支持向量机原理及应用(DOC)
(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例

支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法2)关于KKT条件2、范数1)向量的范数2)矩阵的范数3)L0、L1与L2范数、核范数二、SVM概述1、简介2、SVM算法原理1)线性支持向量机2)非线性支持向量机二、SVR:SVM的改进、解决回归拟合问题三、多分类的SVM1. one-against-all2. one-against-one四、QP(二次规划)求解五、SVM的MATLAB实现:Libsvm1、Libsvm工具箱使用说明2、重要函数:3、示例支持向量机(SVM):原理及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方,必然是一个组合优化问题。
那么带约束的优化问题很好说,就比如说下面这个:这是一个带等式约束的优化问题,有目标值,有约束条件。
那么你可以想想,假设没有约束条件这个问题是怎么求解的呢?是不是直接 f 对各个 x 求导等于 0,解 x 就可以了,可以看到没有约束的话,求导为0,那么各个x均为0吧,这样f=0了,最小。
但是x都为0不满足约束条件呀,那么问题就来了。
有了约束不能直接求导,那么如果把约束去掉不就可以了吗?怎么去掉呢?这才需要拉格朗日方法。
既然是等式约束,那么我们把这个约束乘一个系数加到目标函数中去,这样就相当于既考虑了原目标函数,也考虑了约束条件。
现在这个优化目标函数就没有约束条件了吧,既然如此,求法就简单了,分别对x求导等于0,如下:把它在带到约束条件中去,可以看到,2个变量两个等式,可以求解,最终可以得到,这样再带回去求x就可以了。
那么一个带等式约束的优化问题就通过拉格朗日乘子法完美的解决了。
更高一层的,带有不等式的约束问题怎么办?那么就需要用更一般化的拉格朗日乘子法,即KKT条件,来解决这种问题了。
支持向量机简介与基本原理

支持向量机简介与基本原理支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,被广泛应用于模式识别、数据分类以及回归分析等领域。
其独特的优势在于可以有效地处理高维数据和非线性问题。
本文将介绍支持向量机的基本原理和应用。
一、支持向量机的基本原理支持向量机的基本思想是通过寻找一个最优超平面,将不同类别的数据点分隔开来。
这个超平面可以是线性的,也可以是非线性的。
在寻找最优超平面的过程中,支持向量机依赖于一些特殊的数据点,称为支持向量。
支持向量是离超平面最近的数据点,它们对于确定超平面的位置和方向起着决定性的作用。
支持向量机的目标是找到一个超平面,使得离它最近的支持向量到该超平面的距离最大化。
这个距离被称为间隔(margin),最大化间隔可以使得分类器更具鲁棒性,对新的未知数据具有更好的泛化能力。
支持向量机的求解过程可以转化为一个凸优化问题,通过求解对偶问题可以得到最优解。
二、支持向量机的核函数在实际应用中,很多问题并不是线性可分的,此时需要使用非线性的超平面进行分类。
为了解决这个问题,支持向量机引入了核函数的概念。
核函数可以将低维的非线性问题映射到高维空间中,使得原本线性不可分的问题变得线性可分。
常用的核函数有线性核函数、多项式核函数、高斯核函数等。
线性核函数适用于线性可分问题,多项式核函数可以处理一些简单的非线性问题,而高斯核函数则适用于复杂的非线性问题。
选择合适的核函数可以提高支持向量机的分类性能。
三、支持向量机的应用支持向量机在实际应用中有着广泛的应用。
在图像识别领域,支持向量机可以用于人脸识别、物体检测等任务。
在生物信息学领域,支持向量机可以用于蛋白质分类、基因识别等任务。
在金融领域,支持向量机可以用于股票市场预测、信用评估等任务。
此外,支持向量机还可以用于文本分类、情感分析、异常检测等领域。
由于其强大的分类性能和泛化能力,支持向量机成为了机器学习领域中的重要算法之一。
支持向量机的基本原理

支持向量机的基本原理
支持向量机(Support Vector Machine, SVM)是一种二分类模型,其基本原理是找到一个最优的超平面来进行数据的划分。
其基本思想是将样本空间映射到高维特征空间,找到一个超平面使得正负样本之间的间隔最大化,从而实现分类。
具体来说,SVM的基本原理包括以下几个步骤:
1. 寻找最优超平面:将样本空间映射到高维特征空间,使得样本在特征空间中线性可分。
然后寻找一个超平面来最大化两个不同类别样本的间隔(也称为“分类间隔”)。
2. 构建优化问题:SVM通过解决一个凸二次规划问题来求解最优超平面。
该优化问题的目标是最大化分类间隔,同时限制样本的分类正确性。
3. 核函数技巧:在实际应用中,数据通常是非线性可分的。
通过引入核函数的技巧,可以将非线性问题转化为高维或无限维的线性问题。
常用的核函数有线性核、多项式核、高斯核等。
4. 寻找支持向量:在求解优化问题时,只有一部分样本点对于最优超平面的确定起到决定性作用,这些样本点被称为“支持向量”。
支持向量决定了超平面的位置。
5. 分类决策函数:在得到最优超平面后,可以通过计算样本点到超平面的距离来进行分类。
对于新的样本点,根据其距离超平面的远近来判断其所属类别。
支持向量机的基本原理可以简单概括为在高维特征空间中找到一个最优超平面,使得样本的分类间隔最大化。
通过引入核函数的技巧,SVM也可以处理非线性可分的问题。
支持向量机具有理论基础牢固、分类效果好等优点,在实际应用中得到了广泛的应用。
支持向量机原理与应用

支持向量机原理与应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法,其基本思想是通过寻找最优超平面将数据分成两类。
在这篇文章中,我们将深入探讨支持向量机的原理和应用。
一、支持向量机的原理支持向量机通过最大化间隔超平面来分类数据。
间隔是定义为支持向量(也就是最靠近分类边界的数据点)之间的距离。
因此,我们的目标是找到一个最优的超平面使得此间隔最大。
在二维空间中,最大间隔超平面是一条直线。
在高维空间中,最大间隔超平面是一个超平面。
这个超平面定义为:w\cdot x-b=0其中,w是一个向量,x是样本空间中的向量,b是偏差。
支持向量机的目标是找到一个可以将训练样本分成两个类别的最大间隔超平面,并且使得间隔为M(M是最大间隔)。
二、支持向量机的应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法。
这里我们将讨论支持向量机在分类问题中的应用。
1. 图像分类支持向量机在图像分类中的应用非常广泛。
通过将图像转换为特征向量,可以用支持向量机实现图像分类。
支持向量机特别适用于图像分类,因为它可以处理高维特征空间。
2. 自然语言处理支持向量机可以通过文本分类实现在自然语言处理中的应用。
支持向量机可以学习在给定文本语料库中的所有文档的特定类别的模式(如“金融”或“体育”)。
3. 生物信息学支持向量机在生物信息学中的应用非常广泛。
生物信息学家可以使用支持向量机分类DNA,RNA和蛋白质序列。
4. 金融支持向量机在金融中的应用也很广泛。
通过识别是否存在欺诈行为,可以使用支持向量机实现信用评估。
三、总结在这篇文章中,我们深入探讨了支持向量机的原理和应用。
通过理解支持向量机的原理,我们可以更好地了解如何使用它解决分类问题。
在应用方面,支持向量机广泛应用于各种领域,包括图像分类、自然语言处理、生物信息学和金融等。
因此,支持向量机是一种非常有用的机器学习算法,对于了解它的原理和应用非常重要。
支持向量机原理及应用

支持向量机原理及应用支持向量机(Support Vector Machine,SVM)是机器学习中一种强大的分类和回归方法。
它的原理是通过将数据映射到高维空间中,找到一个最优的超平面来实现分类或回归任务。
SVM在许多领域都有广泛的应用,例如图像分类、文本分类、生物信息学和金融等。
SVM的核心思想是找到一个能够最大化分类边界的超平面。
超平面是一个能够将分类样本分开的线性空间。
SVM通过将输入样本映射到高维空间中,使得线性可分问题变为了线性可分的问题。
在高维空间中,SVM选择一个能够最大化样本间距的超平面,这就是SVM的原理之一SVM的另一个重要原理是核技巧。
在非线性可分问题中,SVM使用核函数将数据映射到高维空间中,通过在高维空间中找到一个超平面来实现分类。
核函数可以将原始空间中的非线性问题转化为高维空间中的线性问题,从而大大提高了SVM的分类准确率。
SVM的应用非常广泛,其中最经典的应用之一是图像分类。
图像分类是指根据图像的内容将其归入特定的类别。
SVM可以利用其强大的分类能力来将图像分为属于不同类别的准确性高。
在图像分类中,SVM通常使用特征向量作为输入来训练模型,然后使用该模型将新的图像分类为预定义的类别。
SVM在文本分类中也有广泛的应用。
文本分类是指将文本归类为不同的类别,例如将电子邮件分类为垃圾邮件或非垃圾邮件。
SVM可以利用其在高维空间中找到超平面的能力,找出文字特征与类别之间的关系,从而实现文本分类。
SVM在文本分类中的应用有助于提高准确性和效率,特别是在大规模数据集上。
此外,SVM还在生物信息学中发挥重要作用。
生物信息学包括生物学、计算机科学和统计学等领域,用于研究和解释生物学数据。
SVM可以用于分析和预测生物学数据,如基因表达数据和蛋白质序列。
SVM在生物信息学中的应用有助于揭示生物学的内在规律,提高疾病诊断和治疗方法的准确性。
此外,SVM还被广泛应用于金融领域。
金融领域需要对股票市场、外汇市场和其他金融市场进行预测和分析。
支持向量机算法的原理

支持向量机算法的原理支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。
它的原理基于统计学习理论中的结构风险最小化原则,通过寻找一个最优的超平面来实现数据的分类。
在SVM中,数据被看作是高维空间中的点,每个点都有一个与之对应的特征向量。
这些特征向量的维度取决于特征的数量。
SVM的目标是找到一个超平面,使得其能够尽可能地将不同类别的数据点分隔开。
超平面是一个d维空间中的d-1维子空间,其中d为特征向量的维度。
在二维空间中,超平面即为一条直线,可以完全将两类数据点分开。
在更高维的空间中,超平面可以是一个曲面或者是一个超平面的组合。
为了找到最优的超平面,SVM引入了支持向量的概念。
支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。
通过最大化支持向量到超平面的距离,SVM能够找到一个最优的超平面,使得分类误差最小化。
SVM的核心思想是将低维空间中的数据映射到高维空间中,使得原本线性不可分的数据变得线性可分。
这一映射是通过核函数实现的。
核函数能够计算两个数据点在高维空间中的内积,从而避免了显式地进行高维空间的计算。
常用的核函数有线性核、多项式核和高斯核等。
SVM的训练过程可以简化为一个凸优化问题。
通过最小化结构风险函数,SVM能够找到一个最优的超平面,使得分类误差最小化。
结构风险函数由经验风险项和正则化项组成。
经验风险项衡量了分类器在训练集上的错误率,正则化项则防止过拟合。
SVM的优点是具有较好的泛化性能和较强的鲁棒性。
由于最大化支持向量到超平面的距离,SVM对异常值不敏感,能够有效地处理噪声数据。
此外,SVM还可以通过引入松弛变量来处理非线性可分的问题。
然而,SVM也存在一些限制。
首先,SVM对于大规模数据集的训练时间较长,且对内存消耗较大。
其次,选择合适的核函数和参数是一个挑战性的问题,不同的核函数和参数可能会导致不同的分类结果。
机器学习中的支持向量机原理及应用

机器学习中的支持向量机原理及应用机器学习是一门以数据为基础,以预测或决策为目标的学科。
支持向量机是机器学习中的一种常见算法,它强调的是模型的泛化能力,独立于任何给定的输入样本集,且泛化误差尽可能小。
1. 支持向量机原理支持向量机是一种监督学习算法。
以二分类问题为例,其原理可以简单用“最大间隔超平面”来描述。
对于一个n维的特征空间,我们的目标就是要找到一个超平面,使得这个超平面将两个类别间的样本完全分开,并且对未知数据的分类能力最强。
如何定义“最大间隔”呢?我们首先在超平面两侧分别找到最靠近超平面的两个点,称之为支持向量点;这些支持向量点到超平面的距离和就是所谓的“间隔”。
在寻找最大间隔超平面时,我们的目标就是最大化这个间隔值。
同时,由于数据存在噪声、不可分等问题,我们需要一个优化目标,使其能够让分类错误率低。
这个目标在支持向量机算法中被形式化为一种“软”约束条件,用惩罚系数调整误差的大小。
2. 支持向量机应用支持向量机算法在实际应用中具有广泛的应用范围:分类,回归,异常检测等任务都可以使用它来完成。
2.1 分类在分类任务中,支持向量机常用于二分类问题,在高维数据分析中有很好的表现。
举个例子,我们可以使用支持向量机算法来判别肿瘤组织是恶性还是良性。
在这种情况下,我们使用一些之前的数据来生成一个分类器,然后根据这个分类器来对新病人进行分类。
2.2 回归在回归任务中,支持向量机可用于非线性回归和多变量回归等问题。
举个例子,我们可以使用支持向量机算法来预测一辆车的油耗量。
在这种情况下,我们使用一些之前的数据来生成一个回归器,然后根据这个回归器来对新的车辆进行预测。
2.3 异常检测异常检测是指在数据中找到异常值或离群点。
支持向量机也可以用于这种任务。
学习算法在训练数据中学习正常的模式,然后将这些模式应用于测试数据,从而发现异常点。
举个例子,我们可以使用支持向量机算法来检测网站服务器的攻击行为。
3. 支持向量机优缺点支持向量机的优点在于:(1)在高维空间上表现出很好的泛化能力(2)对于数据错误或噪声具有较好的容错能力(3)支持向量机算法在样本量较少的情况下也能够有效应用支持向量机的缺点在于:(1)支持向量机算法在计算量上比较大,对大数据量处理较为困难(2)支持向量机算法对于非线性问题的处理需要经过核函数的处理,核函数的选择对结果产生较大的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量机简介摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。
我们通常希望分类的过程是一个机器学习的过程。
这些数据点是n 维实空间中的点。
我们希望能够把这些点通过一个n-1维的超平面分开。
通常这个被称为线性分类器。
有很多分类器都符合这个要求。
但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。
如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。
关键字:VC 理论 结构风险最小原则 学习能力1、SVM 的产生与发展自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM方法(Multi-Class Support Vector Machines,Multi-SVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题的判断:此外,在SVM算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens提出的最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出的SVM-1ight,张学工提出的中心支持向量机(Central Support Vector Machine,CSVM),Scholkoph和Smola基于二次规划提出的v-SVM等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM的典型应用进行总结,并设计开发出较为完善的SVM工具包,也就是LIBSVM(A Library for Support Vector Machines)。
上述改进模型中,v-SVM是一种软间隔分类器模型,其原理是通过引进参数v,来调整支持向量数占输入数据比例的下限,以及参数 来度量超平面偏差,代替通常依靠经验选取的软间隔分类惩罚参数,改善分类效果;LS-SVM则是用等式约束代替传统SVM中的不等式约束,将求解QP问题变成解一组等式方程来提高算法效率;LIBSVM是一个通用的SVM软件包,可以解决分类、回归以及分布估计等问题,它提供常用的几种核函数可由用户选择,并且具有不平衡样本加权和多类分类等功能,此外,交叉验证(cross validation)方法也是LIBSVM对核函数参数选取问题所做的一个突出贡献;SVM-1ight的特点则是通过引进缩水(shrinking)逐步简化QP问题,以及缓存(caching)技术降低迭代运算的计算代价来解决大规模样本条件下SVM学习的复杂性问题。
2、支持向量机基础2.1 统计学习理论基础与传统统计学理论相比,统计学习理论(Statistical learning theory或SLT)是一种专门研究小样本条件下机器学习规律的理论。
该理论是针对小样本统计问题建立起的一套新型理论体系,在该体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在有限信息条件下得到最优结果。
Vapnik等人从上世纪六、七十年代开始致力于该领域研究,直到九十年代中期,有限样本条件下的机器学习理论才逐渐成熟起来,形成了比较完善的理论体系——统计学习理论。
统计学习理论的主要核心内容包括:(1)经验风险最小化准则下统计学习一致性条件;(2)这些条件下关于统计学习方法推广性的界的结论;(3)这些界的基础上建立的小样本归纳推理准则;(4)发现新的准则的实际方法(算法)。
2.2 SVM原理SVM方法是20世纪90年代初Vapnik等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。
支持向量机的基本思想是:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。
在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空间的样本映射到高维属性空间使其变为线性情况,从而使得在高维属性空间采用线性算法对样本的非线性进行分析成为可能,并在该特征空间中寻找最优分类超平面。
其次,它通过使用结构风险最小化原理在属性空间构建最优分类超平面,使得分类器得到全局最优,并在整个样本空间的期望风险以某个概率满足一定上界。
其突出的优点表现在:(1)基于统计学习理论中结构风险最小化原则和VC维理论,具有良好的泛化能力,即由有限的训练样本得到的小的误差能够保证使独立的测试集仍保持小的误差。
(2)支持向量机的求解问题对应的是一个凸优化问题,因此局部最优解一定是全局最优解。
(3)核函数的成功应用,将非线性问题转化为线性问题求解。
(4)分类间隔的最大化,使得支持向量机算法具有较好的鲁棒性。
由于SVM自身的突出优势,因此被越来越多的研究人员作为强有力的学习工具,以解决模式识别、回归估计等领域的难题。
3 支持向量机相关理论3.1 学习问题●产生器(G),F(x)●训练器(S),x关系为y=f(x,v)●学习机器(LM),输入-输出映射函数集y=f(x,w),w W,W是参数集合。
●学习问题就是从给定的函数集f(x,w),w W中选择出能够最好的逼近训练器响应的函数。
而这种选择是基于训练集的,训练集由根据联合分布F(x,y)=F(x)F(y|x)抽取的n 个独立同分布样本 (xi,yi), i=1,2,…,n 组成 。
3.2 学习问题的表示● 学习的目的就是,在联合概率分布函数F(x,y)未知、所有可用的信息都包含在训练集中的情况下,寻找函数f(x,w0),使它(在函数类f(x,w),(w W )上最小化风险泛函● 模式识别问题3.3 经验风险最小化原则(ERM )1、最小化经验风险(训练样本错误率 ) :函数集Fk={F(x,w);w ∈Wk}, k=1,2,…,n F1 F2 … Fn VC 维:h1≤h2≤…≤hn在使保证风险(风险的上界)最小的子集中选择使经验风险最小的函数⎰=),()),(,()(y x dF w x f y L w R ⎩⎨⎧≠==w)f(x,y 1w)f(x,y ,0)),(,(,若若w x f y L ∑==Ni i i emp w x f d L n w R 1)),(,(1)(2、ERM 的缺点● 用ERM 准则代替期望风险最小化并没有经过充分的理论论证,只是直观上合理的想当然做法。
● 这种思想却在多年的机器学习方法研究中占据了主要地位。
人们多年来将大部分注意力集中到如何更好地最小化经验风险上。
● 实际上,即使可以假定当n 趋向于无穷大时经验风险也不一定趋近于期望风险,在很多问题中的样本数目也离无穷大相去甚远 ,如神经网络。
3.4 Vapnik-Chervonenkis(VC)维1、定义:VC 维是对由学习机器能够实现的分类函数族的容量或表达力的测度。
分类函数集={ f(x,w):w ∈W}的VC 维是能被机器对于分类函数的所有可能二分标志无错学习的训练样本的最大数量,描述了学习机器的复杂性2、学习机器实际风险的界其中n 样本数量,h 是VC 维,Φ是递减函数 两种方法:● 神经网络: 保持置信范围固定(通过选择一个适当构造的机器)并最小化经验风险。
● 支持向量机(SVM): 保持经验风险固定(比如等于零)并最小化置信范围。
结构风险最小化原则)()()(h nw R w R empφ+≤函数集Fk={F(x,w);w ∈Wk}, k=1,2,…,n F1 F2 … Fn VC 维:h1≤h2≤…≤hn3.5 支持向量回归机SVM 本身是针对经典的二分类问题提出的,支持向量回归机(Support Vector Regression ,SVR )是支持向量在函数回归领域的应用。
SVR 与SVM 分类有以下不同:SVM 回归的样本点只有一类,所寻求的最优超平面不是使两类样本点分得“最开”,而是使所有样本点离超平面的“总偏差”最小。
这时样本点都在两条边界线之间,求最优回归超平面同样等价于求最大间隔。
3.5.1 SVR 基本模型对于线性情况,支持向量机函数拟合首先考虑用线性回归函数b x x f +⋅=ω)(拟合n i y x i i ,...,2,1),,(=,n i R x ∈为输入量,R y i ∈为输出量,即需要确定ω和b 。
图3-3a SVR 结构图 图3-3b ε不灵敏度函数惩罚函数是学习模型在学习过程中对误差的一种度量,一般在模型学习前己经选定,不同的学习问题对应的损失函数一般也不同,同一学习问题选取不同的损失函数得到的模型也不一样。
常用的惩罚函数形式及密度函数如表3-1。
表3-1 常用的损失函数和相应的密度函数损失函数名称损失函数表达式()i cξ% 噪声密度()i p ξ标准支持向量机采用ε-不灵敏度函数,即假设所有训练数据在精度ε下用线性函数拟合如图(3-3a )所示,**()()1,2,...,,0i i ii i i i i y f x f x y i n εξεξξξ-≤+⎧⎪-≤+=⎨⎪≥⎩ (3.11)式中,*,i i ξξ是松弛因子,当划分有误差时,ξ,*i ξ都大于0,误差不存在取0。
这时,该问题转化为求优化目标函数最小化问题:∑=++⋅=ni i i C R 1**)(21),,(ξξωωξξω (3.12)式(3.12)中第一项使拟合函数更为平坦,从而提高泛化能力;第二项为减小误差;常数0>C 表示对超出误差ε的样本的惩罚程度。
求解式(3.11)和式(3.12)可看出,这是一个凸二次优化问题,所以引入Lagrange 函数:*11****111()[()]2[()]()n ni i i i i i i i n ni i i i i i i i i i L C y f x y f x ωωξξαξεαξεξγξγ=====⋅++-+-+-+-+-+∑∑∑∑ (3.13)式中,α,0*≥i α,i γ,0*≥i γ,为Lagrange 乘数,n i ,...,2,1=。