.5,|-9|,-6.7中,属于正数的有()个
A.2 B.3 C.4 D.5
5.一个数的相反数是3,那么这个数是()
A.3B.-3C.D.6.下列式子正确的是()A.2>0>-4>-1B.-4>-1>2>0C.-4<-1<0 <2D.0<2>-1<- 4
7.一个数的相反数是最大的负整数,则这个数是()
A.1B.±1C.0D.- 1
8.把数轴上表示数2的点移动3个单位后,表示的数为()
A.5B.1C.5或1D.5或-1
9.大于-2.2的最小整数是()
A.-2B.-3C.-1D.0
10.学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了7 0米,此时张明的位置在()
A.在家
B.在学校
C.在书店
D.不在上述地方
二、认真填一填(本题共30分)
11.若上升15米记作+15米,则-8米表示。

12.举出一个既是负数又是整数的数。

13.计算:
①312+(-12)-(-13)+223
③(23-14-38+524)×48
14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。

15.绝对值大于1而不大于3的整数是。

16.最小的正整数是_____;最大的负整数是_____。

17.比较下面两个数的大小(用“<”,“>”,“=”)
(1)-3-2;(2)-0.4-0.3;
18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是。

19.相反数等于本身的数是______,绝对值等于本身的数是_______________。

20.观察下面一列数,根据规律写出横线上的数,
-;;-;;;;……;第2013个数是。

三、全面答一答(本题有5个小题,共4 0分)
21、(8分)把下列各数的序号填在相应的数集内:
①1②-2.6③+3.2④0⑤5.2⑥-6.5⑦+ 108⑧-4⑨-6.7。

.
(1)正整数集合{} (2)正分数集合{}
(3)负分数集合{}
(4)负数集合{}
22、(8分)求0,–2.5,3.5的相反数并把这些数及其相反数表示在数轴上;并按从大到小的顺序排列。

23计算:(6分)
(1)8.5-(-11.5)
(2)7+(-4)
24、(8分)云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为为正方向。

他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?
25、(10分)为参加2012年奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
①②③④⑤⑥
+3-2+4-6+1-3
(1)有几个篮球符合质量要求?
(2)其中质量最接近标准的是几号球?七年级第一学期数学第一单元参考答案一、仔细选一选:
1C2B3D4A5B
6C7A8D9A10B
二、仔细填一填:
11.下降8米
12.答案不唯一;
13.10;
14.,0.8;
15.±2,±3
16.1﹣1
17.<<
18.﹣1
19.0,零或正数,(非负数)
20.
三、全面答一答
21.(1)(①,⑦)
(2)(③,⑤)
(3)(②,⑥,⑨)
(4)(②,⑥,⑧,⑨)
22.解:0的相反数是0;﹣2.5的相反数是2.5;的相反数是﹣;(3分)
画数轴略(2分)
从大到小排列:,2.5,0,﹣2.5,﹣(3分)
23.(1)20,(2)3
24.①+15-25+20-40=-30(千米)答:在A 地西30千米处
②15+25+20+40=100(
千米)
因为这种汽车行驶100千米消耗的油量为8.9升,所以本次耗油为8.9升。

25.(1)①②③⑤⑥
(2)⑤。

相关文档
最新文档