楼宇自控系统技术方案(可做模板)
楼宇自动化控制系统技术方案
![楼宇自动化控制系统技术方案](https://img.taocdn.com/s3/m/53fd9e8f88eb172ded630b1c59eef8c75ebf9571.png)
楼宇自动化控制系统技术方案
摘要
本文研究了建筑物自动化控制系统(BACS)的技术方案,该方案提供了对建筑物自动化控制的一种开放的技术模型,其中包括建筑物自动化控制系统(BACS)的架构,控制网络的设计原理,建筑物自动化控制系统的安全技术,控制网络的物理层实现,以及控制网络的软件实现。
本文还研究了BACS中应用的可视化软件,可视化软件的用户界面及功能,以及软件管理的相关实施要求。
最后,本文提供了BACS系统的实施建议,以及未来BACS系统的发展趋势。
关键词:建筑物自动化控制系统(BACS),架构,控制网络,安全技术,软件实现,可视化软件
1引言
建筑物自动化控制系统(BACS)是现代建筑物自动化控制系统中最重要的技术之一,其可以有效的改善建筑物的生产管理效率,为建筑物提供先进的智能化管理系统。
BACS技术方案的构建是实现建筑物自动化控制的关键。
本文着重介绍BACS技术方案的设计原理、安全技术以及BACS系统的实施建议。
2BACS技术方案设计
2.1架构
建筑物自动化控制系统(BACS)的架构主要包括控制系统架构、数据控制系统架构、监控系统架构以及运行监测系统架构。
江森楼宇自控系统方案-样本
![江森楼宇自控系统方案-样本](https://img.taocdn.com/s3/m/fb1d9228c950ad02de80d4d8d15abe23492f034e.png)
目录第1章。
自控系统概述1第2章。
系统网络架构设计12。
1。
设计说明12。
2。
ULBA网络架构1第3章。
系统自控产品介绍23。
1.基于以太网的NAE23。
2.BAC NET现场控制器—FEC3第4章。
系统软件功能说明44。
1.MSEA楼宇自控管理系统44。
1.1。
分布式管理结构44.1。
2.标准的IT通信协议54.2.ADS数据管理服务器软件54。
3.ADS图形及组态54.3.1.图形显示54。
3.2.动态操作画面64。
3。
3。
多用户窗口显示64。
4。
ADS管理功能64。
4.1。
数据管理64。
4.2.管理警报和事件消息74.4.3。
趋势分析74.4。
4.汇总和报告74。
4.5。
设置时间表84.4。
6。
系统安全管理8第5章。
自控系统设计说明95.1.空调机组95。
1。
1.变风量空调机组95。
1。
2。
新风机组(MAU)115。
2.排风系统11楼宇自控系统技术方案第1章.自控系统概述UL项目楼宇自控管理系统设计成一套完整的分布式集散控制系统,它采用标准化局域网技术和众多子系统集成技术实施对楼内所有实时监控系统的集成监控、联动和管理,系统既可相对独立运转,又可联合成为一个有机整体,对不同工作站及现场控制器的控制权限的设定,由网络管理服务器完成。
第2章.系统网络架构设计2.1.设计说明我们在设计UL项目工程的BA系统的网络架构时,认真的研读了各类图纸与文件的需求,并对该项目的建筑布局及形态进行了仔细的研究,并对构成各个建筑单体的BA系统的现场层、管理层、传输层的数据量、传输速度、响应时间做了比较,最终确定了符合该项目要求的网络架构。
2.2.UL BA网络架构基于上面的一些比较与分析,同时考虑到UL工程从设计到实施到投入使用,尚需一定的周期,故我们考虑为项目保留足够的技术先进性、开放性和升级能力,因此建筑设备管理系统采用了江森公司最新的一代基于Web 技术的MSEA 系统架构,系统结构图见附件1(系统图)整个BA系统控制工厂内的各类机电设备,为了保证通讯的流畅性和安全性,在本系统中,共放置1个网络控制引擎NAE控制所有楼宇自控设备,然后通过以太网的形式进行相互之间的通讯.本项目的MSEA系统采用分布式集散控制方式,系统的网络结构分为两层:控制层、管理层.NAE与NAE之间的通讯层为管理层;NAE与FEC之间的通讯层为控制层.■ 管理层根据招标文件要求,本项目中的管理层须采用以太网通讯方式,为此我们选用了江森自控以太网通讯方式的NAE网络控制引擎,建立在10/100M以太网络上,采用星型连接方式,以综合布线为物理链路,通过标准TCP/IP通讯协议高速通讯,进行信息的交换处理。
楼宇自控系统技术方案
![楼宇自控系统技术方案](https://img.taocdn.com/s3/m/d2f4933c17fc700abb68a98271fe910ef02dae5c.png)
通过空调自控系统的智能化管理, 该项目有效降低了能源消耗,提高 了地铁站的舒适度和管理效率。
成都某医院病房楼暖通自控系统项目
项目介绍
成都某医院病房楼是集医疗、康复、 科研等多功能于一体的综合性医院, 暖通自控系统的应用对于提高医院的 环境品质和医疗服务质量具有重要作 用。
技术特点
该项目采用了先进的暖通自控系统, 实现了对医院病房楼的空调、通风、 新风等系统的实时监控、智能调节和 节能管理。
控制器技术
控制器类型
楼宇自控系统需要使用不同类 型的控制器,包括可编程逻辑 控制器(PLC)、分布式控制系 统(DCS)和现场总线控制系
统(FCS)等。
控制算法
控制器需要使用多种控制算法 ,包括PID控制、模糊控制和神 经网络控制等,以实现精准的
控制效果。
控制器网络通信
控制器需要支持多种网络通信 协议,包括Modbus、Profinet 和EtherNet/IP等,以满足楼宇
北京某商业综合体楼宇自控系统项目
项目介绍
北京某商业综合体项目是一个 集购物、娱乐、餐饮等多种功 能于一体的商业综合体,楼宇 自控系统的应用实现了对该综
合体的智能化管理。
技术特点
该项目采用了先进的楼宇自控 系统,实现了对综合体内的空 调、通风、照明、给排水等系 统的实时监控、优化控制和节
能管理。
实施效果
实施效果
通过暖通自控系统的智能化管理,该 项目有效降低了能源消耗,提高了医 院的环境品质和医疗服务质量,为患 者提供了更加舒适的康复环境。
THANKS
楼宇自控系统核心技术
传感器技术
传感器类型
楼宇自控系统需要使用多种传 感器,包括温度、湿度、压力 、液位等传感器,用于监测楼
楼宇自控方案范文
![楼宇自控方案范文](https://img.taocdn.com/s3/m/91bdcb6dae45b307e87101f69e3143323868f573.png)
楼宇自控方案范文楼宇自控方案是指通过应用先进的自动化技术和智能设备,对建筑物进行集中控制和管理的方案。
通过楼宇自控系统,可以实现对建筑物内的照明、空调、安防、能源管理等设备的集中控制和自动化管理,提高建筑物的舒适性、安全性和能源效益,降低运营成本。
一、方案背景目前,随着城市化进程的不断推进,建筑物数量不断增加,传统的手动管理方式已经不能满足对建筑物运行效率和能源消耗的要求。
而楼宇自控技术的应用,可以提升建筑物的自动化程度,减少人为操作,提高运行效率,并且可以实时监测和控制建筑物内各项设备,保障建筑物的安全和舒适。
二、方案内容1.楼宇智能化系统引入智能化系统,可以实现对建筑物内部各项设备的集中控制和管理。
通过建立楼宇自控中心,集中控制建筑物内的照明、空调、排风、供水、消防等设备的运行状态和参数。
并且可以通过智能感知技术实时监测建筑物内的各项数据,如温湿度、CO2浓度等,以及对建筑物内设备的故障进行检测和预警,提高设备的可靠性和安全性。
2.空调系统优化楼宇自控方案中的一个重要方面是对建筑物内的空调系统进行优化。
通过智能化控制,可以实现对空调系统的运行状态进行监测和控制,调整温度、湿度和风速等参数来满足不同的使用需求。
同时,可以通过智能感知技术实时检测和控制建筑物内的温湿度,实现自动化的节能调控,提高空调系统的效能和节能效果。
3.照明系统管理楼宇自控方案中的另一个重要方面是对建筑物内的照明系统进行管理。
通过智能化控制,可以实现对照明系统的运行状态进行监测和控制,根据不同的时间、区域和光照强度等因素来自动调节灯光亮度和色温,实现智能照明的效果。
同时,可以通过智能感知技术实时检测建筑物内的光照强度和人员流动情况,实现自动化的灯光调控,提高照明系统的效能和节能效果。
4.安防系统增强楼宇自控方案还可以增强建筑物的安全性。
通过智能化控制,可以实现对建筑物内的安防系统进行集中监控和管理,如视频监控、门禁控制、报警系统等。
楼宇自控系统施工方案
![楼宇自控系统施工方案](https://img.taocdn.com/s3/m/9706e5fd68dc5022aaea998fcc22bcd127ff4218.png)
楼宇自控系统1、楼宇自控系统设计总则(1)系统设计概述楼宇自控系统(Buildin Automation System,简称BAS )是智能建筑的一个重要的组成部分。
BAS是基于现代分布控制理论而设计的集散系统,通过网络系统将分布在各监控现场的系统控制器连接起来,共同完成集中操作,管理和分散控制的综合自动化系统。
BAS的目标就是对建筑内部的机电设备采用现代计算机技术进行全面有效的监控,以确保建筑物内舒适和安全的办公环境,同时实现高效节能的要求,并对特定事物作出适当反应。
通过BAS对机电设备的自动化监控和有效的管理,可以使温湿度控制达到最舒适的程度,同时以最低的能源和电力消耗来维持系统和设备的正常工作,以求取得最低的运作成本和最高的经济效益。
这极大的方便了设备的操作与维修,减少管理和维护人员。
取得节约能源和人力资源的良好效益。
为了真正实现设备的良好运转、大大地节省电能、保持良好的环境控制精度、降低设备管理及维护的成本,根据先进性和实用性相结合的原则。
该系统是目前世界上最先进、可靠性最高、性能价格比最高的BAS系统之一。
该系统不仅在图形控制、历史记录、动态绘图、事件安排、报警和远程访问等方面具有优越性,还在系统规模、网络支持、开放性及通讯速度等方面有了很大的提高。
(2)系统设计原则先进性:采用国际或国内通行的先进技术,适应时代发展需要;成熟性:以实用为原则采用成熟的经过工程验证的先进技术;开放性:采用开放的技术标准,避免系统互联或扩展的障碍;按需集成:根据本项目特点,按照需要分层次实现集成;标准化:采用标准化的设计和标准化的产品;可扩展性:本工程设计应考虑到未来发展,在预埋和线缆布设上留有余量。
安全性、可靠性:包括系统自身安全和信息传递的安全,以及运行的可靠性;设计、施工、运营与服务:强调以人为本的设计思想,为医院大楼提供安全、舒适、方便、快捷、高效、节约的医疗、工作环境,提高效率。
控制系统由三部分组成:上位机(PC)监控系统、通讯系统和下位机(PLC)自动控制系统。
楼宇自控系统技术方案
![楼宇自控系统技术方案](https://img.taocdn.com/s3/m/a8026855f4335a8102d276a20029bd64783e6231.png)
楼宇自控系统技术方案楼宇自控系统是一种先进的建筑自动化技术,旨在通过自动化和智能化控制系统来管理和监控整个楼宇内部的各种设施,如照明、暖通空调、电力、安防等,以提高效率、降低能耗、保障人员安全和舒适性。
以下为一些技术方案:1.控制系统架构楼宇自控系统的应用需求较高,其主要架构应包含客户端、服务端、系统接口和数据库。
客户端通过显示器对系统进行人机交互,服务端作为控制中心,通过各种传感器和执行器来控制和监控系统,系统接口用于与其他系统的数据交换,数据库用于存储和处理相关数据。
2.传感器和执行器传感器和执行器是楼宇自控系统的关键部件。
其目的在于将现场数据收集和控制信号传输到系统中。
传感器包括温度传感器、湿度传感器、光照度传感器、二氧化碳传感器等,执行器则包括调光器、控制器、阀门等。
3.智能控制算法楼宇自控系统需要采用智能控制算法,以满足不同控制目标的需求。
例如,需要根据时间、人员、气候等因素来控制照明、暖通、电力等设施的开启和关闭。
同时,系统还应支持个性化设置,允许用户根据需求自由设置控制规则。
4.平台适配性楼宇自控系统应具有较高的平台适配性,兼容不同的硬件和软件平台。
用户可以选择不同的设备来使用该系统,这包括PC、智能手机和平板电脑等。
同时,系统还应能够与其他建筑自动化系统兼容,以实现数据集成和协同操作。
5.网络通信能力楼宇自控系统必须具有良好的网络通信能力,以实现远程监控和控制。
用户可以通过手机或电脑等设备实现远程控制和监测,方便企业或个人进行管理。
系统应该支持TCP/IP、HTTP、HTTPS等常用协议。
6.安全性能对于自控系统来说,安全性也是非常重要的。
系统应该提供安全认证机制,以确保只有授权人员才能访问系统。
同时,系统还应该具有防御黑客攻击的能力,防止病毒和木马等恶意软件入侵。
系统数据应该进行密钥加密保护,确保数据的机密性、完整性和可用性。
总结:楼宇自控系统是一个极具实用性的实用技术,能够为企事业单位提高管理效率并降低成本。
楼宇自控系统施工方案(3篇)
![楼宇自控系统施工方案(3篇)](https://img.taocdn.com/s3/m/e336e21500f69e3143323968011ca300a6c3f6c4.png)
第1篇一、项目概述本项目为XX大厦楼宇自控系统施工项目,位于我国XX市XX区XX路XX号。
大厦占地面积约20000平方米,建筑高度约100米,共30层,其中地上28层,地下2层。
本项目楼宇自控系统主要包括建筑设备监控、能源管理、安全防范、信息管理等子系统。
二、施工准备1. 组织准备- 成立项目组,明确各成员职责,确保施工过程中责任到人。
- 对施工人员进行技术培训,确保其熟悉楼宇自控系统的工作原理和操作方法。
2. 技术准备- 深入了解大厦建筑结构和设备情况,编制详细的施工方案。
- 购置必要的施工设备和工具,如电线、电缆、传感器、控制器等。
3. 物资准备- 根据施工方案,列出所需材料清单,确保材料质量符合国家标准。
- 对材料进行验收,确保材料合格。
三、施工流程1. 现场勘查- 对大厦进行现场勘查,了解建筑结构、设备布局和安装环境。
- 根据勘查结果,对施工方案进行调整。
2. 设备安装- 根据施工方案,进行设备安装,包括传感器、控制器、执行器等。
- 确保设备安装牢固、准确,连接线路规范。
3. 线路敷设- 按照设计图纸,进行线路敷设,包括电源线、信号线、通信线等。
- 线路敷设要符合国家标准,确保安全可靠。
4. 系统调试- 对安装完成的设备进行调试,确保系统运行正常。
- 对系统进行功能测试,确保各项功能符合设计要求。
5. 系统联调- 将各个子系统进行联调,确保系统之间协调工作。
- 对系统进行整体测试,确保系统稳定可靠。
6. 系统验收- 按照国家标准和设计要求,对系统进行验收。
- 验收合格后,交付使用。
四、施工技术要求1. 设备安装- 设备安装位置要准确,确保设备正常运行。
- 设备安装牢固,防止因振动、位移等原因导致设备损坏。
2. 线路敷设- 线路敷设要符合国家标准,确保安全可靠。
- 线路连接要牢固,防止因松动等原因导致线路损坏。
3. 系统调试- 系统调试要全面,确保各项功能符合设计要求。
- 系统调试过程中,要注意观察设备运行状态,及时发现问题并解决。
楼宇自控系统技术方案
![楼宇自控系统技术方案](https://img.taocdn.com/s3/m/caf2f1c76c175f0e7dd13750.png)
技术方案目录目录 (2)第1章.楼宇自控系统(BA) (3)1.1.系统概述 (3)1.2.设计范围 (3)1.3.系统架构 (4)1.4.系统主要功能 (4)1.4.1.系统开放性要求 (4)1.4.2.通讯协议 (5)1.5.主要设备技术要求 (5)1.5.1.中央操作站 (5)1.5.2.应用软件 (5)1.5.3.网络控制器 (6)1.5.4.现场控制器(DDC) (7)1.5.5.I/O点位数量 (9)1.5.6.室内型CO变送器 (9)1.5.7.室内型CO2变送器 (9)1.5.8.室内型PM2.5变送器 (10)1.5.9.室内型温湿度变送器 (10)1.6.系统其他设备 (10)1.6.1.中央管理设备 (10)第1章.楼宇自控系统(BA)1.1.系统概述本项目楼宇自控系统(以下简称BAS),BAS系统网络构架采用二层总线网络结构。
网络控制器与中央操作站间通讯采用基于TCP/IP的Client/Server方式;DDC与网络控制器间通讯采用基于RS485技术的通讯方式,同时也支持BACNET协议,通过系统内部的BACNET网关方便地与其它系统集成。
地上和地下各采用两芯屏蔽做总线,DDC与DDC之间采用两芯屏蔽线路手拉手连接,同时可以兼容使用以太网与中央管理器,DDC拓展模块的通讯连接。
BAS的主要目的在于将本项目内的各种机电设备的信息进行分析、归类、处理、判断,采用集散型控制系统和最优化的控制手段对各系统设备在各自的地块内进行集中监控和管理。
1.2.设计范围本项目楼宇系统控制范围如下:1)地下室停车场送、排风风机:BA控制电机启停控制(DO),电机运行状态信号反馈(DI),电机故障信号(DI),手/自动状态信号(DI)。
2)地下室停车集水坑:BA控制电机启停控制(DO),电机运行状态信号反馈(DI),电机故障信号(DI),手/自动状态信号(DI),起泵水位(DI)、停泵水位(DI),溢流水位报警(DI)。
建筑楼宇自控系统方案
![建筑楼宇自控系统方案](https://img.taocdn.com/s3/m/ea63d4f91b37f111f18583d049649b6648d70901.png)
建筑楼宇自控系统方案建筑楼宇自控系统是一个集信息采集、自动控制、调度管理于一体的智能化系统,能够实现建筑物内部的照明、空调、供水、排水、通风等设备的自动控制,提高建筑物的能源利用效率,提供舒适的室内环境。
一、系统架构建筑楼宇自控系统一般由下列组成部分组成:1. 传感器:用于监测建筑内部的温度、湿度、光照、二氧化碳浓度等信息。
2. 执行器:控制建筑内设备的开关、调速、阀门等操作。
3. 数据采集和控制单元:用于处理传感器采集到的数据,并发送控制信号给执行器进行操作。
4. 控制中心系统:用于设置和调整建筑楼宇自控系统的参数和策略,实现远程监控和管理。
二、功能特点1. 能耗监测与优化:建筑楼宇自控系统能够根据传感器采集到的数据,实时监测建筑内部的能耗情况,并根据需求进行调整和优化,以达到节能减排的目的。
2. 室内环境控制:通过监测室内温度、湿度等信息,自动调节空调、通风、采光等设备的工作状态,提供舒适的室内环境。
3. 安全监测与报警:建筑楼宇自控系统能够监测火灾、煤气泄漏等安全风险,并在发生异常情况时及时发出报警信号。
4. 远程监控和管理:通过控制中心系统,用户可以随时随地通过手机或电脑远程监控和管理建筑楼宇自控系统,实现设备的状态查询、参数调整等功能。
三、实施步骤1. 系统需求分析:根据建筑的功能和使用需求,明确自控系统的功能和性能指标。
2. 传感器和执行器的选择和布局:根据需求分析,选择合适的传感器和执行器,并合理布局在建筑内部。
3. 数据采集和控制单元的设置:配置适合的数据采集和控制单元,负责数据的采集和处理,并根据需求发送相应的控制信号。
4. 控制中心系统的建设:搭建控制中心系统,提供用户界面和远程管理功能。
5. 系统的调试和优化:完成系统的搭建后,进行调试和优化,确保系统的稳定和可靠性。
6. 系统的运维和管理:建立完善的运维和管理机制,定期维护和巡检系统,保证系统的正常运行。
四、应用前景建筑楼宇自控系统可以广泛应用于各类建筑物,包括商业建筑、办公楼、住宅等,特别是大型建筑物,其效果更为显著。
楼宇自动化控制系统技术方案
![楼宇自动化控制系统技术方案](https://img.taocdn.com/s3/m/ea965c0666ec102de2bd960590c69ec3d5bbdbac.png)
楼宇自动化控制系统技术方案随着现代科技的不断发展,楼宇自动化控制系统已经成为一种普遍的应用模式。
楼宇自动化控制系统的用途非常广泛,从建筑结构到基础设施,再到设备的监测,控制和管理,都需要楼宇自动化控制系统来完成。
以下是一份楼宇自动化控制系统技术方案,包含了方案的实施过程、系统的功能和技术特点等方面。
一、系统的实施过程楼宇自动化控制系统的实施过程需要经过以下步骤:1. 系统的需求分析首先需要对楼宇自动化控制系统的需求进行分析,确定系统要实现的主要功能。
2. 系统架构设计在需求分析的基础上,对系统的整体架构进行设计,包括硬件和软件部分。
3. 选择硬件设备根据系统的要求和架构设计,选择合适的硬件设备,例如传感器、控制器、执行器、通信设备等等。
4. 软件开发根据系统架构设计,进行软件的开发,主要包括设备控制和监测程序的编写和调试。
5. 系统集成和调试在硬件设备和软件程序完成后进行系统集成和调试,测试系统的各个功能和性能。
6. 系统上线运行确认系统集成和调试合格后,将系统投入使用,进行运行和维护。
以上是楼宇自动化控制系统实施的基本过程。
二、系统的功能楼宇自动化控制系统的功能包括:1. 设备状态监测和控制该功能通过传感器对楼宇设备的监测来完成,例如温度、湿度、气体浓度等等。
当设备发生异常或超出预设范围时,系统可以发出警报或采取自动控制措施。
2. 环境自动控制该功能通过控制系统对楼宇内部环境的自动控制来完成,例如照明、通风、空调等等。
根据楼宇内部的环境需求和外部气候变化,系统可以自动控制其内部环境。
3. 安全监测该功能通过楼宇内部布置的视频监控和入侵防范系统,实现对楼宇内部的安全监测。
如果有异常事件发生,系统可以及时发出报警并采取相应措施。
4. 能源节约该功能主要通过对楼宇内部设备的控制来实现。
在系统的控制下,设备可以自动调节以达到最佳的工作状态,从而降低楼宇的能耗。
5. 设备维护管理楼宇自动化控制系统可以通过实时监测设备的运行状态,及时反馈设备工作情况和运行效果,发现问题能够及时解决,从而减少设备的维护和保养工作。
楼宇自控系统方案
![楼宇自控系统方案](https://img.taocdn.com/s3/m/b66f5075443610661ed9ad51f01dc281e53a56f9.png)
第1篇
楼城市化进程加快,楼宇作为现代城市的核心构成单元,其智能化、自动化水平日益被重视。为提高楼宇的管理效率,降低能耗,保障楼宇安全与舒适,构建一套高效、稳定、可靠的楼宇自控系统成为迫切需求。
二、项目目标
1.提高楼宇能源管理水平,实现节能减排。
三、系统架构
楼宇自控系统采用分层设计,包括以下四个层次:
1.设备层:包括各种传感器、执行器、现场控制器等,负责实时数据采集与设备控制。
2.网络层:构建以局域网为主的通信网络,确保数据的高速传输与信息安全。
3.控制层:部署中央控制单元,对设备层的数据进行处理,实现设备控制策略的执行。
4.管理层:通过用户界面,提供系统监控、数据分析、历史记录查询等功能。
2.提升楼宇设备运行效率,降低运维成本。
3.保障楼宇安全与舒适,提高用户体验。
4.实现对楼宇设备的远程监控与智能控制。
三、系统设计
1.系统架构
系统采用分层分布式架构,包括感知层、传输层、平台层和应用层。
-感知层:负责采集楼宇内各种设备的数据,如温度、湿度、能耗等。
-传输层:通过有线和无线网络,将感知层采集的数据传输至平台层。
2.传输设备:根据楼宇实际情况,选择合适的网络设备,如交换机、路由器等。
3.平台设备:选用高性能、可扩展的服务器,满足数据处理需求。
4.应用设备:用户终端设备,如电脑、手机等。
五、实施与验收
1.项目实施
-前期准备:进行现场勘查,了解楼宇现状,明确需求。
-设备安装:按照设计方案,安装感知设备、传输设备等。
六、实施计划
1.前期准备:进行现场调研,明确设计要求和预算,制定详细的施工方案。
2.设备安装:按照设计方案,进行设备安装,确保安装质量。
楼宇自控系统方案
![楼宇自控系统方案](https://img.taocdn.com/s3/m/64a5c16ebc64783e0912a21614791711cc79791f.png)
楼宇自控系统方案随着科技的发展和人们对舒适、高效的需求增加,楼宇自控系统以其智能化、自动化的特点被广泛应用于商业楼宇、办公楼宇、公共建筑等各种场所。
本文将针对楼宇自控系统的功能、安装要求、优势以及未来趋势等方面进行探讨。
一、功能楼宇自控系统是通过集成建筑自动化、信息技术、通信技术等多种技术手段,实现楼宇内部能源管理、安全监控、设备运行控制等多项功能的系统。
主要功能包括:1. 温度调节控制:根据室内外温度的变化,调节空调、供暖系统工作状态,确保室内温度在舒适范围内;2. 照明控制:根据楼宇使用情况和光线强度,实现灯光的自动开关和亮度调节,提高照明系统的能效;3. 通风与空气品质控制:通过监测室内二氧化碳浓度、湿度等参数,控制通风系统运行,保证室内空气质量;4. 安全监控:通过安装摄像头、烟雾报警器等设备,实现对楼宇安全状态的实时监测,减少安全隐患;5. 能耗监测与管理:通过对各个设备的电能消耗进行监测和分析,实现楼宇能耗的精细化管理。
二、安装要求楼宇自控系统的安装要求包括硬件设备的选取、网络布线、系统集成等方面。
1. 硬件设备选取:根据楼宇规模、功能需求等因素,选择适合的温度传感器、照明控制器、空气品质监测仪等设备,并确保其性能稳定可靠;2. 网络布线:为了实现各个设备之间的数据传输,需要进行网络布线,包括传感器与控制器的连接、控制器与集成系统的连接等;3. 系统集成:将各个功能模块进行集成,确保不同设备之间的数据交流和协同工作,实现整体系统的一体化管理。
三、优势楼宇自控系统相比传统的人工控制方式具有诸多优势,主要包括以下几点:1. 节能环保:通过智能化的能源管理和设备控制,能够实现楼宇能耗的优化,减少能源浪费,降低对环境的影响;2. 提高舒适度:根据室内外环境的变化自动调节温度、湿度、照明等因素,提供更加舒适的工作和生活环境;3. 提升安全性:通过实时监控楼宇安全状态,及时发现和处理安全隐患,提升楼宇的安全性;4. 管理便捷:通过集成化的系统管理,可以对楼宇设备进行远程监控和控制,方便管理人员进行维护和操作。
(完整版)楼宇自控技术方案-江森自控
![(完整版)楼宇自控技术方案-江森自控](https://img.taocdn.com/s3/m/afaeebdae45c3b3566ec8b54.png)
建筑设备管理系统1.1系统概述在提倡建设节约型社会的今天,本项目作为酒店项目,能源与设施的管理工作尤为重要,无论对自身运营还是社会效益都有着重大的意义。
在这样规模的建筑中,需要大量的机电设施协同运转才能为建筑物内的工作人员提供舒适的空间环境,这也是我们楼宇自控系统的建设目标。
另外,为实现整个建筑设施管理的现代化,和最佳的节能需求,我方在设计楼宇自控系统时,充分考虑了全年不间断地运行需求、电磁环境的影响、山东地区气候等特点,以及系统兼容性等问题。
系统工程的设计和实施,以长期的经营需求为主,充分满足遵循国内国外的相关规范与标准。
1.1.1BA系统的必要性1)智能建筑能耗分析2)系统功能■ 实现楼宇内各机电设备的自动控制-由于负载的变化,是随人员多少、设备开关、室外冷热程度及时段特性而异,人工管理无法适应如此及时、繁琐的调整,而自动控制系统可自动完成;■ 降低大厦的运营成本、能源成本-降低大厦的运行费用,可节约电费30%左右;■ 延长机电设备的使用寿命,提高大楼安全性-延长设备的使用寿命20%;■ 控制大楼内空气温湿度,达到需要的、适宜的办公、餐饮、休闲环境;■ 减少设备维护、维修费用及管理人员的开支。
1.1.2产品选择我们本着确保系统整体的安全性和可靠性,并在一定时期内保持技术的先进性,认真的研读了各类图纸与文件的需求,并对该项目的建筑布局及形态进行了仔细的研究,最终选用了江森自控的系统架构。
1)江森自控■ 是一线产品,80~90%的项目都会选择一线品牌;■ 产品稳定,调试风险小;■ 产品寿命长;■ 产品体系全,可以提供全套产品,没有兼容性风险;■ 江森是世界上唯一一家同时生产暖通空调设备和楼宇自控设备的生产厂家,因此江森自控对新风机组及空调机组的控制原理和方法具有针对性,对于空调设备与楼宇自控设备的融合控制优于其他厂家,其控制理念和逻辑算法代表了世界最前沿的技术。
2)系统特点■ 先进性:全新的概念、全新的技术、全新的系统;■ 开放性:开放式网络、开放式协议、开放式用户界面;■ 兼容性:兼容多种通信标准及机电厂商设备;■ 经济性:易于施工、安装、操作和维护;■ 灵活性:易于扩展、升级、改造;■ 可靠性:安全、稳定,并已在全球范围成功应用。
楼宇自控系统施工方案
![楼宇自控系统施工方案](https://img.taocdn.com/s3/m/fa4db056a55177232f60ddccda38376baf1fe0f7.png)
楼宇自控系统施工方案1. 引言楼宇自控系统是一种通过电子设备和网络技术对楼宇内的各种设备进行集中管理和控制的系统。
它可以实现对楼宇内的照明、空调、安防等设施的智能化控制,提高楼宇的舒适性、安全性和节能性。
本文档旨在描述楼宇自控系统的施工方案,包括硬件设备的选择、系统结构的设计、安装和调试流程等。
2. 系统设计2.1 系统架构楼宇自控系统由以下主要组成部分构成:•传感器和执行器:包括温度传感器、湿度传感器、照明感应器、空调控制器等;•控制中心:负责接收传感器的数据、控制执行器的动作,并进行逻辑处理;•用户界面:提供给用户进行系统操作和监控的界面,可以是触摸屏、手机应用等;•通信网络:用于传输数据和控制指令的网络,如以太网、无线网络等。
2.2 系统功能楼宇自控系统的主要功能包括:•照明控制:根据光线感应器的数据来自动调节灯光的亮度;•空调控制:根据温度传感器的数据来自动调节空调的温度和风速;•安防监控:通过摄像头等设备对楼宇进行监控,并提供报警和录像功能;•能耗监控:实时监测楼宇内各种设备的能耗情况,并提供数据统计和分析功能。
2.3 系统硬件选择在选择硬件设备时,需要根据具体的楼宇需求和预算考虑以下因素:•设备的可靠性和性能:选择具有稳定性和可靠性的设备,保证系统长期稳定运行;•设备的兼容性:确保选购的设备与系统的其他组件能够相互配合;•设备的扩展性:根据楼宇的未来发展需求,选择支持扩展的设备,方便后续系统升级;•设备的能耗:选择低能耗的设备,以提高系统的节能性。
3. 施工流程3.1 系统安装1.确定设备安装位置:根据楼宇的结构和功能需求,确定传感器和执行器的安装位置,并进行标记。
2.安装传感器和执行器:根据设备的安装位置,进行固定和连接工作,确保设备安装牢固并能够正常运行。
3.安装控制中心和用户界面:根据设备的布局要求,将控制中心和用户界面安装到合适的位置。
3.2 系统调试1.连接设备与控制中心:通过网络连接将传感器和执行器与控制中心进行连接,确保数据和指令的正常传输。
楼宇自控方案
![楼宇自控方案](https://img.taocdn.com/s3/m/6b4a72caa1116c175f0e7cd184254b35eefd1a89.png)
楼宇自控方案尊敬的业主们:为了提升楼宇管理的效率和品质,我们近期推出了新的楼宇自控方案。
本方案旨在通过引入先进的技术和智能系统,实现对楼宇设备和系统的监控与控制,提供更加便捷、高效的管理方式。
以下是本方案的介绍和应用场景。
一、方案介绍1. 智能监测系统为了实现对楼宇设备和系统的精确监测,我们将引入智能传感器和监控系统。
这些传感器将会安装在关键位置,以收集有关楼宇温度、湿度、照明、空气质量等方面的数据。
监控系统将会自动化地分析这些数据,并提供实时的报告和警报信息,以帮助管理人员及时采取行动。
2. 智能控制系统通过安装智能控制设备,我们将实现对楼宇设备和系统的远程控制。
管理人员可以通过手机应用或网络平台,随时随地对楼宇的照明、空调、供水等设备进行监控和调节。
此外,智能控制系统还可以根据预设的规则和时间表,自动调整相关设备的运行状态,提高能源利用效率和用户舒适度。
3. 数据分析和优化通过对监测数据进行长期的分析和比对,我们将得出关于楼宇设备和系统规律性变化的结论。
基于这些结论,我们可以提出相应的优化建议,以改进设备和系统的运行效率,并延长其使用寿命。
此外,数据分析还可以帮助管理人员更好地了解楼宇的使用情况,为后续的设施规划和改进提供有力的支持。
二、应用场景1. 办公楼智能监测系统和智能控制系统可以为办公楼提供全方位的管理和优化方案。
通过监测空调、照明等设备的能耗和使用情况,管理人员可以及时发现和解决潜在的问题,降低能源消耗和运营成本。
同时,智能控制系统也可以根据楼内人流和工作时间的变化,自动调整设备的运行状态,提供舒适的办公环境。
2. 商业综合体商业综合体通常包含了许多不同类型的商业设施,如商场、酒店、剧院等。
通过引入楼宇自控方案,管理人员可以实现对这些设施的集中化监控和控制。
他们可以通过一个统一的系统,了解各个设施的运行状况,并及时响应突发事件和用户需求。
此外,智能控制系统还可以根据不同设施的使用情况,分别制定适合的运行模式,提高设施的管理效率。
楼宇自控系统技术方案
![楼宇自控系统技术方案](https://img.taocdn.com/s3/m/a0a4b403842458fb770bf78a6529647d272834ec.png)
楼宇自控系统技术方案一、方案背景随着人们对生活品质的要求越来越高,楼宇的自动化和智能化需求也日益增长。
楼宇自控系统以其智能化、自动化和集成化等特点,成为提高楼宇管理效率、节能减排和提升居住、办公环境质量的重要手段。
本方案旨在通过对楼宇自控系统的设计和实施,满足楼宇管理和居住者的需求,提高楼宇的舒适度和工作效率。
二、方案内容1.系统设计硬件方面,系统将安装各种传感器和执行器,用于实时监控和控制楼宇的各项设备和环境参数。
常见的传感器包括温湿度传感器、烟雾传感器、光照传感器和CO2传感器等。
执行器包括灯光控制器、风机控制器、空调控制器等。
这些传感器和执行器将通过有线或无线网络与中央控制器连接,实现数据的采集和指令的传递。
软件方面,系统将由中央控制器和远程监控平台组成。
中央控制器负责接收传感器数据并根据预设的逻辑和算法进行控制指令的生成和传递。
远程监控平台则提供对楼宇自控系统的远程监控和管理功能,包括实时数据展示、能耗分析、故障诊断和报警等。
2.功能特点(1)温度和湿度调控:系统通过温湿度传感器实时监测楼宇的温湿度情况,并根据预设的温湿度范围调控空调、风机等设备工作,以提供舒适的室内环境。
(2)照明控制:系统通过光照传感器实时监测楼宇的照明情况,并根据楼宇内的人员活动情况和光照需求,自动调节灯光的亮度和开关。
(3)通风控制:系统通过CO2传感器实时监测楼宇内的二氧化碳浓度,并根据预设的CO2范围自动控制新风系统和风机的工作。
(4)智能安防:系统通过烟雾传感器实时监测楼宇内的烟雾情况,并在发生烟雾报警时自动联动排烟系统等安防设备。
(5)能耗分析与优化:系统通过对温湿度、照明、通风等数据的采集和分析,提供楼宇能耗的实时监测和分析,帮助楼宇管理者识别能耗高峰和低谷,优化能源使用,降低能耗成本。
三、实施计划1.系统规划和设计:在方案确定后,首先进行楼宇自控系统的规划和设计工作,包括确定所需的传感器和执行器种类和数量、确定网络和数据传输方案等。
楼宇自控系统技术方案
![楼宇自控系统技术方案](https://img.taocdn.com/s3/m/f67c0997ac51f01dc281e53a580216fc700a5339.png)
汇报人:日期:contents •楼宇自控系统概述•系统设计方案•系统关键技术•系统实施与运行•应用案例与效果分析•技术挑战与发展趋势目录楼宇自控系统概述定义:楼宇自控系统,也称为建筑设备自动化系统(Building Automation System,简称BAS),是对建筑物内各类机电设备进行自动化监控及管理的综合系统。
功能•监控和管理建筑物的机电设备,如空调系统、照明系统、电梯、安防等。
•实时监测设备的运行状态,以确保其正常运行,减少故障。
•通过数据收集和分析,实现能源的有效管理,降低建筑能耗。
010*******系统定义与功能随着城市化进程的加速,高楼大厦不断崛起,对楼宇管理提出了更高要求。
城市发展技术进步节能与环保随着计算机、通信、自动控制等技术的发展,楼宇自控系统的实现成为可能。
在全球节能减碳背景下,楼宇自控系统作为实现建筑节能的重要手段,其应用逐渐普及。
030201系统应用背景提高设备效率:通过对设备的实时监控,可以及时发现并解决问题,提高设备运行效率。
节能降耗:系统可以根据实际需求调整设备运行状态,避免不必要的能源浪费。
提升建筑安全性:楼宇自控系统通常集成安防功能,能够提升建筑的整体安全性。
便于管理:通过中央化管理,减少人工巡检的工作量,提高管理效率。
综上所述,楼宇自控系统在现代化建筑中发挥着举足轻重的作用,它不仅确保了建筑设备的正常运行,还有助于节能减排,提高建筑的整体安全性和管理效率。
系统优势与重要性系统设计方案采用中央控制器对楼宇内的各个设备进行统一管理和控制,实现集中式的监控和管理。
集中式架构通过多个分布式控制器对楼宇内的设备进行管理,提高系统的可扩展性和可靠性。
分布式架构系统采用模块化设计,方便系统的扩展和升级。
模块化设计系统整体架构控制器传感器执行器通信模块01020304选用高性能、低功耗的控制器,保障系统的稳定性和可靠性。
采用高精度、高稳定性的传感器,对楼宇内的环境参数进行实时监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
楼宇自控系统技术方案前言:楼宇自控系统技术方案很多朋友不知道怎么做?薛哥整理了一篇分享给大家,收藏做标准模板也可以。
正文:概述本方案针对楼宇自控系统(BAS)而进行设计,根据该项目的特点,我们将利用BAS系统对建筑物内的公共照明、空调系统、供暖通风、给水排水系统等实行全时间的控制和管理,系统收集、记录、保存有关系统的重要信息及数据,作到一体化管理,达到提高运行效率、保证办公环境需要、节省能源、节省人力的效果,最大限度安全延长设备寿命的目的。
1、设计依据提供一些标准和规范以及招标文件提供的相关资料及技术文件;2、需求分析楼宇自控系统的主要任务是对大厦内的机电设备进行监控和管理。
要想管理好大厦内的机电设备,首先必须要知晓它们的运行情况、所处系统中担任的角色以及设备的特性等。
楼宇自控系统(BAS)是建立在机电系统的基础上,利用自控技术、计算机软件技术、计算机网络通信技术,将大厦中的不同机电系统设备产生的信息汇集起来,实现各类设备之间的数据、信息交换,并对各种不同类型的信息进行综合处理,以实现对所有被监控机电设备的综合管理。
等现代城市综合体本案需要楼宇自控系统(BAS)监控内容具体描述如下:空调及动力设备(通过DDC接入BAS)送/排风机系统新风系统排风排烟给排水系统(通过DDC及接入BAS)集水井排水泵公共照明(通过DDC接入BAS)公共照明3、BAS系统监控内容根据项目要求,本项目楼宇自控系统监控的机电设备包括:公共照明、空调系统、供暖通风、给水排水系统。
根据某大厦内各类功能建筑的以上各系统设置情况不同,建筑设备监控系统的设置范围及监控内容如下:3.1 新风机控制监控内容控制方法启停控制空调可以通过BAS系统自动控制启动停止,也可以在现场手动控制;具有定时启停功能,可以根据预定的时间表启停设备;具有联锁功能,送风机启动前,风阀全开,送风机启动后,温度、流量控制回路使能,送风机停止后,风阀关闭,水阀关闭;支持消防联动,接受消防强制信号控制送风机以及风阀。
根据消防系统提供的情况实现。
温度监控监测送风、回风的温度,并根据预定的高低限值判断,超限则输出报警信息;我们使用串级控制回路对回风温度进行控制。
其内环控制通过PID控制送风温度。
送风温度的设定值可以通过操作员手动或BMS自动进行重设。
这就是外环控制(设定值重设回路)。
当回风温度超出其上限并维持预设的时间死区,则送风温度设定值将自动较少一个偏移量。
当回风温度低于其下限并维持预设的时间死区,则送风温度设定值将自动增加一个偏移量。
风阀控制风阀执行器为模拟量控制,通过BAS可控制风阀执行器的任意开度。
压差状态监控在过滤器前后设置压差开关,监测过滤器的堵塞情况,输出报警信号;报警故障处理监测送风机的故障报警状态、风机压差状态和过滤器的压差报警状态,一旦检测报警状态,空调机停机,按关机步骤执行。
软件控制模式控制软件对送风机的启停提供一个延迟开启的功能,用以保护设备在开启过渡情况下可能造成的损坏;提供时间表控制功能,空调机组可按日夜模式、节假日模式和定制时间模式启停使用。
根据招标文件要求,本项目中空调机的控制内容如下:风阀控制压差状态监控3.2、送风、排风系统3.2.1风机开关控制风机的开关控制主要是通过BA系统预设的时间表来进行启停控制的。
在一些特别的情况,如加班情况,风机有需要在预先设定时间表之外的时间启动,用户可选择在BAS操作站上操作启/停风机。
BA系统允许用户自行设定风机状态与控制之间的联锁监察功能。
在设定此功能后,BA 系统会自动监测风机的状态是否与控制要求一致,如果不一致,则说明此控制点的设备有故障,BA 系统会以报警形式在操作站上显示,以提醒操作人员做出相应的处理。
另外,BA 系统会将有关的事项一一记录,以作日后检查之用. 还有,BA 系统允许用户自行设定测量设备的累积运行时间,以便维修人员在设备运行至一定时间后, 进行维修工作。
3.2.2风机运行状态BA 系统通过风机主接触器测量风机的实际状态,以便操作人员实时了解风机的运行状态。
3.2.3运行时间累计BA系统利用软件统计记时功能,可以实时的累计风机的运行时间,并记录显示。
3.2.4风机报警监测DDC控制器会检测风机热继电器跳闸报警。
在有报警时,停下风机并报警形式在操作站上显示,以提醒操作人员安排有关人员做检修工作。
而BA 系统也会将有关的事项一一记录,以作日后检查之用。
3.3、给排水系统某大厦给排水系统主要由排污泵、集水坑、空调补水泵等组成。
3.3.1系统设计内容监控设备设计内容硬件配置软件设置集水坑高、低水位监测。
高、低水位监测(DI)。
设置设备联动参数。
排水泵、空调补水泵启停、运行状态、故障报警、手自动状态。
启停(DO)、运行状态、故障报警、手自动状态(DI)。
累计运行时间。
3.3.2系统设计要点(1)DDC参数采集监测监测集水坑的高液位超限时报警;监测潜水排水泵的运行状态和故障状态并可按照设备的累积运行时间,实现设备的轮流运行,提高设备的使用寿命;监测空调补水泵的运行状态和故障状态并可按照设备的累积运行时间,实现设备的轮流运行,提高设备的使用寿命;(2)软件控制功能监测集水井的高、低液位报警状况,并生成动态趋势图;累计有关设备运行时间;监测和记录有关水箱、水池的液位报警情况,并生成动态趋势图;中央管理站软件功能;三维图象显示每台机组及水泵的系统图;打印有关报警信号;3.4照明系统监控内容控制方法开关控制DDC输出DO接点控制辅助继电器,实现远程启停。
定时/特种效果控制于预定时间启停照明回路,通过软件实现逻辑控制运行时间统计软件实现对照明时间进行累计3.5节能措施本设计在不影响舒适性的前提下,通过对冷冻水温度的最佳设定值及实际冷负荷计算,对空调系统进行优化启停控制,以缩短设备的运行时间,从而达到节能目的,具体节能措施如下:1) 冷冻水温度设定系统节能程序根据不同季节及每天室外温度的变化情况,自动调节冷冻水的出水温度,对系统进行动态控制。
2) 空调场所温度设定对于办公建筑,在大厅、走道等公共区域,适当提高设定温度可减少能耗。
如办公区温度设定在25℃左右,在室内外过渡的前厅,若同样设于25℃左右,则与室外温差过大,人一进门会感觉不适,可设定在28℃~30℃,比室外低(4~5)℃;走道可设定在27℃~28℃;这样逐渐过渡到办公区域,不但人体感觉舒适,还可有效地减少不必要的能耗。
3)克服设备容量冗余传统的空调设计,由于季节变化和人员、设备发热量等变数太多,难以精确的计算出空调系统的负荷需求,因此设计中会有一定的设备容量冗余,用人工简单的启停制势必造成能源的浪费。
运用BA系统的节能控制算法和群控模式,根据末端实际所需冷负荷,动态调整设备运行时间和投入台数,保证冷量供求平衡,让冷源设备运行在最高效率特性上,避免大马拉小车,有效克服由于设备容量冗余而造成的能源浪费。
4)新风控制根据季节变化,合理地进行新风控制是节能的另一个措施。
以XXX地区为例,在设计工况(夏季室温26℃,相对湿度60%;冬季室温22℃,相对湿度55%)下,处理一公斤室外新风量需冷量6.5Kw,热量12.7Kw,故在满足室内空气卫生的前提下,减少新风量,有显著的节能效果。
新风量控制的措施有以下几种方法:o 在夏季午夜室外温度最低时,开启新风机,将室外低温空气充盈室内,然后关闭风门,从而减少第二天上班前空调系统的预冷时间。
o 根据室内人员变动规律,采用统计学的方法,建立新风机启停控制模型,以减少新风机的开启时间和冷负荷损失,如在午餐时间室内人员较少时,可减少新风机的开启台数。
o 在过渡性季节,尽量使用室外新风,以减少冷负荷损失。
5)提高室内温湿度控制精度大厦内温湿度的变化与大厦节能有着紧密的关系,根据美国国家统计资料,如果在夏季将温度设定值下调10℃,将增加9%的能耗,因此将大厦内温湿度控制在设定值精度范围内是大厦空调节能的又一个有效措施。
4、系统设计本项目采用XXXBAS系统XX系列来实现楼宇自控相应功能。
该系统是目前世界上最为先进的高效能、集成化的BMS系统,该系统根据需要可将大楼的楼宇控制系统、动力监控、消防报警系统及安保自动化系统集成在某系统平台上,并适用于大楼的建筑特点及先进的控制和管理要求,包括选用最先进的LonWorks技术的数字控制器,以及与其他供应商系统及OA系统的开放性接口。
系统设计以满足工程的要求、采用最先进的技术和系统、根据招标文件的要求,以最高价格性能比为原则,采用优化的设备配置、运行方案及管理方式,为大楼提供高效率的系统管理,为大楼的机电设备提供良好的运行环境,为大楼提供舒适的工作及生活环境。
某大厦楼宇自控BAS系统共有2000个左右物理点。
在设计本监控方案时,我司亦根据以上的原则,对控制器及其控制模块进行了合理安排,并对系统留有足够的系统扩充容量,使控制器保持冗余的可扩充性。
4.1设计思路该项目设置一套某系统BAS管理软件,并与31个网络控制器进行连接,直接接入某大厦的局域网。
网络控制器将LonWorks总线中的数据通过IP网络进行传输,将236个台LonWorks扩展模块连接起来。
此外,控制器控制器是一个多协议集成平台,支持包括Modbus, LonWorks等在内的多种协议。
某系统可以灵活地以多种方式实现系统集成,既可直接与现场控制器互连,也可以通过以太网接入系统。
使用这套BAS系统即可方便完成楼宇的设备管理作业的全部工作,给用户提供舒适、安全的环境,在满足用户的各种使用要求的同时,亦能够最大限度节省能量消耗,从而更好地发挥建筑物的潜能。
4.2通讯网络本BAS系统为分布式智能系统(DISTRIBUTED INTELLIGENCE SYSTEM),其网络结构分为三层:网络管理层、自动控制层和现场控制层。
管理层为IP控制器,采用TCP/IP通讯协议;自动控制层为数字控制器(DDC),采用LonTalk标准通讯协议与数字控制器之间的通信。
在Xenta701网络控制器失效时,各现场数字控制器的DDC均能独自继续其正常运行。
现场控制层是各种传感器、执行器,接入DDC中,实现信号采集与实时控制。
a.以太网(TCP/IP):国家标准推荐用总线拓扑结构的以太网作为局域网的干线,以实现网络资源的共享。
b.现场总线:由双绞线连接各分站与中央控制室,组成的区域网络,构成分站总线,以数字形式进行传输,通信协议采用标准LonTalk总线形式。
BAS系统的设计/结构符合以下技术规格要求:DDC至DDC之间的通讯通讯速率为78.6Kbps。
IP设备至各DDC之间的通讯速率为78.6Kbps。
IP设备之间通讯为10Mbps。
IP设备和工作站之间的通讯在同一个层面上为10Mbps。