SVM支持向量机基本原理及应用ppt课件

合集下载

支持向量机SVMPPT课件

支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介

《支持向量机SVM》课件

《支持向量机SVM》课件

多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。

SVMPPT课件

SVMPPT课件
VC维:所谓VC维是对函数类的一种度量,可
以简单的理解为问题的复杂程度,VC维越高, 一个问题就越复杂。正是因为SVM关注的是VC 维,后面我们可以看到,SVM解决问题的时候, 和样本的维数是无关的(甚至样本是上万维的 都可以,这使得SVM很适合用来解决像文本分 类这样的问题,当然,有这样的能力也因为引 入了核函数)。
11
SVM简介
置信风险:与两个量有关,一是样本数
量,显然给定的样本数量越大,我们的 学习结果越有可能正确,此时置信风险 越小;二是分类函数的VC维,显然VC维 越大,推广能力越差,置信风险会变大。
12
SVM简介
泛化误差界的公式为:
R(w)≤Remp(w)+Ф(n/h) 公式中R(w)就是真实风险,Remp(w)表示 经验风险,Ф(n/h)表示置信风险。此时 目标就从经验风险最小化变为了寻求经 验风险与置信风险的和最小,即结构风 险最小。
4
SVM简介
支持向量机方法是建立在统计学习理论 的VC 维理论和结构风险最小原理基础上 的,根据有限的样本信息在模型的复杂 性(即对特定训练样本的学习精度, Accuracy)和学习能力(即无错误地识 别任意样本的能力)之间寻求最佳折衷, 以期获得最好的推广能力(或称泛化能 力)。
5
SVM简介
10
SVM简介
泛化误差界:为了解决刚才的问题,统计学
提出了泛化误差界的概念。就是指真实风险应 该由两部分内容刻画,一是经验风险,代表了 分类器在给定样本上的误差;二是置信风险, 代表了我们在多大程度上可以信任分类器在未 知样本上分类的结果。很显然,第二部分是没 有办法精确计算的,因此只能给出一个估计的 区间,也使得整个误差只能计算上界,而无法 计算准确的值(所以叫做泛化误差界,而不叫 泛化误差)。

支持向量机原理SVMPPT课件

支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。

SVM支持向量机PPT

SVM支持向量机PPT
核函数的改进方向可能包括研究新的核函数形式,如高阶核函数、多核函数等,以提高SVM的分类精 度和泛化能力。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。

支持向量机(SVM)2演示报告PPT

支持向量机(SVM)2演示报告PPT
SVM分类器
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看

支持向量机原理 ppt课件

支持向量机原理 ppt课件
形式1: 形式2: 形式3:
2.2拉格朗日对偶之等式约束
问题:
目标函数是f(w),通常解法是引入拉格朗日算子,这 里使用来表示β算子,得到拉格朗日公式为 :
L是等式约束的个数。然后分别对w和β求偏导,使得 偏导数等于0,然后解出w和β。
2.2拉格朗日对偶之不等式约束
问题:
利用拉格朗日公式变换:
支持向量机
2014-2-21
本讲主要内容
一. 支持向量机 二. 最大间隔分类器 三. 核函数 四.软间隔优化 五.支持向量机总结
一. SVM— warming up
1.1 SVM概念简介 1.2 超平面 1.3 logistic回归 1.4 形式化表示 1.5 函数间隔与几何间隔
三. 核函数
3.1 核函数简介 3.2 核函数有效性判定
3.1 核函数简介
建立一个R2R3的非线性映射 :x1,x2t x1 2, 2x1x2,x2 2t
计算R3中2个矢量的内积:
x t y x 1 2 ,2 x 1 x 2 ,x 2 2y 1 2 ,2 y 1 y 2 ,y 2 2 t x t y 2
1.3 logistic回归
形式化表示:
x 假是设n函维数特为征:向h 量(,x)函数g(gTx就) 是1leo1 giTsxtic
函数。
其图中像如g图(z)所示1:1ez 可以看到,将无穷映 射到了(0,1)
1.4 形式化表示
结果标签是y=-1,y=1,替换logistic回归中的y=0和y=1。
1.1 SVM概念简介
支持向量机(SVM)是 90 年代中期发展起来的基于统 计学习理论的一种机器学习方法,通过寻求结构化风 险最小来提高学习机泛化能力,实现经验风险和置信 范围的最小化,从而达到在统计样本量较少的情况下, 亦能获得良好统计规律的目的。

支持向量机PPT课件

支持向量机PPT课件
2023
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SVM
由于SVM 的求解最后转化成二次规划问题的求 解,因此SVM 的解是全局唯一的最优解
SVM在解决小样本、非线性及高维模式识别问题 中表现出许多特有的优势,并能够推广应用到函 数拟合等其他机器学习问题中
Joachims 最近采用SVM在Reuters-21578来进行 文本分类,并声称它比当前发表的其他方法都好
信息科学技术学院 ·网络研究所
判别函数g(x)是特征空间中某点x到超平面的距 离的一种代数度量
从下图容易看出
x
xp
r ||
w w ||
信息科学技术学院 ·网络研究所
上式也可以表示为: r= g(x)/||w||。当x=0时,表示 原点到超平面的距离,r0= g(0)/||w||=w0/||w||,标示 在上图中。
传统的统计模式识别方法在进行机器学习时,强 调经验风险最小化。而单纯的经验风险最小化会 产生“过学习问题”,其推广能力较差。
推广能力是指: 将学习机器(即预测函数,或称学 习函数、学习模型)对未来输出进行正确预测的能 力。
信息科学技术学院 ·网络研究所
过学习问题
“过学习问题”:某些情况下,当训练误差 过小反而会导致推广能力的下降。
信息科学技术学院 ·网络研究所
Outline
SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 SVM的研究与应用
信息科学技术学院 ·网络研究所
线性判别函数和判别面
一个线性判别函数(discriminant function)是 指由x的各个分量的线性组合而成的函数
g(x) wT x w0
例如:对一组训练样本(x,y),x分布在实数 范围内,y取值在[0,1]之间。无论这些样 本是由什么模型产生的,我们总可以用 y=sin(w*x)去拟合,使得训练误差为0.
信息科学技术学院 ·网络研究所
SVM
根据统计学习理论,学习机器的实际风险由经验风 险值和置信范围值两部分组成。而基于经验风险最 小化准则的学习方法只强调了训练样本的经验风险 最小误差,没有最小化置信范围值,因此其推广能 力较差。
总之:
•线性判别函数利用一个超平面把 特征空间分隔成两个区域。
•超平面的方向由法向量w确定, 它的位置由阈值w0确定。
•判别函数g(x)正比于x点到超平面 的代数距离(带正负号)。当x点 在超平面的正侧时,g(x)>0;当x 点在超平面的负侧时,g(x)<0
信息科学技术学院 ·网络研究所
多类的情况
Vapnik 提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置 信范围值最小化作为优化目标,即SVM是一种基于 结构风险最小化准则的学习方法,其推广能力明显 优于一些传统的学习方法。
形成时期在1992—1995年。
信息科学技术学院 ·网络研究所
信息科学技术学院 ·网络研究所
பைடு நூலகம்
最优分类面
SVM 是从线性可分情况下的最优分类面发展而来 的, 基本思想可用图2的两维情况说明.
图中, 方形点和圆形点代表两类样 本, H 为分类线,H1, H2分别为过 各类中离分类线最近的样本且平行 于分类线的直线, 它们之间的距离 叫做分类间隔(margin)。
g(x) wT x w0
信息科学技术学院 ·网络研究所
超平面
方程g(x)=0定义了一个判定面 与归类于C2的点分开来。
,它把归类于C1的点
当 g(x) 是 线 性 函 数 时 , 这 个 平 面 被 称 为 “ 超 平
面”(hyperplane)。
当x1和x2都在判定面上时,
这表明w和超平面上任意向量正交, 并称w为超平面的法向量。 注意到:x1-x2表示 超平面上的一个向量
信息科学技术学院 ·网络研究所
广义线性判别函数
信息科学技术学院 ·网络研究所
广义线性判别函数
信息科学技术学院 ·网络研究所
设计线性分类器
信息科学技术学院 ·网络研究所
Fisher线性判别方法
如:Fisher线性判别 方法 ,主 要解决把d维空间的样本投影 到一条直线上,形成一维空间, 即把维数压缩到一维。
两类情况:对于两类问题的决策规则为
如果g(x)>0,则判定x属于C1, 如果g(x)<0,则判定x属于C2, 如果g(x)=0,则可以将x任意
分到某一类或者拒绝判定。
信息科学技术学院 ·网络研究所
线性判别函数
下图表示一个简单的线性分类器,具有d个输入的单元,每个对应一个输入 向量在各维上的分量值。该图类似于一个神经元。
然而在d维空间分得很好的样 本投影到一维空间后,可能混 到一起而无法分割。
但一般情况下总可以找到某个 方向,使得在该方向的直线上, 样本的投影能分开的最好。
目的是降维,在低维空间中分割
信息科学技术学院 ·网络研究所
Outline
SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 SVM的研究与应用
利用线性判别函数设计多类分类器有多种 方法。例如
可以把k类问题转化为k个两类问题,其中第i 个问题 是用线性判别函数把属于Ci类与不属于Ci类的点分开。
更复杂一点的方法是用k(k-1)/2个线性判别函数,把 样本分为k个类别,每个线性判别函数只对其中的两 个类别分类。
信息科学技术学院 ·网络研究所
支持向量机
( support vector machine,SVM)
Wang Jimin Nov 18, 2005
Outline
SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 SVM的研究与应用
信息科学技术学院 ·网络研究所
SVM的理论基础
传统的统计模式识别方法只有在样本趋向无穷大 时,其性能才有理论的保证。统计学习理论(STL) 研究有限样本情况下的机器学习问题。SVM的理 论基础就是统计学习理论。
广义线性判别函数
在一维空间中,没有任何一个线性函数能解决下 述划分问题(黑红各代表一类数据),可见线 性判别函数有一定的局限性。
信息科学技术学院 ·网络研究所
广义线性判别函数
如果建立一个二次判别函数g(x)=(x-a)(x-b),则可以 很好的解决上述分类问题。
决策规则仍是:如果g(x)>0,则判定x属于C1,如果 g(x)<0,则判定x属于C2,如果g(x)=0,则可以将x任 意分到某一类或者拒绝判定。
相关文档
最新文档